簡易檢索 / 詳目顯示

研究生: 劉欣綸
Hsin-Lun Liu
論文名稱: 氧化鋯奈米粒子對微弧氧化弱工作區鍍膜的影響
Effect of ZrO2 Nanoparticles on Soft Regime Behavior of Film Coating Using Plasma Electrolytic Oxidation
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蔡大翔
丘群
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 142
中文關鍵詞: 微弧氧化技術鎂金屬氧化鋯奈米粒子弱工作區鍍膜生長機制
外文關鍵詞: Plasma electrolytic oxidation (PEO), Magnesium alloy, Zirconia nanoparticles, Soft regime, Coating mechanism
相關次數: 點閱:276下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微弧氧化(Plasma electrolytic oxidation, PEO)技術是涉及電化學反應、電漿化學與熱擴散效應共同作用,藉電解液的調配、工作時間及電源參數的控制,能快速成形具目標相結構之氧化膜鍍層於輕金屬鎂、鋁、鈦上,屬近期表面改質新興技術之一。故本研究利用電源供應之電性參數於鎂合金上發生弱工作區(Soft regime)現象,此效應控制膜層品質,因此發展出於鎂合金材料上藉由添加奈米粒子氧化鋯,以及觀察添加後弱工作區現象對鍍膜反應之影響研究。本實驗選用當今探討弱工作區現象中較少討論的基材-鎂合金微弧氧化鍍製材料,研究弱工作區於添加奈米粒子後之影響與鍍膜相互關係。研究首先達成微弧氧化弱工作區電源參數之最佳化,確立了弱工作區現象需在CR < 1以及調控適當的電源參數方能形成。


    Plasma Electrolytic Oxidation (PEO) is an electrochemical, high voltage plasma-assisted oxidation, environmentally-friendly aqueous electrolyte to oxidize the light metal surfaces to form ceramic oxide coatings which applied to aluminum, titanium, and magnesium metal or alloys. It is one of new applied today as manufacturing wet surface process. However, using pulse bipolar plasma electrolytic oxidation technology were coated on magnesium alloys AZ91D employing electrolytes with/without adding nano-scale ZrO2 powder to produce zirconia ceramic thick films. Under a constant current mode can obtain a special voltage-drop behavior, named soft regime, in this study which is adjusting positive/negative current ratio (CR) through power supply. On the other hand, when working in this regime, the density of the oxide layer increases and the bonding of substrate to coating layer can be enhanced as well.

    中文摘要 III Abstract V 總 目 錄 IX 圖 目 錄 XI 表 目 錄 XVI 第一章 前言 1 第二章 文獻回顧 3 2.1 微弧氧化處理技術(Plasma Electrolytic Oxidation, PEO) 3 2.1.1 微弧氧化的發展與現況 3 2.1.2 微弧氧化技術中重要參數 9 2.2 弱工作區(Soft regime)效應 23 2.3 氧化鋯材料 29 2.4 微弧氧化製備氧化鋯膜 32 2.4.1 電解液中添加鋯酸鹽類 33 2.4.2 電解液中添加氧化鋯粒子 36 2.5 研究動機與目的 39 第三章 研究方法 41 3.1 研究方法與流程 41 3.2 試片準備及前處理 42 3.3 微弧氧化製備氧化鋯膜 42 3.3.1 電解液參數調配 43 3.3.2 電性參數調控 44 3.4 微弧氧化設備 47 3.5 晶體結構鑑定 49 3.6 微觀組織觀察及成分分析 49 3.7 離子濃度量測 49 3.8 機械性質測試-質量損耗量測 50 第四章 結果與討論 51 4.1 添加奈米粒子氧化鋯對弱工作區產生的影響 51 4.1.1 添加氧化鋯奈米粒子有無之巨觀討論 51 4.1.2 添加氧化鋯奈米粒子之微觀討論 53 4.2 不同電性參數於定電流模式對弱工作區產生的影響 60 4.2.1 不同定電流調控對弱工作區之鍍膜結構與微觀分析 60 4.2.2 定電流中不同占空比對於弱工作區之調控討論 68 4.2.3 定電流中不同頻率對於弱工作區之調控討論 74 4.3 不同弱工作區電性參數對電解液中電化學變化的影響 88 4.4 氧化鋯奈米粒子添加對弱工作區現象中鍍膜生成機制影響 103 第五章 結論 107 第六章 參考文獻 110 附錄 117

    [1] H. Ishizawa, M. Fujino and M. Ogino, "Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P", J. Biomed. Mater. Res 29 (1995) 1459-1468.
    [2] A. Rajan, N. A. Naing and W. Zhou, "Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy", Corrosion Science 42 (2000) 1433.
    [3] F. Cao, G. L. Song and A. Atrens, "Corrosion studies of rapidly solidified magnesium alloys", Corrosion Science 111 (2016) 835–845.
    [4] J. Liang, P. B. Srinivasan, C. Blawert, M. Stormer and W. Dietzel, "Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes", Electrochim Acta 54 (2009) 3842–3850.
    [5] J. Martin, A. Melhem, I. Shchedrina, T. Duchanoy, A. Nominé, G. Henrion, T. Czerwiec and T. Belmonte, "Effects of electrical parameters on plasma electrolytic oxidation of aluminium", Surface & Coatings Technology 221 (2013) 70–76.
    [6] N. Q. Min, "High-Temperature Fuel Cells Part 2:The Solid Oxide Cells", Chemtech 21 (1991) 120-126.
    [7] R. C. Garvie, R. H. Hannink and R. T. Pascoe, "Ceramic Steel?", Nature 258 (1975) 703 -704.
    [8] G. Carta, N.E. Habra, G. Rossetto, P. Zanella, M. Casarin, D. Barreca, C. Maragno and E. Tondello, "MgO and CaO stabilized ZrO2 thin films obtained by Metal Organic Chemical Vapor Deposition", Surface and Coating Technology 201 (2007) 9289-9293.
    [9] H. H. Luo, Q. Z. Cai, B. K. Wei, B. Yu, H. E. Jiang and L. I. jun, "Study on the microstructure and corrosion resistance of ZrO2-containing ceramic coatings formed on magnesium alloy by plasma electrolytic oxidation", Journal of Alloys and Compounds 474 (2009) 551-556.
    [10] F. J. Mecuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Dujardin, A. Viola and J. Beauvir, "Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process", Surface and Coatings Technology 201 (2007) 8677-8682.
    [11] W. McNiell, and G. F. Nordbloom, "Method of Making Cadmium Niobate", US Patent 2854390, September 30 (1958).
    [12] G. A. Markov, V. V. Tatarchuk, M. K. Mirnova and Izvest, SOAN SSSR, Ser. Khim. Nauk 3 (1977) (in Russian) 32.
    [13] W. McNiell, and L. L. Gruss, "Anodic Spark Reaction Processes and Articles", US Patent 3293158 (1966).
    [14] 鐘時俊,O. Demine,翁榮洲,“微電弧氧化表面處理原理與應用”,工業材料雜誌,194 (2003) 176-180。
    [15] X. Nie, A. Leyland, H. W. Song, A. L. Yerokhin, S. J. Dowey and A. Matthews, "Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys", Surface and Coatings Technology 116-119 (1999) 1055-1060.
    [16] S. G. Xin, Z. H. Jiang, F. P. Wang, X. H. Wu, L. C. Zhao and T. Shimizu, "Effect of current density on Al alloy microplasma oxidation", J Mater Sci Technol 17 (2001) 657-660.
    [17] K. H. Dittrich, W. Krysmann, P. Kurzek and H. G. Schneider, "Stucuture and properties of ANOF", Crystal Res. & Tecknol. 19 (1984) 93-99.
    [18] W. Krysmann, P. Kurze, H. Dittrich and H. G. Schneider, "Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge (ANOF)", Crystal Res. & Tecknol. 19 (1984) 973-979.
    [19] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, "Plasma electrolysis for surface engineering", Surface and Coatings Technology 122 (1999) 73-93.
    [20] W. B. Xue, Z. W. Deng, R. Y. Chen, T. H. Zhang and H. Ma, "Microstructure and properties of ceramic coatings produced on 2024 aluminum alloy by microarc oxidation", Journal of Materials Science 36 (2001) 2615-2619.
    [21] R. O. Hussein, X. Nie and D. O. Northwood, "An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation(PEO) processing", Electrochmica Acta 112 (2013) 111-119.
    [22] R. O. Hussein, X. Nie and D. O. Northwood, "Influence of process parameters on electrolytic plasma discharging behaviour and aluminum oxide coating microstructure", Surface and Coatings Technology 205 (2010) 1659-1667.
    [23] E. Alfonso, J. Olaya and G. Cubillos, "Thin Film Growth Through Sputtering Technique and Its Application", Universidad Nacional de Colombia 15 (2011) 397-432.
    [24] J. H. Park and T. S. Sudarshan, "Chemical Vapor Deposition", ASM International 44073-0002 2 (2001) 1-22.
    [25] A. L. Yerokhin, V. V. Lyubimov and R.V. Ashitkov, "Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys", Ceramics International 28 (1996) 1-6.
    [26] Ch. Comninellis and C. Pulgarin, "Anodic oxidation of phenol for waste water treatment", Journal of Applied Electrochemistry 21 (1991) 703–708.
    [27] R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon and G. E. Thompson, "Characterization of AC PEO coatings on magnesium alloys", Surface and Coating Technology 203 (2009) 2207-2220.
    [28] E. Cakmak, K. C. Tekin, U. Malayoglu and S. Shrestha, "The effect of substrate composition on the electrochemical and mechanical properties of PEO coatings on Mg alloys", Surface and Coatings Technology 204 (2010) 1305-1313.
    [29] Z. P. Yao, H. H. Gao and Z. H. Jiang, "Structure and Properties of ZrO2 Ceramic Coatings on AZ91D Mg Alloy by Plasma Electrolytic Oxidation", J. Am. Ceram. Soc 91 (2008) 555-558.
    [30] 東青、陳傳忠、王德雲、雷廷權,“鋁及其合金的微弧氧化技術”,中國表面工程 18 (2005) 6。
    [31] H. S. Ryu and S. H. Hong, "Effects of KF, NaOH and KOH Electrolytes on Properties of Microarc-Oxidized Coatings on AZ91D Magnesium Alloy", Electrochem. Soc 9 (2009) 209.
    [32] Y. Ma, X. Nie, D.O. Northwood and H. Hu, "Systematic study of the electrolytic plasma oxidation process on a Mg alloy for corrosion protection", Thin Solid Films 494 (2006) 296-301.
    [33] Z. P. Yao, Y. L. Jiang, F. Z. Jia, Z. H. Jiang and F. P. Wang, "Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti-6Al-4V alloy", Applied Surface Science 254 (2008) 4084-4091.
    [34] F. Liu, D. Y. Shan, Y. W. Song and E. H. Han, "Formation process of composite plasma electrolytic oxidation coating containing zirconium oxides on AM50 magnesium alloy", Trans. Nonferrous Met. Soc. China 21 (2011) 943-948.
    [35] Y. Gu, S. Bandopadhy, C. F. Chen, Y. Guo and C. Ning, "Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid", Journal of Alloys and Compounds 543 (2012) 109-117.
    [36] 翁海峰、陳秋龍、蔡珣、鮑明東,”脈衝占空比對純鋁微弧氧化膜的影響”,表面技術 第34卷 5 (2005)。
    [37] S. Wang, Y. Xia, L. Liu and N. Si, "Preparation and performance of MAO coatings obtained on AZ91D Mg alloy under unipolar and bipolar modes in a novel dual electrolyte", Ceramics International 40 (2014) 93-99.
    [38] A. L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Pilkington, A. Leyland and A. Matthews, "Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process", Surface & Coatings Technology 199 (2005) 150-157.
    [39] G. H. Lv, H. Chen, W. C. Gu, L. Li, E. W. Niu, X. H. Zhang and S. Z. Yang, "Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology", Journal of materials processing technology 208 (2008) 9-13.
    [40] V. Dehnavi, B. L. Luan, D. W. Shoesmith, X. Y. Liu and S. Rohani, "Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior", Surface & Coatings Technology 226 (2013) 100-107.
    [41] J. H. Wang, M. H. Du, F. Z. Han and J. Yang, "Effects of the ratio of anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic coatings on Al alloys", Applied Surface Science 292 (2014) 658-664.
    [42] P. B. Srinivasan, J. Liang, C. Blawert, M. Stormer and W. Dietzel, "Effect of current density on the microstructure and corrosion behavior of plasma electrolytic oxidation treated AM50 magnesium alloy", Applied Surface Science 255 (2009) 4212-4218.
    [43] A. Melhem, G. Henrion, T. Czerwiec, J. L. Briançon, T. Duchanoy, F. Brochard and T. Belmonte, "Changes induced by process parameters in oxide layers grown by the PEO process on Al alloys" Surface and Coatings Technology 205 (2011) S133-S136.
    [44] J. Martin, P. Leone, A. Nominé, D. Veys-Renaux, G. Henrion and T. Belmonte, "Influence of electrolyte ageing on the Plasma Influence of electrolyte ageing on the Plasma Electrolytic Oxidation of aluminium", Surface and Coatings Technology 269 (2015) 36-46.
    [45] J. Martin, A. Melhem, I. Shchedrina, T. Duchanoy, A. Nominé, G. Henrion, T. Czerwiec and T. Belmonte, "Effects of electrical parameters on plasma electrolytic oxidation of aluminium", Surface and Coatings Technology 221 (2013) 70-76
    [46] M. Hofmann, K. G. Nickel and C. Berthold, "Ageing behavior of 3Y-TZP dental ceramics in water, acetic acid and orthophosphoric acid at 80 °C", Master thesis Universität Tübingen (2014).
    [47] J. A. M. Tabares, "An overview of zirconia ceramics-structure, properties and applications", Master thesis Universidad Nacional Autónoma de México (2013).
    [48] T. Tsai and S. A. Barnett, "Bias Sputter Deposition of Dense Yttria‐Stabilized Zirconia Films on Porous Substrates", Journal of Electrochemical Society 142 (1995) 3084-3087.
    [49] J.C. Ray, P. Pramanik and S. Ram, "Formation of Cr3+ Stabilized ZrO2 Nanocrystals in a Single Cubic Metastable Phase by a Novel Chemical Route with a Sucrose-Polyvinyl Alcohol Polymer Matrix", Mater. Lett 48 (2001) 281-291.
    [50] A. P. Caricato, A. D. Cristoforo, M. Fernandez, G. Leggieri, A. Luches, G. Majni, M. Martino and P. Mengucci, "Pulsed excimer laser ablation deposition of YSZ and TiN/YSZ thin films on Si substrates", Applied Surface Science 208 (2003) 615-619.
    [51] Y. W. Zhang, Z. G. Yan, F. H. Liao, C. S. Liao and C. H. Yan, "Citrate Gel Synthesis and Electrical Properties of (ZrO2)0.85(REO1.5)0.15 (RE=Y, Sc) Solid Solutions", Mater. Res. Bull. 39 (2004) 1763-1777.
    [52] D. Schwingel, R. Taylor, T. Haubold, J. Wigren and C. Gualco, "Mechanical and thermophysical properties of thick PSYZ thermal barrier coatings:correlation with microstructure and spraying parameters", Surface and Coating Technology 108-109 (1998) 99-106.
    [53] Y. Han and J. Song, "Novel Mg2Zr5O12/Mg2Zr5O12-ZrO2-MgF2 gradient layer coating on magnesium formed by microarc oxidation", Journal of the American Ceramic Society 92 (2009) 1813-1816.
    [54] R. Arrabal, E. Matykina, P. Skeldon, and G. E. Thompson, "Incorporation of zirconia particles into coatings formed on magnesium by plasma electrolytic oxidation", Journal of Materials Science 43 (2008) 1532-1538.
    [55] S. C. Farmer and L. H. Schoenlein, "Precipitation of Mg2Zr5O12 in MgO Partially-Stabilized ZrO2", Journal of the American Ceramic Society 66 (1987) 107-109.
    [56] K. M. Lee, K. R. Shin, S. Namgung, B. Yoo and D. H. Shin, "Electrochemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation", Surface and Coating Technology 205 (2011) 3779-3784.
    [57] D. Niebuhr, "Cavitation erosion behavior of ceramics in aqueous solutions", Wear 263 (2007) 295-300.

    QR CODE