簡易檢索 / 詳目顯示

研究生: 陳致嘉
Jhih-Jia Chen
論文名稱: 非晶相鎳氧化物應用於電催化甘油氧化反應之研究,並探討電解液調控對產物選擇性的影響
The Study of Amorphous Nickel-oxides Applied on Glycerol Electro-oxidation Reaction And the Exploration to the Effect of Electrolyte Adjustment for Product Selectivity
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 胡哲嘉
Che-Chia Hu
潘詠庭
Yung-Tin Pan
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 188
中文關鍵詞: 鎳氧化物非晶相材料甘油電氧化四硼酸鈉
外文關鍵詞: Nickel-oxides, Amorphous material, Glycerol Electro-Oxidation, Borax
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電催化甘油氧化反應是一個結合陰極電解水產氫與陽極電解甘油產出高價值產物的熱門領域。在此,本研究使用光化學金屬有機沉積法(PMOD method),合成出非晶相鎳氧化物(NiOx)作為電陽極使用,並於甘油-四硼酸鈉電解液中施加電位1.75 V vs. RHE,得到了 2.9 mA/cm-2 的電流密度,以及高價值產物包含 41%的甘油醛(GLAD)與 37%的二羥基丙酮(DHA)。
    此外,筆者探討晶相/非晶相材料對於電化學表現、產物分佈的差異,顯示非晶相材料的確展現出更好的表現與發展前景。並透過一系列 pH 值調整、輔助電解質選擇與濃度調整、甘油濃度調整等測詴,表明產出高選擇性之高價值產物,其關鍵包含適切的酸鹼值(以利 DHA、GLAD 穩定留存),以及良好的輔助電解質-四硼酸鈉,解離出豐富的陰離子型態以提供電催化活性與反應動力學。並在後續章節最佳化四硼酸鈉-甘油電解液之組合,發現兩者之濃度適當提升,分別有益於 DHA、GLAD 的產率增加,這可能揭露了硼酸根離子與甘油的交互作用現象。
    最後,透過結合電化學系統與拉曼光譜儀的原位拉曼光譜(in-situ Raman spectra),探討於四硼酸鈉-甘油電解液組合下的材料型態變化,闡明 NiOOH 為 NiOx的電催化甘油氧化的活性位點。


    Electrocatalytic glycerol oxidation is a prominent field that combines cathodic electrolysis for hydrogen production with anodic electrolysis of glycerol to yield high-value products. In this study, we employed photochemical metal-organic deposition (PMOD) method to synthesize amorphous nickel oxide (NiOx) as an anode for electrochemical reaction. Applying a potential of 1.75 V vs. RHE in a glycerol-sodium tetrahydroborate electrolyte, a current density of 2.9 mA/cm-2 was achieved. This process led to the formation of valuable products, including 41% glyceraldehyde (GLAD) and 37% dihydroxyacetone (DHA).
    Furthermore, the investigation into the disparities in electrochemical performance and product distribution between crystalline and amorphous materials indicated the superior performance and potential of amorphous materials. Through a series of tests involving pH value adjustment, supporting electrolyte selection, concentration tuning, and glycerol concentration modification, it was demonstrated that achieving highly selective and valuable products is contingent upon appropriate pH value (to stabilize DHA and GLAD), as well as effective supporting electrolyte – sodium tetrahydroborate (Borax), which releases abundant anionic species to facilitate electrocatalytic activity and reaction kinetics. Subsequently, the optimization of the sodium tetrahydroborate-glycerol electrolyte combination revealed that moderate increases in their concentrations individually enhance the yields of DHA and GLAD, potentially elucidating interaction phenomena between borate ions and glycerol.
    Finally, through the integration of electrochemical systems and in-situ Raman spectroscopy, the material change in the sodium tetrahydroborate-glycerol electrolyte were examined, elucidating NiOOH as the active site for the electrocatalytic glycerol oxidation of NiOx.

    摘要 i Abstract ii 目錄 iii 表目錄 vii 圖目錄 ix 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 綠能永續 3 2.2 甘油 6 2.3 甘油氧化反應 8 2.3.1 催化反應 8 2.3.2 電催化甘油氧化反應(EC-GEOR) 10 2.3.3 高價值產物 13 2.3.4 產物分析 17 2.3.4.1 主流分析方法 17 2.3.4.2 其他分析方法 18 2.4 電催化甘油觸媒 19 2.4.1 材料演變 19 2.4.2 合成方法 20 2.4.2.1 光化學金屬有機沉積法 (PMOD) 21 2.4.3 晶相/非晶相 22 2.5 提升電催化甘油氧化效能之探討 23 2.5.1 材料優化 23 2.5.2 電解液 24 2.5.2.1 輔助電解質於析氧反應動力學的效應 25 2.5.2.2 四硼酸鈉作為輔助電解質 29 2.6 鎳氧化物電觸媒 30 第三章 實驗設備暨原理 34 3.1 研究架構圖 34 3.2 實驗藥品暨設備 35 3.2.1 觸媒合成藥品 35 3.2.2 輔助電解質置換藥品 35 3.2.3 甘油氧化產物標準品 36 3.2.4 實驗設備與儀器 37 3.3 合成觸媒流程 39 3.3.1 基材預處理程序 39 3.3.2 製備非晶相鎳氧化物(NiOx)觸媒電極 39 3.4 材料分析原理 40 3.4.1 X射線繞射儀 (X-Ray Diffractometer, XRD) 40 3.4.2 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 40 3.4.3 拉曼光譜儀 (Raman spectrometer) 41 3.4.3.1 in-situ Raman 42 3.4.3.2 拉曼特徵峰擬合 42 3.4.3.3 振動模式解析 43 3.4.4 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 44 3.4.5 傅立葉轉換紅外光譜儀 (Fourier-Transform Infrared Spectroscopy, FTIR) 45 3.5 電化學分析原理 46 3.5.1 電化學系統 46 3.5.2 伏安法Voltammetry (LSV, CV) 47 3.5.2.1 循環伏安法 (Cyclic Voltammetry, CV) 47 3.5.2.2 線性掃描伏安法 (Linear Sweep Voltammetry, LSV) 47 3.5.3 計時安培法 (Chrono-amperometry, CA) 47 3.5.4 電化學阻抗圖譜法 (Electrochemical Impedance Spectroscopy, EIS) 48 3.5.5 塔佛斜率 (Tafel slope) 49 3.6 產物分析原理 50 3.6.1 高效液相層析儀 (High Performance Liquid Chromatography, HPLC) 50 3.6.2 氣相層析儀 (Gas Chromatography, GC) 52 3.7 電解液分析原理 53 3.7.1 音波式黏度計 53 3.7.2 導電度計 53 3.7.3 輔助電解質的解離型態 53 第四章 實驗結果與討論 54 4.1 NiOx應用於電催化甘油氧化反應 54 4.1.1 結構暨型態分析 54 4.1.2 電化學表現分析 57 4.1.3 產物分析 58 4.1.3.1 液相產物分析 58 4.1.3.2 氣相產物分析 62 4.2 退火溫度調控之影響 65 4.2.1 材料性質分析 65 4.2.2 電化學暨產物分析 68 4.3 NiOx經活化、反應後之材料性質分析 71 4.4 pH值調控對電催化甘油氧化反應之影響 74 4.4.1 穩定性暨自發反應測試 74 4.4.2 電化學暨產物分析 79 4.5 輔助電解質調控 83 4.5.1 電化學暨產物分析 83 4.5.2 電解液分析 92 4.6 四硼酸鈉-甘油電解液系統 95 4.6.1 施加電位調控 95 4.6.2 四硼酸鈉濃度調控 100 4.6.2.1 NiOx於不同電解液組合的吸附現象 104 4.6.3 甘油濃度調控 106 4.6.4 四硼酸鈉-甘油最佳化調控 110 4.6.4.1 經調控電解液的型態探討 117 4.6.5 反應路徑與機制分析 119 4.7 in-situ Raman 122 第五章 結論與未來展望 132 參考文獻 134 附錄一、甘油氧化產物檢量線 151 附錄二、磷酸氫二鈉、HEPES之穩定性測試 153 附錄三、甘油氧化產物的定量分析優化 154

    [1] Global Change Data Lab (n.d.), Energy mix, Retrieved March 6, 2023, from https://ourworldindata.org/energy-mix.

    [2] O.F.Noyan, M.M.Hasan and N.Pala, "A Global Review of the Hydrogen Energy Eco-System." Energies 16.3 (2023): 1484.

    [3] T.Attarbachi, M.D.Kingsley, and V.Spallina. "New trends on crude glycerol purification: A review." Fuel 340 (2023): 127485.

    [4] N.Tuleushova,Y.Holade, D.Cornu, S. Tingry "Glycerol electro‐reforming in alkaline electrolysis cells for the simultaneous production of value‐added chemicals and pure hydrogen–Mini‐review." Electrochemical Science Advances (2022): e2100174.

    [5] B.Katryniok, H.Kimura, E.Skrzyńska, J.-S.Girardon, P. Fongarland, M.Capron, R.Ducoulombier, N.Mimura, S.Paul and F.Dumeignil, "Selective catalytic oxidation of glycerol: perspectives for high value chemicals." Green Chemistry 13.8 (2011): 1960-1979.

    [6] D.Y.Tang, G.L.Lu, Z.W.Shen, Y.Z.Hu, L.Yao, B.F.Li, G.X.Zhao, B.X.Peng, X.B.Huang , "A review on photo-, electro-and photoelectro-catalytic strategies for selective oxidation of alcohols." Journal of Energy Chemistry (2022)

    [7] M.S.Ahmad, M.H.A.Rahim, T.M.Alqahtani, T.T.Witoon, J.-W.Lim, C.K.Cheng , "A review on advances in green treatment of glycerol waste with a focus on electro-oxidation pathway.", Chemosphere 276 (2021): 130128.

    [8] P.A.Alaba, C.S.Lee, F.Abnisa, M.K.Aroua, P. Cognet, Y.Pérès and W.Mohd A.W.Daud, "A review of recent progress on electrocatalysts toward efficient glycerol electrooxidation." Reviews in Chemical Engineering 37.7 (2021): 779-811.

    [9] United States Environmental Protection Agency (n.d.). What Is Green Power?. Retrieved March 6, 2023, from https://www.epa.gov/green-power-markets/what-green-power#:~:text=It%20represents%20those%20renewable%20energy,low%2Dimpact%20small%20hydroelectric%20sources.

    [10] Z.E.Zadeh, A.Abdulkhani, O. Aboelazayem and B.Saha, "Recent insights into lignocellulosic biomass pyrolysis: A critical review on pretreatment, characterization, and products upgrading." Processes 8.7 (2020): 799.

    [11] P.Kalita, B.Basumatary, P.Saikia, B.Das, S.Basumatary, "Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification.", Energy Nexus (2022): 100087.

    [12] Organization for Economic Co-operation and Development (n.d.), OECD-FAO Agricultural Outlook 2022-2031, Retrieved March 7, 2023, from
    https://www.oecd-ilibrary.org/sites/89d2ac54-en/index.html?itemId=/content/component/89d2ac54-en#section-d1e22214

    [13] M.H.Moklis, S.Cheng, and J.S.Cross. "Current and Future Trends for Crude Glycerol Upgrading to High Value-Added Products." Sustainability 15.4 (2023): 2979.

    [14] A.T.Kiakalaieh, N.A.S.Amin, K.Rajaei, S.Tarighi "Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes." Applied Energy 230 (2018): 1347-1379.

    [15] J.L.Bott-Neto, A.C.Garcia, V.L.Oliveira, N.E.de Souza, G.Tremiliosi-Filho, "Au/C catalysts prepared by a green method towards C3 alcohol electrooxidation: a cyclic voltammetry and in situ FTIR spectroscopy study." Journal of Electroanalytical Chemistry 735 (2014): 57-62.

    [16] C.C.Dai, L.B.Sun, H.B.Liao, B.Khezri, R.D.Webster, A.C.Fisher, Z.J.Xu, "Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles." Journal of Catalysis 356 (2017): 14-21.

    [17] W.Sauter, O.L.Bergmann, U.Schröder, "Hydroxyacetone: A Glycerol‐Based Platform for Electrocatalytic Hydrogenation and Hydrodeoxygenation Processes." ChemSusChem 10.15 (2017): 3105-3110.

    [18] M.R.Nanda, Y.S.Zhang, Z.S.Yuan, W.S.Qin, H.S.Ghaziaskar, C.B.(Charles)Xu "Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: A review." Renewable and Sustainable Energy Reviews 56 (2016): 1022-1031.

    [19] D.Chen, W.J.Wang, and C.L.Liu, "Hydrogen production through glycerol steam reforming over beehive-biomimetic graphene-encapsulated nickel catalysts." Renewable Energy 145 (2020): 2647-2657

    [20] S.B.He, I. Muizebelt, A. Heeres, N.J. Schenk, R. Blees, H.J. Heeres, "Catalytic pyrolysis of crude glycerol over shaped ZSM-5/bentonite catalysts for bio-BTX synthesis." Applied Catalysis B: Environmental 235 (2018): 45-55.

    [21] K.K.Hu, H.J.Wang, Y.H.Liu, C.Yang,"KNO3/CaO as cost-effective heterogeneous catalyst for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate." Journal of Industrial and Engineering Chemistry 28 (2015): 334-343.

    [22] X.Y.Liao, Y.L. Zhu, S.G.Wang, Y.W.Li, "Producing triacetylglycerol with glycerol by two steps: Esterification and acetylation." Fuel Processing Technology 90.7-8 (2009): 988-993.

    [23] F.Frusteri, L.Frusteri, C.Cannilla, G.Bonura, "Catalytic etherification of glycerol to produce biofuels over novel spherical silica supported Hyflon® catalysts." Bioresource Technology 118 (2012): 350-358.

    [24] A.Dibenedetto, A.Angelini, M.Aresta, J.Ethiraj, C.Fragale, F.Nocito, "Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes." Tetrahedron 67.6 (2011): 1308-1313.

    [25] A.Martin, M.Richter, "Oligomerization of glycerol–a critical review." European Journal of Lipid Science and Technology 113.1 (2011): 100-117.

    [26] L.F.Fan, B.Liu, X.Liu, N.Senthilkumar, G.X.Wang, Z.H.Wen, "Recent progress in electrocatalytic glycerol oxidation." Energy Technology 9.2 (2021): 2000804.

    [27] S.Wang, Z.Ren, H.S.Feng, Y.W.Shia, Y.Deng, P.X.Pu, Y.S.Yang, L.F.Chen, X.Zhang, "Theoretical investigation on oxygen source for selective oxidation of glycerol at Au/CeO2− x and Pt/CeO2− x interfaces." Fuel 342 (2023): 127884.

    [28] J.Wisniak, "The history of catalysis. From the beginning to Nobel Prizes." Educación química 21.1 (2010): 60-69.

    [29] L.Luo, W.S.Chen, S.M.Xu, J.R.Yang, M.Li, H.Zhou, M.Xu, M.F.Shao, X.G. Kong, Z.H.Li, and H.H.Duan, "Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone via enhanced middle hydroxyl adsorption over a Bi2O3-incorporated catalyst." Journal of the American Chemical Society 144.17 (2022): 7720-7730.

    [30] Z.An, H.H.Ma, H.B.Han, Z.Y.Huang, Y.T.Jiang, W.LWang, Y.R.Zhu, H.Y.Song, X.Shu, X.Xiang, and J.He, "Insights into the multiple synergies of supports in the selective oxidation of glycerol to dihydroxyacetone: layered double hydroxide supported Au." ACS Catalysis 10.21 (2020): 12437-12453.

    [31] Z.An, Z.L.Zhang, Z.Y.Huang, H.B.Han, B.B.Song, J.Zhang, Q.Ping, Y.R.Zhu, H.Y.Song, B.Wang, L.R.Zheng & J.He "Pt1 enhanced CH activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid." Nature Communications 13.1 (2022): 5467.

    [32] A.Augustin, C.Chuaicham, M.Shanmugam, B.Vellaichamy, S.Rajendran, T.K.A. Hoang, K.Sasaki and K.Sekar, "Recent development of organic–inorganic hybrid photocatalysts for biomass conversion into hydrogen production." Nanoscale Advances 4.12 (2022): 2561-2582.

    [33] D.Y.Tang, G.L.Lu, Z.W.Shen, Y.Z.Hu, L.Yao, B.F.Li, G.X.Zhao, B.X.Peng, X.B.Huang , "A review on photo-, electro-and photoelectro-catalytic strategies for selective oxidation of alcohols." Journal of Energy Chemistry (2022)

    [34] J.Yu, F.Dappozze, J. M.-Gomez, J. H.-Carrillo, A.Marinas, P.Vernoux , A.Caravaca, Chantal Guillard, "Glyceraldehyde production by photocatalytic oxidation of glycerol on WO3-based materials." Applied Catalysis B: Environmental 299 (2021): 120616.

    [35] O.A.-García, A. M.-Zepeda, A. R.-Méndez, J. E.-Valencia, S. L. M.-Vargas, R.Romero and R.Natividad, "Photo-Oxidation of Glycerol Catalyzed by Cu/TiO2." Catalysts 12.8 (2022): 835.

    [36] M.Simões, S.Baranton, C.Coutanceau, "Electrochemical valorisation of glycerol." ChemSusChem 5.11 (2012): 2106-2124.

    [37] D.Z.Jeffery, G. A. Camara, "The formation of carbon dioxide during glycerol electrooxidation in alkaline media: first spectroscopic evidences." Electrochemistry Communications 12.8 (2010): 1129-1132.

    [38] N.Tuleushova,Y.Holade, D.Cornu, S. Tingry "Glycerol electro‐reforming in alkaline electrolysis cells for the simultaneous production of value‐added chemicals and pure hydrogen–Mini‐review." Electrochemical Science Advances (2022): e2100174.

    [39] M.K.Goetz, M.T.Bender, K.-S.Choi, "Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH." Nature Communications 13.1 (2022): 5848

    [40] W. M. Haynes, Ph.D (2014), CRC Handbook of Chemistry and Physics 95th Edition.

    [41] G.Dodekatos, S.Schünemann, and H.Tüysüz, "Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation." ACS Catalysis 8.7 (2018): 6301-6333.

    [42] G.Juodeikiene, D.Vidmantiene, L.Basinskiene, D.Cernauskas, E.Bartkiene, D.Cizeikiene, "Green metrics for sustainability of biobased lactic acid from starchy biomass vs chemical synthesis." Catalysis Today 239 (2015): 11-16.

    [43] J.G.-Cobos, S. Baranton, and C. Coutanceau, "A systematic in situ infrared study of the electrooxidation of C3 alcohols on carbon-supported Pt and Pt–Bi catalysts." The Journal of Physical Chemistry C 120.13 (2016): 7155-7164.

    [44] Y.F.Zhou, Y.Shen, and J.H.Piao, "Sustainable conversion of glycerol into value‐added chemicals by selective electro‐oxidation on Pt‐based catalysts." ChemElectroChem 5.13 (2018): 1636-1643.

    [45] S.Sato, "Application of glyceric acid to bio-related functional materials and improvement of microbial production." Journal of Oleo Science 70.3 (2021): 289-295.

    [46] H.Yan, S.Yao, W.Liang, X.Feng, X.Jin, Y.B.Liu, X.O.Chen, C.O.Yang, "Selective oxidation of glycerol to carboxylic acids on Pt (111) in base-free medium: A periodic density functional theory investigation." Applied Surface Science 497 (2019): 143661.

    [47] L.S.Sharninghausen, J.Campos, M.G.Manas and R.H.Crabtree, "Efficient selective and atom economic catalytic conversion of glycerol to lactic acid." Nature communications 5.1 (2014): 5084.

    [48] S.X.Feng, K.Takahashi, H.Miura, T.Shishido, "One-pot synthesis of lactic acid from glycerol over a Pt/L-Nb2O5 catalyst under base-free conditions." Fuel Processing Technology 197 (2020): 106202.
    [49] S.U.Xu, Yuan Xiao, W.Y.Zhang, S.Q.Liao, R.F.Yang, J.M.Li, C.W.Hu, "Relay catalysis of copper-magnesium catalyst on efficient valorization of glycerol to glycolic acid." Chemical Engineering Journal 428 (2022): 132555

    [50] H.S.Oliveira, L.C.A. Oliveira, P.Chagas , D.L. Sangiorge, M.P. Figueiredo, K.P.F.Siqueira and E.J.M.Hensen,"A bifunctional catalyst based on Nb and V oxides over alumina: oxidative cleavage of crude glycerol to green formic acid." New Journal of Chemistry 44.20 (2020): 8538-8544.

    [51] M.S.E.Houache, K.Hughes and E.A. Baranova,"Study on catalyst selection for electrochemical valorization of glycerol." Sustainable Energy & Fuels 3.8 (2019): 1892-1915.

    [52] S.H.Lee, H.J.Kim, E.J.Lim, Y.M.Kim, Y.S.Noh, G.W.Huber and W.B.Kim, "Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process." Green Chemistry 18.9 (2016): 2877-2887.

    [53] P.S.Fernández, M.E.Martins, C.A.Martins, G.A.Camara, "The electro-oxidation of isotopically labeled glycerol on platinum: New information on C–C bond cleavage and CO2 production." Electrochemistry communications 15.1 (2012): 14-17.

    [54] S.N.Sun, L.B.Sun, S.B.Xi, Y.H.Du, M.U.A.Prathap, Z.L.Wang, Q.C.Zhang, A.Fisher, Z.C.J.Xu, "Electrochemical oxidation of C3 saturated alcohols on Co3O4 in alkaline." Electrochimica Acta 228 (2017): 183-194.

    [55] M.S.E.Houache, E.Cossar, S.Ntais, E.A.Baranova, "Electrochemical modification of nickel surfaces for efficient glycerol electrooxidation." Journal of Power Sources 375 (2018): 310-319.

    [56] L.Huang, J.-Y.Sun, S.-H.Cao, M.Zhan, Z.-R.Ni, H.-J.Sun, Z.Chen, Z.-Y. Zhou, E.G.Sorte, Y.Y.J.Tong, and S.-G.Sun, "Combined EC-NMR and in situ FTIR spectroscopic studies of glycerol electrooxidation on Pt/C, PtRu/C, and PtRh/C." ACS Catalysis 6.11 (2016): 7686-7695.

    [57] Y.K.Kwon, K.J.P.Schouten, M.T.M.Koper "Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes." ChemCatChem 3.7 (2011): 1176-1185.

    [58] J.-H.Song, J.-Y.Yu, M.-Z.Zhang, Y.-J.Liang, C.-W.Xu, Song, "Glycerol electrooxidation on Au/Ni core/shell three-dimensional structure catalyst." Int. J. Electrochem. Sci 7 (2012): 4362-4368.

    [59] G.-S.Tran, T.-G.Vo, and C.-Y.Chiang, "Earth-abundant manganese oxide nanoneedle as highly efficient electrocatalyst for selective glycerol electro-oxidation to dihydroxyacetone." Journal of Catalysis 404 (2021): 139-148.

    [60] W.S.L.Law (2004). Photochemical metal organic deposition of metal oxides (Doctoral thesis, Simon Fraser University, British Columbia, Canada). Retrived from https://core.ac.uk/download/pdf/56366956.pdf

    [61] I.Bretos, R.Jimnez, J.Ricote, and M.L.Calzada, "Photochemistry in the low‐temperature processing of metal oxide thin films by solution methods." Chemistry–A European Journal 26.42 (2020): 9277-9291.

    [62] Z.-Q.Hu, A.-M. Wang, H.-F. Zhang, "Amorphous Materials." Modern Inorganic Synthetic Chemistry. Elsevier, (2017) 641-667.

    [63] S.Anantharaj and S.Noda, "Amorphous catalysts and electrochemical water splitting: an untold story of harmony." Small 16.2 (2020): 1905779.

    [64] T.Q.Guo, L.D.Li, and Z.C.Wang, "Recent development and future perspectives of amorphous transition metal‐based electrocatalysts for oxygen evolution reaction." Advanced Energy Materials 12.24 (2022): 2200827.

    [65] J.F.Gomes, F.B.C.de Paula, L.H.S.Gasparotto, G.T.-Filho, "The influence of the Pt crystalline surface orientation on the glycerol electro-oxidation in acidic media." Electrochimica Acta 76 (2012): 88-93.

    [66] T.-G. Vo, C.-C.Kao, J.-L.Kuo, C.-C.Chiu, C.-Y.Chiang, "Unveiling the crystallographic facet dependence of the photoelectrochemical glycerol oxidation on bismuth vanadate." Applied Catalysis B: Environmental 278 (2020): 119303.

    [67] B. Hammer, J.K. Nørskov, "Electronic factors determining the reactivity of metal surfaces." Surface science 343.3 (1995): 211-220.

    [68] B. Hammer, J.K. Nørskov,"Why gold is the noblest of all the metals." Nature 376.6537 (1995): 238-240.

    [69] J.-T.Ren, L.Wang, L.Chen, X.-L.Song, Q.-H.Kong, H.-Y.Wang, Z.-Y.Yuan, "Interface Metal Oxides Regulating Electronic State around Nickel Species for Efficient Alkaline Hydrogen Electrocatalysis." Small 19.5 (2023): 2206196.

    [70] J.White, A.Anil, D.M.-Yerga, G.S.-Alvarez, G.Henriksson, A.Cornell, "Electrodeposited PdNi on a Ni rotating disk electrode highly active for glycerol electrooxidation in alkaline conditions." Electrochimica Acta 403 (2022): 139714.

    [71] J.L.Zhang and Y.Shen, "Electro-oxidation of glycerol into formic acid by nickel-copper electrocatalysts." Journal of The Electrochemical Society 168.8 (2021): 084510.

    [72] Y.N.Xie, L.Z.Sun, X.Pan, Z.Y.Zhou, Y.C.Zheng, X.F.Yang, G.H.Zhao, "Carbon paper supported gold nanoflowers for tunable glycerol electrooxidation boosting efficient hydrogen evolution." Carbon 203 (2023): 88-96.

    [73] T.Nishimoto, Dr. T.Shinagawa, T.Naito, Prof. K.Takanabe, "Delivering the Full Potential of Oxygen Evolving Electrocatalyst by Conditioning Electrolytes at Near‐Neutral pH." ChemSusChem 14.6 (2021): 1554-1564.

    [74] Y.Meng, G.Ni, X.Jin, J.Peng, Q.Y.Yan, "Recent advances in the application of phosphates and borates as electrocatalysts for water oxidation." Materials Today Nano 12 (2020): 100095.

    [75] C.-F.Liu, Y.-J.Lu, and C.-C.Hu. "Effects of anions and pH on the stability of ZnO nanorods for photoelectrochemical water splitting." ACS omega 3.3 (2018): 3429-3439.

    [76] I.Katsounaros, J.C.Meier, S.O.Klemm, A.A.Topalov, P. U.Biedermann, M.Auinger, K.J.J.Mayrhofer, "The effective surface pH during reactions at the solid–liquid interface." Electrochemistry communications 13.6 (2011): 634-637.

    [77] X.Huang, Y.Zou, and J.Jiang, "Electrochemical oxidation of glycerol to dihydroxyacetone in borate buffer: enhancing activity and selectivity by borate–polyol coordination chemistry." ACS Sustainable Chemistry & Engineering 9.43 (2021): 14470-14479.

    [78] M.K.Goetz, M.T.Bender, K.-S.Choi, "Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH." Nature Communications 13.1 (2022): 5848.

    [79] T.-G.Vo, P.-Y.Ho, and C.-Y.Chiang. "Operando mechanistic studies of selective oxidation of glycerol to dihydroxyacetone over amorphous cobalt oxide." Applied Catalysis B: Environmental 300 (2022): 120723.

    [80] V.Kochkodan, N.B.Darwish, and N.Hilal. "The chemistry of boron in water." Boron separation processes (2015): 35-63.

    [81] European Chemicals Agency (2010), SVHC SUPPORT DOCUMENT, Substance name: Disodium tetraborate, anhydrous, Retrieved March 27, 2023, from https://echa.europa.eu/documents/10162/04e29ef1-f56d-4926-96f6-c2865c5e10a7

    [82] Martin Chaplin- Water Structure and Science (2021), Aqueous Borate, Retrieved March 30, 2023, from https://water.lsbu.ac.uk/water/aqueous_borate.html

    [83] C.-C.Diao, C.-Y.Huang, C.-F.Yang and C.-C.Wu, "Morphological, optical, and electrical properties of p-type nickel oxide thin films by nonvacuum deposition." Nanomaterials 10.4 (2020): 636.

    [84] S.G.Danjumma, Y.Abubakar, and S.Suleiman, "Nickel oxide (NiO) devices and applications: a review." J. Eng. Res. Technol 8 (2019): 12-21.

    [85] S.S.Narender, V.Venkata, S.Varma, C.S.Srikar, J.Ruchitha, P.A.Varma, B.V.Sesha, Praveen, "Nickel oxide nanoparticles: a brief review of their synthesis, characterization, and applications." Chemical Engineering & Technology 45.3 (2022): 397-409.

    [86] W.L.Yang, X.P.Yang, J.Jia, C.M.Hou, H.T.Gao, Y.N.Mao, C.Wang, J.H.Lin, X.L.Luo, "Oxygen vacancies confined in ultrathin nickel oxide nanosheets for enhanced electrocatalytic methanol oxidation." Applied Catalysis B: Environmental 244 (2019): 1096-1102.

    [87] A.N.Vyas, G.D.Saratale, S.D.Sartale, "Recent developments in nickel based electrocatalysts for ethanol electrooxidation." International Journal of Hydrogen Energy 45.10 (2020): 5928-5947.

    [88] Q.Q.Wang, Y.D.Li and C.J.Zhang, "Amorphous nickel oxide as efficient electrocatalyst for urea oxidation reaction." Journal of The Electrochemical Society 168.7 (2021): 076502..

    [89] F.Almomani, R.Bhosale, M.Khraisheh, A.Kumar, M.Tawalbeh , "Electrochemical oxidation of ammonia on nickel oxide nanoparticles." International Journal of Hydrogen Energy 45.17 (2020): 10398-10408.

    [90] M.I.Awad, M.E.Al-Hazemi, Z.T.A.-thagafi, "Enhanced electrocatalytic oxidation of glucose on nickel oxides/graphene nanoparticles modified glassy carbon electrode." Int. J. Electrochem. Sci 17.220120 (2022): 2.

    [91] W.Wang, Z.Zhang & M.Wang, "Preparation of NiO-N/C composites for electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid." Biomass Conversion and Biorefinery (2022): 1-8.

    [92] H.Bode, K. Dehmelt, J. Witte, "Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat." Electrochimica Acta 11.8 (1966): 1079-1087.

    [93] D.S.Hall, D.J.Lockwood, C.Bock and B.R.MacDougall, "Nickel hydroxides and related materials: a review of their structures, synthesis and properties." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471.2174 (2015): 20140792.

    [94] B.Ash,V.S.Nalajala, A.K.Popuri, T.Subbaiah, and M.Minakshi, "Perspectives on nickel hydroxide electrodes suitable for rechargeable batteries: Electrolytic vs. chemical synthesis routes." Nanomaterials 10.9 (2020): 1878.

    [95] N.Watanabe, T.Arakawa, Y.Sasaki, T.Yamashita and I.Koiwa, "Influence of the memory effect on X-ray photoelectron spectroscopy and Raman scattering in positive electrode of Ni-MH batteries." Journal of The Electrochemical Society 159.12 (2012): A1949.

    [96] L.-F.Huang, M.J.Hutchison, R.J.Santucci Jr., J.R.Scully, and J.M.Rondinelli, "Improved electrochemical phase diagrams from theory and experiment: the Ni–water system and its complex compounds." The Journal of Physical Chemistry C 121.18 (2017): 9782-9789.

    [97] L.Chen, Y.P.Wang, X.Zhao, Y.C.Wang, Q.Li, Q.C.Wang, Y.G.Tang, Y.P.Lei, "Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting." Journal of Materials Science & Technology 110 (2022): 128-135.

    [98] M.Han,C.H.Wang, J.Zhong, J.R.Han, N.Wang, A.Seifitokaldani, Y.F.Yu, Y.C.Liu, X.H. Sun, A.Vomiero, H.Y.Liang, "Promoted self-construction of β-NiOOH in amorphous high entropy electrocatalysts for the oxygen evolution reaction." Applied Catalysis B: Environmental 301 (2022): 120764.

    [99] L.Dai, C.C.Fang, F.L.Yao, X.Y.Zhang, X.F.Xu, S.L.Han, J.Y.Deng, J.W.Zhu, J.W.Sun, "Thickness-dependent β/γ-NiOOH transformation of Ni-MOFs in oxygen evolution reaction." Applied Surface Science 623 (2023): 156991.

    [100] M.S.E.Houache, R.Safari, U.O.Nwabara, T.Rafaïdeen, G.A Botton, P.J.A.Kenis, S.Baranton, C.Coutanceau, and E.A.Baranova, "Selective Electrooxidation of Glycerol to Formic Acid over Carbon Supported Ni1–x M x (M= Bi, Pd, and Au) Nanocatalysts and Coelectrolysis of CO2." ACS Applied Energy Materials 3.9 (2020): 8725-8738.

    [101] A.Shubair, M.SE.Houache, S S.M.M, G.A Botton and E.A.Baranova, "Electrolysis of glycerol to value‐added chemicals in alkaline media." Journal of Chemical Technology & Biotechnology 97.8 (2022): 1950-1958.

    [102] J.L.Zhang, Y.Shen, and H.Y.Li, "Electrolysis of Glycerol by Non-Noble Metal Hydroxides and Oxides." ACS Applied Energy Materials (2023): 6 (10), 5508-5518

    [103] H.Radinger, P.Connor, S.Tengeler, R.W.Stark, W. Jaegermann, and B.Kaiser, "Importance of Nickel Oxide Lattice Defects for Efficient Oxygen Evolution Reaction." Chemistry of Materials 33.21 (2021): 8259-8266.

    [104] R.Mulliken, Robert S. "Report on notation for the spectra of polyatomic molecules." The Journal of Chemical Physics 23.11 (1955): 1997-2011.

    [105] Y.Tian,L.G.Gong,X.Q.Qi,Y.B.Yang and X.D.Zhao, "Effect of substrate temperature on the optical and electrical properties of nitrogen-doped NiO thin films." Coatings 9.10 (2019): 634.

    [106] P.Salunkhe, M.A.AV and D.Kekuda, "Investigation on tailoring physical properties of Nickel Oxide thin films grown by dc magnetron sputtering." Materials Research Express 7.1 (2020): 016427.

    [107] A.Kotta, E.-B.Kim, S.Ameen, H.-S.Shin and H.K.Seo, "Communication—ultra-small NiO nanoparticles grown by low-temperature process for electrochemical application." Journal of The Electrochemical Society 167.16 (2020): 167517.

    [108] E.Ciftyurek, Z.S.Li, and K.Schierbaum, "Adsorbed Oxygen Ions and Oxygen Vacancies: Their Concentration and Distribution in Metal Oxide Chemical Sensors and Influencing Role in Sensitivity and Sensing Mechanisms." Sensors 23.1 (2022): 29.

    [109] X.N.Chen, X.H.Wang, and D.Fang, "A review on C1s XPS-spectra for some kinds of carbon materials." Fullerenes, Nanotubes and Carbon Nanostructures 28.12 (2020): 1048-1058.

    [110] V.Davydov, A.Rakhmanina, I.Kireev, I.Alieva, O.Zhironkina, O.Strelkova, V.Dianova, T.D.Samani, K.Mireles, L.'H.Yahia, R.Uzbekov, V.Agafonov and V.Khabashesku, "Solid state synthesis of carbon-encapsulated iron carbide nanoparticles and their interaction with living cells." Journal of Materials Chemistry B 2.27 (2014): 4250-4261.

    [111] M.S.E.Houache, K.Hughes, R.Safari, G.A.Botton, and E.A. Baranova, "Modification of nickel surfaces by bismuth: Effect on electrochemical activity and selectivity toward glycerol." ACS applied materials & interfaces 12.13 (2020): 15095-15107.

    [112] M.E.Ghaith, G.A.El-Nagar, M.G.A. El-Moghny, H.H.Alalawy , M.E.El-Shakre, Mohamed S. El-Deab, "Electrocatalysis by design: Enhanced electro-oxidation of glycerol at NiOx nanoparticle modified 3D porous carbon felts." International Journal of Hydrogen Energy 45.16 (2020): 9658-9668.

    [113] M.Nacef, M.L.Chelaghmia, O.Khelifi,M.Ponti, M.Djelaibia, R.Guerfa, V.Bertagna,C.V.-Ul, A.Fares, A.M.Affoune, "Electrodeposited Ni on pencil graphite electrode for glycerol electrooxidation in alkaline media." International Journal of Hydrogen Energy 46.75 (2021): 37670-37678.

    [114] M.E.Ghaith, M.G.A.El-Moghny, G.A.El-Nagar, H.H.Alalawy, M.E.El-Shakrea and M.S.El-Deab, "Tailor-designed binary Ni–Cu nano dendrites decorated 3D-carbon felts for efficient glycerol electrooxidation." RSC Advances 13.2 (2023): 895-905.

    [115] M.S.E.Houache, A.Shubair, M.G.Sandoval, R.Safari, G.A.Botton, P.V.Jasen, E.A.González, E.A.Baranova, "Influence of Pd and Au on electrochemical valorization of glycerol over Ni-rich surfaces." Journal of Catalysis 396 (2021): 1-13.
    [116] D.M.Morales, D.Jambrec, M.A.Kazakova, M.Braun, N.Sikdar, A.Koul, A.C.Brix, S.Seisel, C.Andronescu, and W.Schuhmann, "Electrocatalytic conversion of glycerol to oxalate on Ni oxide nanoparticles-modified oxidized multiwalled carbon nanotubes." ACS Catalysis 12.2 (2022): 982-992.

    [117] Sieben, Juan Manuel, Andrea E. Alvarez, and Miguel D. Sanchez. "Platinum nanoparticles deposited on Cu-doped NiO/C hybrid supports as high-performance catalysts for ethanol and glycerol electrooxidation in alkaline medium." Journal of Alloys and Compounds 921 (2022): 166112.

    [118] V.L.Oliveira, C.Morais, K.Servat, T.W.Napporn, G. Tremiliosi-Filhoa, K.B. Kokoh, "Studies of the reaction products resulted from glycerol electrooxidation on Ni-based materials in alkaline medium." Electrochimica Acta 117 (2014): 255-262.

    [119] N.G.Galkin, D.T.Yan; K.N.Galkin, A.V.Nepomnyaschiy; D.L.Goroshko, "Luminescent Properties of Nanocomposites Based on Porous Silicon, Nickel, and Nickel Oxide in the Photon Energy Range of 1.4-2.9 eV." (2022) International Conference on Electrical Engineering and Photonics (EExPolytech). IEEE.

    [120] A.Battistel, M.Fan, J.Stojadinović, F.L.Mantia, "Analysis and mitigation of the artefacts in electrochemical impedance spectroscopy due to three-electrode geometry." Electrochimica Acta 135 (2014): 133-138.

    [121] S.Khatun, H.Hirani, and P.Roy, "Seawater electrocatalysis: activity and selectivity." Journal of Materials Chemistry A 9.1 (2021): 74-86.

    [122] J.E.Mackin, "The free-solution diffusion coefficient of boron: Influence of dissolved organic matter." Marine Chemistry 20.2 (1986): 131-140.

    [123] B.P.Boudreau and D.E.Canfield, "A provisional diagenetic model for pH in anoxic porewaters: Application to the FOAM site." Journal of Marine Research 46.2 (1988): 429-455.

    [124] A.Regberg, K.Singha, M.Tien, F.Picardal, Q.X.Zheng, J.Schieber, E.Roden, and S.L. Brantley, "Electrical conductivity as an indicator of iron reduction rates in abiotic and biotic systems." Water resources research 47.4 (2011).

    [125] J.Buffle, Z.S.Zhang, K.Startchev, "Metal flux and dynamic speciation at (bio) interfaces. Part I: Critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances." Environmental science & technology 41.22 (2007): 7609-7620.

    [126] B.Podlesny, T.Shiraki, and D.Janas, "One-step sorting of single-walled carbon nanotubes using aqueous two-phase extraction in the presence of basic salts." Scientific reports 10.1 (2020): 9250.

    [127] P.J.M.R.Dable, Y. J. Adjoumani, B.Yao, G. Ado, "Wastewater dephosphorization using crude clays." International Journal of Environmental Science & Technology 5 (2008): 35-42.

    [128] M.Häring, M.M.P.-Madrigal, D.Kühbeck, A.Pettignano, F.Quignard and D.Díaz Díaz, "DNA-Catalyzed Henry Reaction in Pure Water and the Striking Influence of Organic Buffer Systems." Molecules 20.3 (2015): 4136-4147.

    [129] S.Sasidharanpillai, H.Arcis, L.Trevani, and P.R.Tremaine, "Triborate formation constants and polyborate speciation under hydrothermal conditions by Raman spectroscopy using a titanium/sapphire flow cell." The Journal of Physical Chemistry B 123.24 (2019): 5147-5159.

    [130] J.L.George, R.K.Brow "In-situ characterization of borate glass dissolution kinetics by μ-Raman spectroscopy." Journal of Non-Crystalline Solids 426 (2015): 116-124.

    [131] Y.Q.Zhou, C.H.Fang, Y.Fang, F.Y.Zhu, "Polyborates in aqueous borate solution: a Raman and DFT theory investigation." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 83.1 (2011): 82-87.

    [132] Z.F.Du, J.Chen,W.Q.Ye, J.J.Guo, X.Zhang and R.Zheng, "Investigation of two novel approaches for detection of sulfate ion and methane dissolved in sediment pore water using Raman spectroscopy." Sensors 15.6 (2015): 12377-12388.

    [133] M.D.Fontana, K.B.Mabrouk, and T.H.Kauffmann, "Raman spectroscopic sensors for inorganic salts." Spectrosc. Prop. Inorg. Organomet. Compd 44 (2013): 40-67.

    [134] R.P.Oertel, "Raman study of aqueous monoborate-polyol complexes. Equilibriums in the monoborate-1, 2-ethanediol system." Inorganic Chemistry 11.3 (1972): 544-549.

    [135] Vy M. Dong and Zhiwei Chen, Infrared Spectroscopy, Retrieved July 18, 2023, from https://www.jove.com/v/10351/infrared-spectroscopy

    [136] B.Shokri, M.A.Firouzjah, and S.I.Hosseini, "FTIR analysis of silicon dioxide thin film deposited by metal organic-based PECVD." Proceedings of 19th international symposium on plasma chemistry society, Bochum, Germany. Vol. 2631. 2009.

    [137]M.Fan, D.S.Dai, and B.Huang,. "Fourier transform infrared spectroscopy for natural fibres." Fourier transform-materials analysis 3 (2012): 45-68.

    [138] Swarna, S.K.Pattanayek, A.K.Ghosh, "Role of hydrogen bond interactions in water-polyol medium in the thickening behavior of cornstarch suspensions." Colloid & Polymer Science 295.7 (2017): 1117.

    [139] L.Balachander, G.Ramadevudu, Md. Shareefuddin, R.Sayanna, Y.C.Venudhar,"IR analysis of borate glasses containing three alkali oxides." ScienceAsia 39.2 (2013): 278-283.

    [140] Claire C.J.Zhang, X.T.Gao and B.Yilmaz, "Development of FTIR spectroscopy methodology for characterization of boron species in FCC catalysts." Catalysts 10.11 (2020): 1327.

    [141] O.Annalakshmi, M.T.Jose1, U.Madhusoodanan, J.Sridevi, B. Venkatraman, G.Amarendra and A.B.Mandal, "Radiation-induced defects in manganese-doped lithium tetraborate phosphor." Radiation Protection Dosimetry 163.1 (2015): 14-21.

    [142] J.R.Copeland, I.A.Santillan, S.M.Schimming, J.L.Ewbank, and Carsten Sievers, "Surface interactions of glycerol with acidic and basic metal oxides." The Journal of Physical Chemistry C 117.41 (2013): 21413-21425.

    [143] Y.KATAOKA, N.KITADAI, O.HISATOMI, and S.NAKASHIMA, "Nature of hydrogen bonding of water molecules in aqueous solutions of glycerol by attenuated total reflection (ATR) infrared spectroscopy." Applied Spectroscopy 65.4 (2011): 436-441.

    [144] N.A.Saguì, P.Ström, T.Edvinsson, and İ.B.Pehlivan, "Nickel Site Modification by High-Valence Doping: Effect of Tantalum Impurities on the Alkaline Water Electro-Oxidation by NiO Probed by Operando Raman Spectroscopy." ACS catalysis 12.11 (2022): 6506-6516.

    [145] M.Steimecke, G.Seiffarth, C.Schneemann, F.Oehler, S.Förster, and M.Bron, "Higher-valent nickel oxides with improved oxygen evolution activity and stability in alkaline media prepared by high-temperature treatment of Ni (OH) 2." ACS Catalysis 10.6 (2020): 3595-3603.

    [146] Z.Qiu, C.-W.Tai, G.A.Niklasson and T.Edvinsson, "Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting." Energy & Environmental Science 12.2 (2019): 572-581.

    [147] X.Bo, Y.B.Li, X.J.Chen, and C.Zhao, "Operando Raman spectroscopy reveals Cr-induced-phase reconstruction of NiFe and CoFe oxyhydroxides for enhanced electrocatalytic water oxidation." Chemistry of Materials 32.10 (2020): 4303-4311.

    [148] J.C.Xu, B.-X.Wang, D.Y.Lyu, T.W.Wang, Z.Y.Wang, "In situ Raman investigation of the femtosecond laser irradiated NiFeOOH for enhanced electrochemical ethanol oxidation reaction." International Journal of Hydrogen Energy 48.29 (2023): 10724-10736.

    [149] Y.B.Qi, Y.Zhang, L.Yang, Y.H.Zhao, Y.H.Zhu, H.L.Jiang & C.Z.Li, "Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation." Nature Communications 13.1 (2022): 4602.

    [150] J.X.Kang, X.Y.Qiu, Q.Hu, J.Zhong, X.Gao, R.Huang, C.Z.Wan, L.-M.Liu, X.F.Duan & L.Guo, "Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation." Nature Catalysis 4.12 (2021): 1050-1058.

    [151] H.L.Huang, Y.-C.Chang, Y.-C.Huang, L.L.Li, A.C. Komarek, L.H.Tjeng, Y.Orikasa, C.-W.Pao, T.-S.Chan, J.-M. Chen, S.-C.Haw, J.Zhou, Y.F.Wang, H.-J.Lin, C.-T.Chen, C.-L.Dong, C.-Y.Kuo, J.-Q.Wang, Z.W.Hu & L.J.Zhang, "Unusual double ligand holes as catalytic active sites in LiNiO2." Nature Communications 14.1 (2023): 2112.

    [152] J.M.Nan, Y.Yang, and Z.G.Lin. "In situ photoelectrochemistry and Raman spectroscopic characterization on the surface oxide film of nickel electrode in 30 wt.% KOH solution." Electrochimica acta 51.23 (2006): 4873-4879.

    [153] B.C. Cornilsen, P.J. Karjala, P.L. Loyselle, "Structural models for nickel electrode active mass." Journal of Power Sources 22.3-4 (1988): 351-357.

    [154] W.Lai, L.H..Ge, H.M.Li, Y.L.Deng, B.Xu, B.Ouyang, E.Kan, "In situ Raman spectroscopic study towards the growth and excellent HER catalysis of Ni/Ni (OH) 2 heterostructure." International Journal of Hydrogen Energy 46.53 (2021): 26861-26872.

    [155] K.M.Cole, D.W.Kirk and S.J.Thorpe, "In situ raman study of amorphous and crystalline Ni-Co alloys for the alkaline oxygen evolution reaction." Journal of The Electrochemical Society 165.15 (2018): J3122-J3129.

    [156] X.R.An, T.T.Yao, P.F.Zhang, Z.C.Zhang, and C.Li, "Accelerating the Alkaline Water Oxidation on Ni-Based Electrode through Adjusting the Decoupled OH–/e–Transfer during Surface Ni Reconstruction." ACS Applied Energy Materials (2023).

    [157] S.Q.Wang, W.Y.Huo, F.Fang, Z.H.Xie, J.K.Shang, J.Q.Jiang, "High entropy alloy/C nanoparticles derived from polymetallic MOF as promising electrocatalysts for alkaline oxygen evolution reaction." Chemical Engineering Journal 429 (2022): 132410.

    [158] O.D.-Morales, D.F.-Suspedra, and M.TM Koper, "The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation." Chemical Science 7.4 (2016): 2639-2645.

    [159] M.Szindler, M.Szindler, A.Drygała, K.Lukaszkowicz, P.Kaim and R.Pietruszka, "Dye-sensitized solar cell for building-integrated photovoltaic (BIPV) applications." Materials 14.13 (2021): 3743.

    [160] X.L.Wang, X.Wang, Q.Y.Di, H.L.Zhao, B.Liang and J.K.Yan, "Mutual effects of fluorine dopant and oxygen vacancies on structural and luminescence characteristics of F doped SnO2 nanoparticles." Materials 10.12 (2017): 1398.

    [161] N.Wang, J.Zhu, X.J.Zheng, F.Q.Xiong, B.K.Huang, J.Y.Shi and Can Li, "A facile two-step method for fabrication of plate-like WO3 photoanode under mild conditions." Faraday Discussions 176 (2014): 185-197.

    無法下載圖示 全文公開日期 2028/08/30 (校內網路)
    全文公開日期 2028/08/30 (校外網路)
    全文公開日期 2028/08/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE