簡易檢索 / 詳目顯示

研究生: 蔡品源
Pin-Yuan Cai
論文名稱: 探討不同暴露晶面四氧化三鈷應用於電催化甘油氧化並選擇性生成二羥基丙酮
Facets-dependent electrocatalytic performance of Co3O4 for selective oxidation of glycerol to DHA
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 蔡大翔
Dah-Shyang Tsai
張家耀
Jia-Yaw Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 92
中文關鍵詞: 四氧化三鈷甘油電催化氧化暴露晶面二羥基丙酮
外文關鍵詞: Co3O4, glycerol electro-oxidation, expose crystal facet, Dihydroxyacetone(DHA)
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電化學觸媒結晶暴露面的改質被認為是改良其物理及化學性質並優化觸媒材料電化學活性之策略。在這裡,我們初次報導了Co3O4晶體暴露面對於電化學甘油氧化反應影響的完整實驗分析。我們的研究是透過水熱法的方式製備兩種不同暴露晶面 的尖晶石Co3O4,分別是控制生長晶面為{100}(形態學為正立方體)的cube Co3O4(C-Co3O4)以及控制生長晶面為{111}(形態學為八面體)的octahedron Co3O4(O-Co3O4),並發現兩著相比O-Co3O4有著更好的甘油電催化甘油氧化表現,O-Co3O4 (平均電流0.295 mA/cm2) 相比於C-Co3O4 (平均電流0.149 mA/cm2)有著更高的電流密度,且在高經濟價值產物二羥基丙酮(DHA)的選擇率以及產量上O-Co3O4也都有較好的表現。本研究發現,甘油的吸附是造成{111}暴露晶面之產物選擇率的關鍵因素,且揭曉O-Co3O4的電荷轉移阻抗較小,有效促進電荷的轉移,增強甘油氧化和電化學活性。


    The modification of the exposed surface of the electrochemical catalyst crystal is considered as a strategy to improve its physical and chemical properties and optimize the electrochemical activity of the catalyst material. Here, we report for the first time a complete experimental analysis of the effect of exposed facets of Co3O4 crystals on glycerol electro- oxidation. In our research, we prepare two kinds of spinel Co3O4 with two different exposed facets by hydrothermal method, i.e. controlled growth crystals of {100}-oriented Cube Co3O4 (C-Co3O4) with cube morphology and controlled growth crystals of {111}-oriented Octahedron Co3O4 (O-Co3O4) with octahedral morphology. We found that O-Co3O4 have better glycerol glycerol electro-oxidation performance than C-Co3O4, and O-Co3O4 (average current density: 0.295 mA/cm2) has a higher current density than C-Co3O4 (average current density: 0.149 mA/cm2). Additionally, O-Co3O4 also produce a higher yield and little higher selectivity on high valuable dihydroxyacetone (DHA) products. In this study, it was found that the adsorption of glycerol was a key factor in the glycerol electrooxidation reaction product selectivity of the {111} exposed facets, and it was revealed that O-Co3O4 has a smaller charge transfer resistance, which effectively promoted the charge transfer, resulting in the enhancement of glycerol oxidation and electrochemical activity.

    摘要..i Abstract ii 目錄 iii 圖目錄 v 表目錄 vii 1 第一章 緒論 1 1.1 研究動機 1 1.2 研究方向 2 2 第二章 文獻回顧 3 2.1 甘油-生質柴油的副產物 3 2.2 甘油轉化為高價值產物方式 5 2.3 甘油的氧化反應 6 2.3.1 甘油氧化的高經濟價值產物介紹 6 2.4 電催化甘油氧化反應 9 2.4.1 影響電催化甘油氧化之選擇率因素之探討 11 2.5 電化學觸媒Co3O4(四氧化三鈷) 15 3 第三章 實驗設備與儀器原理 19 3.1 實驗架構 19 3.2 實驗藥品、分析儀器及設備 20 3.3 不同暴露晶面Co3O4觸媒製備流程 22 3.3.1 基材製備流程 22 3.3.2 水熱法Co3O4觸媒製備流程 22 3.4 實驗原理介紹 24 3.4.1 儀器分析原理 24 3.4.2 氣相層析儀(Gas Chromatography, GC) 27 3.4.3 電化學原理 28 4 第四章 實驗結果與討論 32 4.1 不同暴露晶面之Co3O4材料特性分析 32 4.1.1 不同暴露晶面之Co3O4材料表面形態學與結構分析 32 4.2 電化學表現分析 37 4.3 C-Co3O4與O-Co3O4反應前後材料特性分析 40 4.4 產物分析 41 4.4.1 液相產物分析 41 4.5 不同暴露晶面之Co3O4於電催化甘油氧化反應之影響 45 4.5.1 C-Co3O4與O-Co3O4表面電荷傳遞能力之探討 46 4.5.2 C-Co3O4與O-Co3O4之甘油吸附現象探討 48 4.6 不同參數影響材料之分析 49 4.6.1 電解液pH值 49 4.6.2 反應施加電位 57 4.6.3 電解液甘油濃度 61 4.7 O-Co3O4電催化甘油氧化之反應路徑 64 第五章 結論 67 5 參考資料 68 6 附錄 78

    M.S.Ahmad, M.H.Ab Rahim, T.M.Alqahtani, T.Witoon, J.W.Lim, C.K.Cheng, A review on advances in green treatment of glycerol waste with a focus on electro-oxidation pathway, Chemosphere. 276 (2021) 130128.
    [2] S.Lardhi, L.Cavallo, M.Harb, Significant Impact of Exposed Facets on the BiVO4Material Performance for Photocatalytic Water Splitting Reactions, J. Phys. Chem. Lett. 11 (2020) 5497–5503.
    [3] K.A.Stoerzinger, O.Diaz-Morales, M.Kolb, R.R.Rao, R.Frydendal, L.Qiao, X.R.Wang, N.B.Halck, J.Rossmeisl, H.A.Hansen, T.Vegge, I.E.L.Stephens, M.T.M.Koper, Y.Shao-Horn, Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange, ACS Energy Lett. 2 (2017) 876–881.
    [4] Y.Yang, M.Luo, W.Zhang, Y.Sun, X.Chen, S.Guo, Metal Surface and Interface Energy Electrocatalysis: Fundamentals, Performance Engineering, and Opportunities, Chem. 4 (2018) 2054–2083.
    [5] A.Callegari, S.Bolognesi, D.Cecconet, A.G.Capodaglio, Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review, Crit. Rev. Environ. Sci. Technol. 50 (2020) 384–436.
    [6] A.L.Chun Minh, S.P.Samudrala, S.Bhattacharya, Valorisation of glycerol through catalytic hydrogenolysis routes for sustainable production of value-added C 3 chemicals: current and future trends , Sustain. Energy Fuels. 6 (2022) 596–639.
    [7] C.Zhu, S.Chiu, J.P.Nakas, C.T.Nomura, Bioplastics from waste glycerol derived from biodiesel industry, J. Appl. Polym. Sci. 130 (2013) 1–13.
    [8] H.J.Kim, Y.Kim, D.Lee, J.R.Kim, H.J.Chae, S.Y.Jeong, B.S.Kim, J.Lee, G.W.Huber, J.Byun, S.Kim, J.Han, Coproducing Value-Added Chemicals and Hydrogen with Electrocatalytic Glycerol Oxidation Technology: Experimental and Techno-Economic Investigations, ACS Sustain. Chem. Eng. 5 (2017) 6626–6634.
    [9] H.Chebbi, D.Leiva-Candia, M.Carmona-Cabello, A.Jaouani, M.P.Dorado, Biodiesel production from microbial oil provided by oleaginous yeasts from olive oil mill wastewater growing on industrial glycerol, Ind. Crops Prod. 139 (2019) 111535.
    [10] L.Yang, X.Li, P.Chen, Z.Hou, Selective oxidation of glycerol in a base-free aqueous solution: A short review, Chinese J. Catal. 40 (2019) 1020–1034.
    [11] C.Zhang, T.Wang, Y.Ding, One-step synthesis of pyruvic acid from glycerol oxidation over Pb promoted Pt/activated carbon catalysts, Cuihua Xuebao/Chinese J. Catal. 38 (2017) 928–937.
    [12] M.Yang, X.Zhao, Y.Ren, J.Wang, N.Lei, A.Wang, T.Zhang, Pt/Nb-WOx for the chemoselective hydrogenolysis of glycerol to 1,3-propanediol: Nb dopant pacifying the over-reduction of WOx supports, Cuihua Xuebao/Chinese J. Catal. 39 (2018) 1027–1037.
    [13] W.Yu, P.Wang, C.Zhou, H.Zhao, D.Tong, H.Zhang, H.Yang, S.Ji, H.Wang, Acid-activated and WOx-loaded montmorillonite catalysts and their catalytic behaviors in glycerol dehydration, Cuihua Xuebao/Chinese J. Catal. 38 (2017) 1087–1100.
    [14] M.Popova, H.Lazarova, Y.Kalvachev, T.Todorova, Á.Szegedi, P.Shestakova, G.Mali, V.D.B.C.Dasireddy, B.Likozar, Zr-modified hierarchical mordenite as heterogeneous catalyst for glycerol esterification, Catal. Commun. 100 (2017) 10–14.
    [15] N.Ebadipour, S.Paul, B.Katryniok, F.Dumeignil, Alkaline-based catalysts for glycerol polymerization reaction: A review, Catalysts. 10 (2020) 1–22.
    [16] O.Morita, M.G.Soni, Safety assessment of diacylglycerol oil as an edible oil: A review of the published literature, Food Chem. Toxicol. 47 (2009) 9–21.
    [17] J.C.Colmenares, R.Luque, Heterogeneous photocatalytic nanomaterials: Prospects and challenges in selective transformations of biomass-derived compounds, Chem. Soc. Rev. 43 (2014) 765–778.
    [18] G.Dodekatos, S.Schünemann, H.Tüysüz, Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation, ACS Catal. 8 (2018) 6301–6333.
    [19] P.Fongarland, N.Mimura, Green Chemistry Selective catalytic oxidation of glycerol : perspectives for high value chemicals †, (2011) 1960–1979.
    [20] L.Fan, B.Liu, X.Liu, N.Senthilkumar, G.Wang, Z.Wen, Recent Progress in Electrocatalytic Glycerol Oxidation, Energy Technol. 9 (2021) 1–17.
    [21] H.T.T.Nguyen, E.Nevoigt, Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone ( DHA ) from sugars : A proof of concept, Metab. Eng. 11 (2009) 335–346.
    [22] A.Halldorsson, B.Kristinsson, C.Glynn, G.G.Haraldsson, Separation of EPA and DMA in Fish Oil by Lipase-Catalyzed Esterification with Glycerol, JAOCS, J. Am. Oil Chem. Soc. 80 (2003) 915–921.
    [23] Y.Meng, S.Zou, Y.Zhou, W.Yi, Y.Yan, B.Ye, L.Xiao, J.Liu, H.Kobayashi, J.Fan, Activating molecular oxygen by Au/ZnO to selectively oxidize glycerol to dihydroxyacetone, Catal. Sci. Technol. 8 (2018) 2524–2528.
    [24] A.L.Imbault, J.Gong, R.Farnood, Photocatalytic production of dihydroxyacetone from glycerol on TiO2 in acetonitrile, RSC Adv. 10 (2020) 4956–4968.
    [25] D.Hekmat, R.Bauer, V.Neff, Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans, 42 (2007) 71–76.
    [26] Y.Zhou, Y.Shen, J.Piao, Sustainable Conversion of Glycerol into Value-Added Chemicals by Selective Electro-Oxidation on Pt-Based Catalysts, ChemElectroChem. 5 (2018) 1636–1643.
    [27] H.Habe, T.Fukuoka, D.Kitamoto, K.Sakaki, Biotechnological production of d-glyceric acid and its application, Appl. Microbiol. Biotechnol. 84 (2009) 445–452.
    [28] X.Shi, X.Zhou, J.Wang, D.Zhang, K.Huang, X.Li, G.Yang, Tartronic acid promotes de novo lipogenesis and inhibits CPT-1β by upregulating acetyl-CoA and malonyl-CoA, Life Sci. 258 (2020) 118240.
    [29] J.Cai, H.Ma, J.Zhang, Z.Du, Y.Huang, J.Gao, J.Xu, Catalytic oxidation of glycerol to tartronic acid over Au/HY catalyst under mild conditions, Cuihua Xuebao/Chinese J. Catal. 35 (2014) 1653–1660.
    [30] B.Katryniok, H.Kimura, E.Skrzyńska, J.S.Girardon, P.Fongarland, M.Capron, R.Ducoulombier, N.Mimura, S.Paul, F.Dumeignil, Selective catalytic oxidation of glycerol: Perspectives for high value chemicals, Green Chem. 13 (2011) 1960–1979.
    [31] M.S.E.Houache, K.Hughes, E.A.Baranova, Study on catalyst selection for electrochemical valorization of glycerol, Sustain. Energy Fuels. 3 (2019) 1892–1915.
    [32] C.Coutanceau, S.Baranton, R.S.B.Kouamé, Selective electrooxidation of glycerol into value-added chemicals: A short overview, Front. Chem. 7 (2019) 1–15.
    [33] M.Simões, S.Baranton, C.Coutanceau, Electrochemical valorisation of glycerol, ChemSusChem. 5 (2012) 2106–2124.
    [34] Y.Kageshima, A.Someno, K.Teshima, K.Domen, H.Nishikiori, Photoelectrochemical-voltaic cells consisting of particulate ZnxCd1-xSe photoanodes with photovoltages exceeding 1.23 v, Sustain. Energy Fuels. 3 (2019) 2733–2741.
    [35] X.Huang, Y.Zou, J.Jiang, Electrochemical Oxidation of Glycerol to Dihydroxyacetone in Borate Buffer: Enhancing Activity and Selectivity by Borate-Polyol Coordination Chemistry, ACS Sustain. Chem. Eng. 9 (2021) 14470–14479.
    [36] X.Ning, Y.Li, H.Yu, F.Peng, H.Wang, Y.Yang, Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone, J. Catal. 335 (2016) 95–104.
    [37] Z.Qiao, Z.Wang, C.Zhang, S.Yuan, Y.Zhu, J.Wang, PVAm–PIP/PS composite membrane with high performance for CO2/N2 separation, AIChE J. 59 (2012) 215–228.
    [38] Y.Kwon, K.J.P.Schouten, M.T.M.Koper, Mechanism of the Catalytic Oxidation of Glycerol on Polycrystalline Gold and Platinum Electrodes, ChemCatChem. 3 (2011) 1176–1185.
    [39] H.Mistry, A.S.Varela, S.Kühl, P.Strasser, B.R.Cuenya, Nanostructured electrocatalysts with tunable activity and selectivity, Nat. Rev. Mater. 1 (2016).
    [40] T.G.Vo, C.C.Kao, J.L.Kuo, C. chauChiu, C.Y.Chiang, Unveiling the crystallographic facet dependence of the photoelectrochemical glycerol oxidation on bismuth vanadate, Appl. Catal. B Environ. 278 (2020) 119303.
    [41] A.C.Garcia, M.J.Kolb, C.VanNierop, J.Vos, Y.Y.Birdja, Y.Kwon, G.Tremiliosi-filho, M.T.M.Koper, Strong Impact of Platinum Surface Structure on Primary and Secondary Alcohol Oxidation during Electro-Oxidation of Glycerol, (2016).
    [42] Y.Haldorai, S.R.Choe, Y.S.Huh, Y.K.Han, Metal-organic framework derived nanoporous carbon/Co3O4 composite electrode as a sensing platform for the determination of glucose and high-performance supercapacitor, Carbon N. Y. 127 (2018) 366–373.
    [43] D.Khalafallah, O.Y.Alothman, H.Fouad, K.Abdelrazek Khalil, Hierarchical Co3O4 decorated PPy nanocasting core-shell nanospheres as a high performance electrocatalysts for methanol oxidation, Int. J. Hydrogen Energy. 43 (2018) 2742–2753.
    [44] S.Mondal, R.Madhuri, P.K.Sharma, Probing the shape-specific electrochemical properties of cobalt oxide nanostructures for their application as selective and sensitive non-enzymatic glucose sensors, J. Mater. Chem. C. 5 (2017) 6497–6505.
    [45] C.Z.Yuan, K.S.Hui, H.Yin, S.Zhu, J.Zhang, X.L.Wu, X.Hong, W.Zhou, X.Fan, F.Bin, F.Chen, K.N.Hui, Regulating Intrinsic Electronic Structures of Transition-Metal-Based Catalysts and the Potential Applications for Electrocatalytic Water Splitting, ACS Mater. Lett. 3 (2021) 752–780.
    [46] Z.Chen, C.X.Kronawitter, B.E.Koel, Facet-dependent activity and stability of Co3O4 nanocrystals towards the oxygen evolution reaction, Phys. Chem. Chem. Phys. 17 (2015) 29387–29393.
    [47] G.Rajeshkhanna, G.Ranga Rao, Micro and nano-architectures of Co3O4 on Ni foam for electro-oxidation of methanol, Int. J. Hydrogen Energy. 43 (2018) 4706–4715.
    [48] Y.Zhang, F.Ding, C.Deng, S.Zhen, X.Li, Y.Xue, Y.M.Yan, K.Sun, Crystal plane-dependent electrocatalytic activity of Co3O4 toward oxygen evolution reaction, Catal. Commun. 67 (2015) 78–82.
    [49] M.B.Askari, S.M.Rozati, Construction of Co3O4-Ni3S4-rGO ternary hybrid as an efficient nanoelectrocatalyst for methanol and ethanol oxidation in alkaline media, J. Alloys Compd. 900 (2022) 163408.
    [50] J.Chen, X.Wu, A.Selloni, Electronic structure and bonding properties of cobalt oxide in the spinel structure, Phys. Rev. B - Condens. Matter Mater. Phys. 83 (2011) 1–24.
    [51] L.Liu, Z.Jiang, L.Fang, H.Xu, H.Zhang, X.Gu, Y.Wang, Probing the Crystal Plane Effect of Co3O4 for Enhanced Electrocatalytic Performance toward Efficient Overall Water Splitting, ACS Appl. Mater. Interfaces. 9 (2017) 27736–27744.
    [52] S.Sun, L.Sun, S.Xi, Y.Du, M.U.Anu Prathap, Z.Wang, Q.Zhang, A.Fisher, Z.J.Xu, Electrochemical oxidation of C3 saturated alcohols on Co3O4 in alkaline, Electrochim. Acta. 228 (2017) 183–194.
    [53] X.Han, H.Sheng, C.Yu, T.W.Walker, G.W.Huber, J.Qiu, S.Jin, Electrocatalytic Oxidation of Glycerol to Formic Acid by CuCo2O4Spinel Oxide Nanostructure Catalysts, ACS Catal. 10 (2020) 6741–6752.
    [54] I.Lorite, J.J.Romero, J.F.Fernández, Effects of the agglomeration state on the Raman properties of Co 3O 4 nanoparticles, J. Raman Spectrosc. 43 (2012) 1443–1448.
    [55] S.R.Gawali, A.C.Gandhi, S.S.Gaikwad, J.Pant, T.S.Chan, C.L.Cheng, Y.R.Ma, S.Y.Wu, Role of cobalt cations in short range antiferromagnetic Co3O4 nanoparticles: A thermal treatment approach to affecting phonon and magnetic properties, Sci. Rep. 8 (2018) 1–12.
    [56] H.Zhou, B.Lv, D.Wu, Y.Xu, Synthesis and properties of octahedral Co3O4 single-crystalline nanoparticles enclosed by (111) facets, CrystEngComm. 15 (2013) 8337–8344.
    [57] W.Zhang, R.Gao, J.Chen, J.Wang, J.Zheng, L.Huang, X.Liu, Water-Induced Surface Reconstruction of Co 3 O 4 on the ( 111 ) Plane for High-E ffi ciency Li − O 2 Batteries in a Hybrid Electrolyte, (2022).
    [58] Z.Wu, L.P.Sun, M.Yang, L.H.Huo, H.Zhao, J.C.Grenier, Facile synthesis and excellent electrochemical performance of reduced graphene oxide-Co3O4 yolk-shell nanocages as a catalyst for oxygen evolution reaction, J. Mater. Chem. A. 4 (2016) 13534–13542.
    [59] J.Xu, P.Gao, T.S.Zhao, Non-precious Co 3O 4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells, Energy Environ. Sci. 5 (2012) 5333–5339.
    [60] S.C.Petitto, E.M.Marsh, G.A.Carson, M.A.Langell, Cobalt oxide surface chemistry: The interaction of CoO(1 0 0), Co3O4(1 1 0) and Co3O4(1 1 1) with oxygen and water, J. Mol. Catal. A Chem. 281 (2008) 49–58.
    [61] X.Li, Y.Fang, X.Lin, M.Tian, X.An, Y.Fu, R.Li, J.Jin, J.Ma, MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR, J. Mater. Chem. A. 3 (2015) 17392–17402.
    [62] T.G.Vo, P.Y.Ho, C.Y.Chiang, Operando mechanistic studies of selective oxidation of glycerol to dihydroxyacetone over amorphous cobalt oxide, Appl. Catal. B Environ. 300 (2022) 120723.
    [63] A.Ashok, A.Kumar, Ag/Co3O4 as an effective catalyst for glycerol electro-oxidation in alkaline medium, Int. J. Hydrogen Energy. 46 (2021) 4788–4797.
    [64] C.H.Lam, A.J.Bloomfield, P.T.Anastas, A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation catalyst, Green Chem. 19 (2017) 1958–1968.
    [65] Y.Lee, S.Kim, S.Y.Jeong, S.Seo, C.Kim, H.Yoon, H.W.Jang, S.Lee, Surface-Modified Co-doped ZnO Photoanode for Photoelectrochemical Oxidation of Glycerol, Catal. Today. 359 (2021) 43–49.
    [66] G.A.El-Nagar, I.Derr, T.Kottakkat, C.Roth, Auspicious Metal-Doped-Cu 2 O/Cu Dendrite (M=Ni, Co, Fe) Catalysts for Direct Alkaline Fuel Cells: Effect of Dopants , ECS Meet. Abstr. MA2017-02 (2017) 1607–1607.
    [67] X.Zhou, Z.Liu, Y.Wang, Y.Ding, Facet effect of Co3O4 nanocrystals on visible-light driven water oxidation, Appl. Catal. B Environ. 237 (2018) 74–84.
    [68] T.G.Vo, S.D.S.Hidalgo, C.Y.Chiang, Controllable electrodeposition of binary metal films from deep eutectic solvent as an efficient and durable catalyst for the oxygen evolution reaction, Dalt. Trans. 48 (2019) 14748–14757.
    [69] M.Y.Gao, C.Yang, Q.B.Zhang, J.R.Zeng, X.T.Li, Y.X.Hua, C.Y.Xu, P.Dong, Facile electrochemical preparation of self-supported porous Ni-Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting, J. Mater. Chem. A. 5 (2017) 5797–5805.
    [70] Y.Wang, Y.Lei, J.Li, L.Gu, H.Yuan, D.Xiao, Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor, ACS Appl. Mater. Interfaces. 6 (2014) 6739–6747.
    [71] J.R.Copeland, I.A.Santillan, S.M.N.Schimming, J.L.Ewbank, C.Sievers, Surface interactions of glycerol with acidic and basic metal oxides, J. Phys. Chem. C. 117 (2013) 21413–21425.
    [72] M.S.E.Houache, K.Hughes, R.Safari, G.A.Botton, E.A.Baranova, Modi fi cation of Nickel Surfaces by Bismuth : E ff ect on Electrochemical Activity and Selectivity toward Glycerol, (2020).
    [73] P.W.Menezes, A.Indra, D.González-Flores, N.R.Sahraie, I.Zaharieva, M.Schwarze, P.Strasser, H.Dau, M.Driess, High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity, ACS Catal. 5 (2015) 2017–2027.
    [74] L.Su, W.Jia, A.Schempf, Y.Lei, Palladium/titanium dioxide nanofibers for glycerol electrooxidation in alkaline medium, Electrochem. Commun. 11 (2009) 2199–2202.
    [75] X.Huang, Y.Guo, Y.Zou, J.Jiang, Electrochemical oxidation of glycerol to hydroxypyruvic acid on cobalt (oxy)hydroxide by high-valent cobalt redox centers, Appl. Catal. B Environ. 309 (2022) 121247.
    [76] H.Y.Wang, S.F.Hung, Y.Y.Hsu, L.Zhang, J.Miao, T.S.Chan, Q.Xiong, B.Liu, In situ spectroscopic identification of μ-OO bridging on spinel Co3O4 water oxidation electrocatalyst, J. Phys. Chem. Lett. 7 (2016) 4847–4853.

    無法下載圖示 全文公開日期 2027/08/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2027/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE