簡易檢索 / 詳目顯示

研究生: 李杰
Chieh - Li
論文名稱: 以射頻矽甲烷電漿化學氣相沉積系統製備氫化非晶矽膜之研究
Hydrogenated Amorphous Silicon Films Prepared by RF SiH4-PECVD System
指導教授: 洪儒生
Lu-sheng Hong
口試委員: 蔡娟娟
Chuang-chuang Tsai
丁定國
Ding-kuo Ding
吳泉毅
Chuan-yi Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 89
中文關鍵詞: 氫化非晶矽射頻電漿化學氣相沉積薄膜太陽能電池微結構參數B值Tauc公式
外文關鍵詞: a-Si:H, RF-PECVD, thin film solar cells, microstructure, B Value, Tauc formula
相關次數: 點閱:280下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係用射頻電漿系統沉積氫化非晶矽薄膜,調變製程重要參數如氫氣稀釋比、基材溫度、工作壓力以及電極間距等,藉由傅立葉轉換紅外光光譜儀(FT-IR)以及紫外光/可見光光譜儀(UV-VIS)等分析方法,探討成長出的氫化非晶矽膜的微結構參數和B值(Tauc公式的斜率)對製程參數的對應關係,並嘗試解釋氫化非晶矽膜的光暗導電率變化關係。實驗結果發現,薄膜的光敏感度量測確實會受到微結構參數與B值之影響。因此,本研究藉由觀測微結構參數以及B值的變化,調配出最適之反應條件,此條件擁有較低的微結構參數為0.08以及較大的B值為1100,且其光敏感度可高達2.63×10^5。


    The hydrogenated amorphous silicon (a-Si:H) thin films were fabricated by radio-frequency plasma enhanced chemical vapor deposition in this thesis. The a-Si:H thin films were prepared under different experimental parameters, such as hydrogen dilution ratio, substrate temperature, working pressure and electrode gap. The microstructure factor and B value (gained from the slope of Tauc formula) of a-Si:H were acquired respectively by using Fourier transform infrared spectrometer and ultraviolet-visible spectrophotometer. We tried to explain the photoelectrical properties of a-Si:H by micorstructure and B value. It was revealed that photoelectric characteristics were indeed influenced by microstructure and B value. Finally, by altering the deposition condition, the best operating condition which author found possessing a lower microstructure value of 0.08 and a higher B value of 1100, what is more, a photosensitivity can be achieved as high as 2.63×10^5.

    中文摘要 I 英文摘要 II 誌 謝 III 目 錄 IV 圖 索 引 VII 表 索 引 XI 第一章 緒論 1 1.1 前言 1 1.1.1 太陽能電池的發展 1 1.1.2 薄膜型太陽能電池的發展 4 1.2 氫化非晶矽薄膜簡介 7 1.3 電漿矽甲烷的分解程序及表面成長機構 10 1.4 氫化非晶矽薄膜的光劣化現象 14 1.5 矽氫鍵結對氫化非晶矽薄膜的影響 16 1.6 懸鍵缺陷密度對氫化非晶矽薄膜的影響 20 1.7 研究方針與策略 23 第二章 實驗相關部分 24 2.1 實驗氣體與藥品 24 2.2 實驗裝置及方法 26 2.3 分析儀器 29 第三章 實驗結果與討論 43 3.1 氫氣稀釋比對成長氫化非晶矽薄膜的效應 43 3.1.1 拉曼光譜儀及紫外光/可見光光譜儀的量測 44 3.1.2 傅立葉轉換紅外光光譜儀的量測 47 3.1.3 不同氫氣稀釋比下長膜的導電率及光敏感度 50 3.2 基材溫度對成長氫化非晶矽薄膜的效應 52 3.2.1 拉曼光譜儀及紫外光/可見光光譜儀的量測 53 3.2.2 傅立葉轉換紅外光光譜儀的量測 57 3.2.3 不同基材溫度下長膜的導電率及光敏感度 60 3.3 工作壓力對成長氫化非晶矽薄膜的效應 62 3.3.1 拉曼光譜儀及紫外光/可見光光譜儀的量測 63 3.3.2 傅立葉轉換紅外光光譜儀的量測 67 3.3.3 不同工作壓力下長膜的導電率及光敏感度 69 3.4 電極間距對成長氫化非晶矽薄膜的效應 71 3.4.1 拉曼光譜儀及紫外光/可見光光譜儀的量測 72 3.4.2 傅立葉轉換紅外光光譜儀的量測 75 3.4.3 不同電極間距下長膜的導電率及光敏感度 77 第四章 結論 79 參考文獻 81 附 錄 87 A. 不同氫氣稀釋比及不同工作壓力下電漿內之電子溫度 87 B. 氫化非晶矽膜於不同基材溫度下所量測得的懸鍵缺陷密度 87 C. 不同反應溫度下,矽上矽氫鍵結含量及熱脫附溫度 88 D. 不同電極間距對電子溫度的影響 88 作者簡介 89

    [1]. 經濟部能源局,“油價資訊管理與分析系統”, http://210.69.152.10/oil102/
    [2]. Nikkei Microdevices, 太陽電池-日本的勝算, pp.28 (2008)
    [3]. KRI Report, “Solar Cells”, 8 (2005)
    [4]. H. F. Sterling and R. C. G. Swann, “Chemical Vapour Deposition Promoted by R.F. Discharge,” Solid-State Electron., Vol.8, pp.653-654 (1965)
    [5]. W.E. Spear and P.G. Le Comber, “Substitutional Doping of Amorphous Silicon,” Solid State Commun., Vol.17, pp.1193-1196 (1975).
    [6]. J. M¨ ullerov´a, S. Jure cka, P. Sutta, and M. Mikula, “Structural and Optical Studief of a-Si:H Thin Films: from Amorphous to Nanocrystalline Silicon” Acta Phys. Slovaca, Vol.55, pp. 351-359 (2005)
    [7]. R. A. Street, Hydrogenated Amorphous Silicon (2005)
    [8]. 施敏, 半導體元件物理與製作技術, 第二版, P62, 民國九十五年
    [9]. Jung-Yol Jo, “Amorphization of Silicon by 250 keV Electron Irradiation and Hydrogen Annealing,” KIEE International Transactions on EA, Vol.5, pp.23-27 ( 2005)
    [10]. J. Meier, R. Fluckiger, H. Keppner, and A. Shah, “Complete Microcrystalline p-i-n Solar Cell Crystalline or Amorphous Cell Behavior,” Appl. Phys. Lett., Vol.65, pp.860 (1994)
    [11]. A. Matsuda, “Thin-Film Silicon - Growth Process and Solar Cell Application -,”Jpn. J. Appl. Phys., Vol.43, pp.7909-7920 (2004)
    [12]. A. Matsuda, M. Takai, T. Nishimoto and M. Kondo, “Control of Plasma Chemistry for Preparing Highly Stabilized Amorphous Silicon at High Growth Rate,” Sol. Energy Mater. & Sol. Cells, Vol.78, pp.3-26 (2003)
    [13]. N. Itabashi, N. Hishiwaki, M. Magane, T. Goto, A. Matsuda, C. Yamada and E. Hirota, Jpn. “SiH3 Radical Density in Pulsed Silane Plasma,” J. Appl. Phys., Vol.29, pp.585-590 (1990)
    [14]. N. Itabashi, N. Hishiwaki, M. Magane, S. Naito, T. Goto, A. Matsuda, C. Yamada and E. Hirota, “Spatial Distribution of SiH3 Radicals in RF Silane Plasma,” Jpn. J. Appl. Phys., Vol.29, pp.505-507 (1990)
    [15]. K. Tachibana, T. Mukai and H. Harima, “Measurement of Absolute Densities and Spatial Distributions of Si and SiH in an RF-Discharge Silane Plasma for the Chemical Vapor Deposition of a-Si:H Film,” Jpn. J. Appl. Phys, Vol.30, pp.1208-1211 (1991)
    [16]. G. Ganguly and A. Matsuda, ” Importance of Surface Processes in Defect Formation in a-Si:H,” J. Non-Cryst. Solids, Vol.164-166, pp.31-36 (1993)
    [17]. G. Ganguly and A. Matsuda, “Defect Formation Process during Growth of Hydrogenated Amorphous Silicon at High Temperature,” Jpn. J. Appl. Phys., Vol.31, pp.1269-1271 (1992)
    [18]. Y. Toyoshiyta, K. Arai, A. Natsuda and K. Tanaka, “In Situ Characterization of the Growing a-Si:H Surface by Infrared Spectroscopy,” J. Non-Cryst. Solids, Vol.137-138, pp.765-770 (1991)
    [19]. H. Fujiwara, Y. Toyoshima, M. Kondo and A. Matsuda, “Interface-Layer Formation Mechanism in a-Si:H Thin-Film Growth Studied by Real Time Spectroscopic Ellipsometry and Infrared,” Phys. Rev. B, Vol.60, pp.19 (1999)
    [20]. D. L. Staebler and C. R. Wronski, “Reversible Conductivity Changes in Discharge-Produced Amorphous Si,” Appl. Phys. Lett., Vol.31, pp.292-294 (1977)
    [21]. D. L. Staebler and C. R. Wronski, “Optically Induced Conductivity Changes in Discharge-Produced Hydrogenated Amorphous-Silicon,” J. Appl. Phys., Vol.51, pp.3262-3268 (1980)
    [22]. D. Y. Kim, I. S. Kim and S. Y. Choi, “Electrical Properties of a-Si:H Thin Films as A Function of Bonding Configuration,” Sol. Energy Mater. & Sol. Cells, Vol.93, pp.239-243 (2009)
    [23]. M. Pinarbasi, M. J. Kushner and J. R. Abelson, “Effect of Hydrogen Content on The Light-Induced Defect Generation in Direct-Current Magnetron Reactively,” J. Appl. Phys., Vol.68, pp.5 (1990)
    [24]. P. Gogoi, P.N. Dixit and P. Agarwal, “Amorphous Silicon Films With High Deposition Rate Prepared Using Argon and Hydrogen Diluted Silane for Stable Solar Cells,” Sol. Energy Mater. & Sol. Cells, Vol.91, pp.1253-1257 (2007)
    [25]. W. B. Jackson, M. Stutzmann and C. C. Tsai, ” Effects of dopant and impurity Incorporation on Metastable Light-Induced Defect Formation,” Solar Cell, Vol.21, pp.431-438 (1987)
    [26]. R. Prasad and S. R. Shenoy, “Staebler-Wronski Effect in Hydrogenated Amorphous Silicon,” Phys. Lett. A, Vol.218, pp.85-90 (1996)
    [27]. S. Shimizu, A. Matsuda and Michio Kondo, “Stability of Thin Film Solar Cells Having Less-Hydrogenated Amorphous Silicon I-Layers,” Sol. Energy Mater. & Sol. Cells, Vol.92, pp.1241-1244 (2008)
    [28]. M. Takai, T. Nishimoto, M. Kondo and A. Matsuda, “Chemical-Reaction Dependence of Plasma Parameter in Reactive Silane Plasma,” Sci. Technol. Adv. Mater., Vol.2, pp.495-503 (2001)
    [29]. M. Takai, T. Nishimoto, M. Kondo and A. Matsuda, “Anomalous Behavior of Electron Temperature in Silane Glow Discharge Plasmas,” Thin Solid Films, Vol.390, pp.83-87 (2001)
    [30]. B. Pantchev, P. Danesh and K. Antonova, “Effect of Film Thickness on Hydrogen Content in A-Si:H,” J. Mater. Sci.- Mater. Electron., Vol.14, pp.751-752 (2003)
    [31]. M. Ohsawa, T. Iar, T. Ichimura, T. Akasaka, H. Sakai, S. Ishida and Y. Uchida, “Effects of Deposition Temperature and Hydrogen Evolution on Light-Induced Defects in a-Si:H,” J. Non-Cryst. Solids, Vol.77-78, pp.401-404 (1985)
    [32]. A. Ko£Odziej, “Staebler-Wronski Effect in Amorphous Silicon and Its Alloys,” Opto-Electron. Rev., Vol.12,pp. 21-32 (2004)
    [33]. R. Martins, I. Ferreira, A. Cabrita and E. Fortunato, “Improvement of a-Si:H Device Stability and Performances by Proper Design of The Interfaces,” J. Non-Cryst. Solids, Vol.266-269, pp.1094-1098 (2000)
    [34]. D. Redfield and R. H. Bube, “Defects in Amorphous Silicon – Extrinsic or Intrinsic,” J. Non-Cryst. Solids, Vol.137-138, pp.215-218 (1991)
    [35]. H. M. Branz, “Hydrogen Collision Model of Light-Induced Metastability in Hydrogenated Amorphous Silicon,” Solid State Commun. Vol.105, pp.387-391 (1998)
    [36]. H. M. Branz, “The Hydrogen Collision Model - Theory and Experiment,” Non-Cryst. Solids, Vol.266-269, pp.391-396 (2000)
    [37]. H. M. Branz, “The Hydrogen Collision Model of Metastability after 5 Years Experimental Tests and Theoretical Extensions,” Sol. Energy Mater. & Sol. Cells, Vol.78, pp.425-445 (2003)
    [38]. W. C. Hsiao, C. P. Liu and Y. L. Wang, “Thermal Properties of Hydrogenated Amorphous Silicon Prepared by High-Density Plasma Chemical Vapor Deposition,” J. Phys. and Chem. Solids, Vol.69, pp.648-652 (2008)
    [39]. B. Stannowski and R.E.I. Schropp, “Hot Wire Amorphous Silicon Thin-Film Transistors on Glass,” Thin Solid Films, Vol.383, pp.125-128 (2001)
    [40]. Mu¨llerova´, P. Sˇ utta, G. van Elzakker, M. Zeman and M. Mikula, “Microstructure of Hydrogenated Silicon Thin Films Prepared From Silane Diluted With Hydrogen,” Appl. Surf. Sci., Vol.254, pp.3690-3695 (2008)
    [41]. S.B. Li, Z.M. Wu, W. Li, Y.D. Jiang and N.M. Liao, ”Influence Of Substrate Temperature on The Microstructure and Optical Properties of Hydrogenated Silicon Thin Film Prepared With Pure Silane,” Phys. B, Vol.403, pp.2282-2287 (2008)
    [42]. Y. Zhang, P. Du, R. Zhang, G. Han and W. Weng, “Structure and Properties of Hydrogenated Amorphous Silicon Carbide Thin Films Deposited by PECVD,” J. Non-Cryst. Solids, Vol.354, pp.1435-1439 (2008)
    [43]. Y.H. Wang, J. Lin and C.H.A. Huan, “Structural and Optical Properties of a-Si:H/nc-Si:H thin film,” Mater. Sci. and Eng., Vol.104, pp.80-87 (2003)
    [44]. H. J. Höller, Semiconductor Solar Cells, Artech House, London, pp.319 (1993)
    [45]. J. Tauc, “Absorption Edge and Internal Electric Fields in Amorphous Semiconductors,” Mater. Res. Bull., Vol.5, pp.721-730 (1970)
    [46]. F. Urbach, “The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic,” Phys. Rev., Vol.92, pp.1324-1324 (1953)
    [47]. A. Achiq, R. Rizk, F. Gourbilleau, P. Voivenel, “Effects of hydrogen partial pressure on the structure and properties of sputtered silicon layers,” Thin Solid Films, Vol.348, pp.74-78 (1998)
    [48]. M. Daouachi, A. Ben Othmane, K. Zellama, A. Zeinert, M. Essamet and H. Bouchriha, “Effect of The Hydrogen Bonding and Content on The Opto-Electronic Properties of RF Magnetron Sputtered Hydrogenated Amorphous Silicon Films,” Solid State Commun., Vol.120, pp.243-248 (2001)
    [49]. A.M. Funde, Nabeel Ali Bakr, D.K. Kamble, R.R. Hawaldar, D.P. Amalnerkar and S.R. Jadkar, “Influence of Hydrogen Dilution on Structural, Electrical and Optical Properties of Hydrogenated nc-Si:H Thin Films Prepared by PECVD,” Sol. Energy Mater. & Sol. Cells, Vol.92, pp.1217-1223 (2008)
    [50]. CM. GREENLIEF, SM. GATES and P.A. HOLBERT, “Absolute Coverage and Decomposition Kinetics of Mono-, Di-, and Tri-Hydride Phases on Si(111)-(7×7),” Chem. Phys. Lett., Vol.159, pp.2-3 (1989)
    [51]. R.M. Wallace, C.C. Cheng, P.A. Taylor, “Ni Impurity Effects on Hydrogen Surface Chemistry and Etching of Si(111),” Appl. Surf. Sci.,Vol.45, pp.201-206 (1990)
    [52]. 翁得期, “化學氣相沉積法低溫成長奈米多晶矽薄膜及氧化矽奈米線之研究,” pp.38, 國立成功大學化學工程學所博士論文, (2004)
    [53]. Y. Nakano, S. Goya, T. Watanabe, N. Yamashita and Y Yonekura, “High-Deposition-Rate of Microcrystalline Silicon Solar Cell by Using VHF PECVD,” Thin Solid Films, Vol.506- 507, pp.33-37 (2006)

    無法下載圖示 全文公開日期 2014/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE