簡易檢索 / 詳目顯示

研究生: 鍾富丞
Fu-Cheng Chung
論文名稱: 聚氨酯黏著劑在磁磚黏合之剪切強度研究: 遵循歐盟標準 EN 12004 的理論與實際差異性評估
Shear Strength of Polyurethane Adhesives for Tile Bonding: An Evaluation of Theoretical and Actual Differences Following European Standard 12004
指導教授: 蔡孟霖
Meng-Lin Tsai
口試委員: 蔡孟霖
Meng-Lin Tsai
蔡東昇
Dung-Sheng Tsai
李權倍
Chuan-Pei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 49
中文關鍵詞: 黏著劑中華民國國家標準歐盟標準剪切黏著強度剪切強度剪切應力磁磚
外文關鍵詞: adhesive, CNS, EN, shear adhesion strength, shear strength, shear stress, tile
相關次數: 點閱:52下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來市面上以黏著劑接合的方式是比比皆是,廣泛應用於不同種類材料的黏著,依照需求來選擇不同類型的黏著劑,並用於固定、連接和密封各種材料。傳統上使用黏著劑的接合多用於不需高強度的情況,但隨著工業的進步與現代美學的考量,消費者對於磁磚的尺寸是希望越大越好,而吸水率則是越低越好,磁磚的表面也就更加緻密且孔隙率更低,因此對於黏著劑的強度與耐久度更加重視。不同樣式的磁磚 (如有無釉面、溝槽的形式、吸水率、孔隙率等) 所使用的黏著劑也會有所不同,且各個國家有其對應的標準與要求,以供客觀標準來進行試驗,臺灣大多以中華民國國家標準 (CNS)、美國材料和試驗協會國際組織 (ASTM) 與歐盟標準 (EN) 作為標準,以不同吸水率的磁磚或不同的材質來制定不同養護條件與使用的黏著劑種類,以應對各式種類的黏著劑。然而,先前依照中華民國國家標準 CNS 5809 進行剪切強度試驗時,實驗數據與官方理論數據差異甚大,因此,本研究選擇了一款聚氨酯黏著劑,黏著劑與磁磚皆符合歐盟標準 EN 12004 與 EN 14411,利用黏著劑的剪切強度實驗結果來釐清與研究黏著劑的強度與應用,以評估理論 (Theoretical value) 與實際數據 (Actual value) 上的差異性。


    In recent years, the use of adhesives for bonding has become widespread, extensively applied in the adhesion of various types of materials. Depending on the needs, different types of adhesives are chosen and used for fixing, connecting, and sealing various materials. Traditionally, adhesive bonding is often used in situations where high strength is not required. However, with the advancement of industry and modern aesthetic considerations, consumers prefer larger sizes and lower water absorption rates for tiles. The surface of the tiles has become denser and the porosity lower, thus placing greater emphasis on the strength and durability of adhesives. The type of adhesive used varies with different styles of tiles (such as whether they are glazed or unglazed, the format of grooves, water absorption rate, porosity, etc.), and each country has its corresponding standards and requirements for objective testing. In Taiwan, standards such as the National Standards of the Republic of China (CNS), the American Society for Testing and Materials International (ASTM), and the European Standards (EN) are commonly used. These standards are applied to determine different curing conditions and types of adhesives based on the water absorption rate of the tiles or different materials, to cater to various types of adhesives. However, when conducting shear strength tests according to the National Standard of the Republic of China CNS 5809, a significant discrepancy was found between the experimental data and the official theoretical data. Therefore, this study selected a polyurethane adhesive, with both the adhesive and the tiles conforming to the European Standards EN 12004 and EN 14411. The shear strength test results of the adhesive were used to clarify and research the strength and application of the adhesive, in order to assess the differences between theoretical values and actual values.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 一、 研究背景 1 二、 研究動機與目的 1 第二章 文獻回顧與探討 2 一、 磁磚分類與規範 2 二、 黏著劑分類與規範 3 三、 黏著劑黏著機制 5 四、 破壞模式 7 五、 影響磁磚黏著的因素 8 (一) 磁磚失效原因 8 (二) 黏著劑厚度 9 (三) 表面粗糙度 10 第三章 實驗材料與方法 11 一、 實驗材料 11 二、 實驗儀器 12 三、 實驗流程圖 13 四、 試驗規範 15 五、 磁磚篩選 16 六、 黏著劑 17 七、 治具設計 17 八、 試驗樣品 19 九、 初始剪切黏著強度 20 十、 浸水後的剪切黏著強度 21 十一、 熱衝擊後的剪切黏著強度 21 十二、 塗佈面積 21 十三、 放置不同時間 23 十四、 黏著劑厚度計算 23 十五、 剪切黏著強度計算 23 十六、 剪切應變計算 24 第四章 結果與討論 25 一、 歐盟標準 EN 12004 剪切黏著強度 25 (一) 初始剪切黏著強度 25 (二) 浸水後的剪切黏著強度 27 (三) 熱衝擊後的剪切黏著強度 29 二、 設計變因 31 (一) 塗佈面積 31 (二) 放置不同時間 35 (三) 黏著劑厚度 39 第五章 結論 44 參考文獻 45

    [1] Y. Pekbey, Numerical elastoplastic analysis of the shear stress distribution in the adhesive layer for single-lap joints. Sci. Eng. Compos. Mater., 21 (2014) 389-400.
    [2] S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, P. Mergo, W. Urbanczyk, K. Chah, H. Thienpont, F. Berghmans, Disbond monitoring in adhesive joints using shear stress optical fiber sensors. Smart Mater. Struct., 23 (2014) 10.
    [3] E.A.S. Marques, L.F.M. da Silva, M.D. Banea, R.J.C. Carbas, Adhesive joints for low- and high-temperature use: an overview. J. Adhes., 91 (2015) 556-585.
    [4] K. Uehara, M. Sakurai, Bonding strength of adhesives and surface roughness of joined parts. J. Mater. Process. Technol., 127 (2002) 178-181.
    [5] L.F.M. da Silva, N. Ferreira, V. Richter-Trummer, E.A.S. Marques, Effect of grooves on the strength of adhesively bonded joints. Int. J. Adhes. Adhes., 30 (2010) 735-743.
    [6] F.L. Ribeiro, L. Borges, J.R.M. d'Almeida, Numerical stress analysis of carbon-fibre-reinforced epoxy composite single-lap joints. Int. J. Adhes. Adhes., 31 (2011) 331-337.
    [7] M.Y.L. Chew, The study of adhesion failure of wall tiles. Build. Environ., 27 (1992) 493-499.
    [8] T. Mahaboonpachai, T. Matsumoto, Y. Inaba, Investigation of interfacial fracture toughness between concrete and adhesive mortar in an external wall tile structure. Int. J. Adhes. Adhes., 30 (2010) 1-9.
    [9] V. Alizadehyazdi, A. Simaite, M. Spenko, Evaluation of material properties for practical microstructured adhesives: low dust adhesion and high shear strength. ACS Appl. Mater. Interfaces, 11 (2019) 8654-8666.
    [10] F. Winnefeld, J. Kaufmann, E. Hack, S. Harzer, A. Wetzel, R. Zurbriggen, Moisture induced length changes of tile adhesive mortars and their impact on adhesion strength. Constr. Build. Mater., 30 (2012) 426-438.
    [11] T. Sekercíoglu, H. Rende, A. Gülsöz, C. Meran, The effects of surface roughness on the strength of adhesively bonded cylindrical components. J. Mater. Process. Technol., 142 (2003) 82-86.
    [12] S.G. Prolongo, G. Rosario, A. Ureña, Study of the effect of substrate roughness on adhesive joints by SEM image analysis. J. Adhes. Sci. Technol., 20 (2006) 457-470.
    [13] Z.X. Jiang, Y.D. Huang, L. Liu, J. Long, Effects of roughness on interfacial performances of silica glass and non-polar polyarylacetylene resin composites. Appl. Surf. Sci., 253 (2007) 9357-9364.
    [14] C. Borsellino, G. Di Bella, V.F. Ruisi, Adhesive joining of aluminium AA6082: the effects of resin and surface treatment. Int. J. Adhes. Adhes., 29 (2009) 36-44.
    [15] J. Rottler, M.O. Robbins, Molecular simulations of deformation and failure in bonds formed by glassy polymer adhesives. J. Adhes. Sci. Technol., 17 (2003) 369-381.
    [16] A. Objois, Y. Gilibert, B. Fargette, Theoretical and experimental analysis of the scarf joint bonded structure: influence of the adhesive thickness on the micro-mechanical behavior. J. Adhes., 70 (1999) 13-32.
    [17] L.F.M. da Silva, T. Rodrigues, M.A.V. Figueiredo, M. de Moura, J.A.G. Chousal, Effect of adhesive type and thickness on the lap shear strength. J. Adhes., 82 (2006) 1091-1115.
    [18] L.F.M. da Silva, R.J.C. Carbas, G.W. Critchlow, M.A.V. Figueiredo, K. Brown, Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int. J. Adhes. Adhes., 29 (2009) 621-632.
    [19] J.M. Arenas, J.J. Narbón, C. Alía, Optimum adhesive thickness in structural adhesives joints using statistical techniques based on Weibull distribution. Int. J. Adhes. Adhes., 30 (2010) 160-165.
    [20] M.D. Banea, L.F.M. Silva, Mechanical characterization of flexible adhesives. J. Adhes., 85 (2009) 261-285.
    [21] A.A. Taib, R. Boukhili, S. Achiou, S. Gordon, H. Boukehili, Bonded joints with composite adherends. Part I. Effect of specimen configuration, adhesive thickness, spew fillet and adherend stiffness on fracture. Int. J. Adhes. Adhes., 26 (2006) 226-236.
    [22] D.M. Gleich, M.J.L. Van Tooren, A. Beukers, Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures. J. Adhes. Sci. Technol., 15 (2001) 1091-1101.
    [23] R. Kahraman, M. Sunar, B. Yilbas, Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive. J. Mater. Process. Technol., 205 (2008) 183-189.
    [24] P. Davies, L. Sohier, J.Y. Cognard, A. Bourmaud, D. Choqueuse, E. Rinnert, R. Creac'hcadec, Influence of adhesive bond line thickness on joint strength. Int. J. Adhes. Adhes., 29 (2009) 724-736.
    [25] N. Burst, D.O. Adams, H.E. Gascoigne, Investigating the thin-film versus bulk material properties of structural adhesives. J. Adhes., 87 (2011) 72-92.
    [26] L. Pisanu, L.C. Santiago, J.D.V. Barbosa, V.E. Beal, M.L.F. Nascimento, Strength shear test for adhesive joints between dissimilar materials obtained by multicomponent injection. Int. J. Adhes. Adhes., 86 (2018) 22-28.
    [27] J.C. Berg, Semi-empirical strategies for predicting adhesion. Adhesion science and engineering, 2 (2002) 1-73.
    [28] G. Wypych, Mechanisms of adhesion. Handbook of adhesion promoters, (2018) 5-44.
    [29] J. Salustio, S.M. Torres, A.C. Melo, A. Silva, A.C. Azevedo, J.C. Tavares, M.S. Leal, J. Delgado, Mortar bond strength: a brief literature review, tests for analysis, new research needs and initial experiments. Materials, 15 (2022) 13.
    [30] S. Ebnesajjad. Adhesives technology handbook (2nd Edition), (2009) 1-363.
    [31] M.Y.L. Chew, Factors affecting ceramic tile adhesion for external cladding. Constr. Build. Mater., 13 (1999) 293-296.
    [32] B. Duncan, Developments in testing adhesive joints. Advances in structural adhesive bonding, (2010) 389-436.
    [33] D. Castagnetti, A. Spaggiari, E. Dragoni, Effect of bondline thickness on the static strength of structural adhesives under nearly-homogeneous shear stresses. J. Adhes., 87 (2011) 780-803.
    [34] EN 12004-1:2017; Adhesives for ceramic tiles-part 1: requirements, assessment and verification of constancy of performance, classification and marking. European committee for standardization (CEN): Brussels, Belgium, 2017.
    [35] EN 12004-2:2017; Adhesives for ceramic tiles-part 2: test methods. European committee for standardization (CEN): Brussels, Belgium, 2017.
    [36] EN 14411:2016; Ceramic tiles-definition, classification, characteristics, assessment and verification of constancy of performance and marking. European committee for standardization (CEN): Brussels, Belgium, 2016.
    [37] CNS 5809,黏著劑之抗剪強度測定法,經濟部標準檢驗局,1980。
    [38] CNS 16145-1,陶瓷面磚-填縫劑與接著劑-第1部: 接著劑用語、定義及規範,經濟部標準檢驗局,2020。
    [39] CNS 16145-2,陶瓷面磚-填縫劑與接著劑-第2部: 接著劑試驗法,經濟部標準檢驗局,2020。
    [40] CNS 5604,黏著劑之黏合強度測定法 (總則),經濟部標準檢驗局,1980。
    [41] CNS 9737,陶瓷面磚,經濟部標準檢驗局,2016。

    QR CODE