簡易檢索 / 詳目顯示

研究生: 徐安萱
An-Hsuan Hsu
論文名稱: InSe奈米線光感特性暨In-InSe異質結構奈米線微結構分析之研究
Photodetector Properties of InSe Nanowires and Self-assembled In-InSe Heterostructure Nanowires Microstructure Characterization
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 葉炳宏
Ping-Hung Yeh
周賢鎧
Shyan-Kay Jou
蔡孟霖
Meng-Lin Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 101
中文關鍵詞: 硒化銦光電感測器異質結構奈米線真空液壓鑄造
外文關鍵詞: Indium selenide, Photodetector, Heterostructure nanowires, vacuum hydraulic pressure injection
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是探討In-InSe異質結構奈米線的成長機制及製備InSe奈米線之光感測元件。首先,此兩種奈米線皆以真空液壓鑄造方式製備,前驅物材料為不同比例之銦-硒系統金屬硒化物粉體,經均混後置於真空封口之石英管中,再將其高溫熔煉至銦-硒系統之塊材。真空液壓鑄造製程需搭配多孔性之陽極氧化鋁為輔助模板,輔助模板是使用直徑為4公分,厚度為1 毫米的5 N金屬圓形鋁片進行電化學陽極氧化處理,電解液為3 wt.% 草酸、電壓為40 V,陽極處理的過程維持24小時,氧化層的厚度大約可以長到40 μm,孔徑大約100 nm 。
    第一部分為多孔性陽極氧化鋁板的製作,氧化鋁板可以直接控制奈米線的直徑並且製造出高度序化奈米陣列之奈米線。 將偏晶組份之In0.7Se0.3塊材加熱到熔點溫度之上(550 °C),藉由真空液壓鑄造製程將材料壓進陽極氧化鋁版中,使用蝕刻液將氧化鋁版移除。利用掃描式電匙顯微鏡(Scanning Electron Microscope)及能量色散X射線光譜儀(Energy-Dispersive X-ray Spectroscopy)來確認In0.7Se0.3 塊材組份和In-InSe異質結構奈米線分段的組份分析表面型態、直徑及長度。透過穿透式顯微鏡(Transmission Electron Microscope )來觀察異質接面處的原子結構及磊晶的關係。 
    第二部分為InSe奈米線微結構分析和光電感測器之電性量測。真空液壓製程的操作溫度為700 °C,因為InSe有比較高的熔點(630 °C),合成後InSe奈米線利用掃描式電子顯微鏡及能量色散X射線光譜儀確認奈米線長度為10~20 μm,線的直徑大約70~100 nm,奈米線直徑符合陽極氧化鋁模板的孔徑大小,透過拉曼光譜來分析InSe奈米線聲子震動強度﹔X光射線繞射分析其結構及是否有多餘的相產生。將合成後的InSe奈米線滴在鍍有鉑電極的矽基板上,再利用聚焦離子束(Focused Ion Beam)在InSe奈米線兩端鍍上金屬鉑與基板電極接觸,製成InSe奈米線光電感測元件。量測條件,電壓 (Vd = 5 V)、功率1.25 mW/cm2,比較有、無照光的情況下電流的差異,開關轉換比達到15.8,使用不同波長的光源計算出光感測率、檢測率、及EQE %的數值,光源波長範圍落在紫外光和可見光及紅外光範圍( 405、450、532、685、785 nm),而在波長405 nm照光下有著極高的光電感測率1463 A/W。再以相同波長下比較不同功率,算出每一個波長的powder law (I∝Pα ),經過計算後α≈ 0.4,這意味著雖然隨著功率降低電流會跟著減少,但是會有較高的光電感測率是因為光載子生成的速率會降低,使載子複合速率跟著降低在較低的功率下。


    In this thesis, it investigates that In-InSe heterostructure nanowires and electrical and a photodetector measurements of InSe nanowires. First these two type of nanowires are fabricated by vacuum hydraulic pressure injection process with anodic aluminum oxide (AAO) template, the material precursor of different proportions of In-Se system mixed selenide powders are configured sealing in a quartz tube, then melting the powders to InSe as-bulk. The vacuum hydraulic pressure injection process needs to be matching with the porous anodized aluminum as an auxiliary template which is anodized using a 5 N round aluminum metal piece with a diameter of 4.0 cm and a thickness is 1.0 mm. The electrolyte is 3 wt.% oxalic acid, the voltage is 40 V, and the anodizing process is maintained for 24 hours. The thickness of the oxide layer can be as long as 40 μm and the pore size is about 100 nm.
    In the first part, the self- made porosity AAO template, the assist plate can directly control the diameter of the nanowire to produce highly ordered nano-array. The In0.7Se0.3 bulk material of the monotectic component is heated up to the melting point temperature (550 °C), then the material is pressed into the AAO template by vacuum hydraulic pressure injection process, then the template is removed using an etching solution. Various characteristics were analyzed by SEM equipment, such as morphology, diameter and length of InSe nanowires, the component In-InSe bulk and heterostructure of NWs are analyzed by energy-dispersive X-ray spectroscopy (EDS). The transmission electron microscope (TEM) can study the relationship of atomic structure and epitaxy at the heterojunction.
    The second part is the analysis of the InSe NWs microstructure and the measurement of photodetector. The operating tempurature of vacuum hydraulic die-casting operating tempurature is 700 °C, because InSe has a relativly high melting point (630 °C), synthesized InSe nanowires use a SEM and EDS to conform that the nanowire length 10-20 μm and the diameter of the NWs are approximately 70~100 nm. The diameter of the NWs is in accordance with the pore size of the AAO template. The phonon vibration intensity of the InSe nanowire is analyzed by Raman spectroscopy; the X-ray ( XRD diffraction is used to analyze the structure and whether there are excess phases. The synthesized InSe nanowires are dropped on a Si substrate plated with a platinum electrode, and then metal platinum is plated on both ends of the InSe nanowire with a focused ion beam (FIB) to contact the substrate electrode. The photosensing property of InSe device was measured under laser power of 1.25 mW/cm2 at drain voltage of 5 V.. Compare with dark current and photocurrent, the ON/OFF ratio is 15.8. The responsivity (R), detectivity (D*), and external quantum efficiency (EQE) % are calculated using light sources of different wavelengths. The wavelength range of the light source falls in the range of ultraviolet, visible and infrared light (405, 450, 532, 685, 785 nm). It has a high responsivity of 1463 A/W under the wavelength of 405 nm irradition, Comparing different powers at the same wavelength, the powder law (I∝Pα ) for each wavelength, after calculation, α ≈ 0.4, which means that the current will decrease with the power reduction, but there will be a higher responsivity measurement. The rate is due to the lower rate of photon generation, which causes the carrier recombination rate to be reduced at lower power.

    摘要 ………………………………………………………………..III Abstract ……………………………………………………………..…V 致謝 ………………………………………………………………..VIII List of Figures and Tables…………………………………………...XIII List of Abbreviations and Acronyms………………………………XVI Chapter 1 Introduction …………………………………………….....1 1.1 Nanotechnology…………………………………………………….1 1.1.1 One-dimensional Nanostructure……………………….....2 1.2 Growth Mechanisms and Synthesis Method of NWs……………...3 1.2.1 Chemical Vapor Deposition (CVD)……………………….3 1.2.2 Vacuum Hydraulic Pressure Injection Process ………….4 1.2.3 Electrodeposition with AAO Template Assisted…………5 1.3 Indium Selenides (InSe) Structural Characteristics……………….6 1.4 Indium Structural Characteristics………………………………….8 1.5 Heterostructure……………………………………………………..10 Chapter 2 Experiment Procedures…………………………………11 2.1 Experiment Procedures of Nanowires. ……………………………11 2.2 The Synthesized Method of Nanowires…………………………...13 2.2.1 Preparation of InSe Bulks………………………………...13 2.2.2 Preparation of In0.7Se0.3 Bulks………………………….14 2.2.3 Synthesis In-InSe Heterostructure and InSe NWs………...14 2.3 InSe Nanowires Photodetector Fabrication ………………………...17 2.4 Fabrication Anodic Aluminum Oxide Template ……………………18 2.4.1 Aluminum Substrate Pre-treatment……………………….18 2.4.2 Anodic Oxidation Treatment………………………………18 2.4.3 Remove Back Substrate and Reaming……………………19 2.5 The Microstructure Characterization InSe Nanowires and In-InSe Hetero-structure Nanowires…………………………………………….21 2.5.1 Scanning Electron Microscope (SEM)……………………21 2.5.2 Raman Spectrum Analysis………………………………..22 2.5.3 X-ray Diffraction (XRD)…………………………………23 2.5.4 Transmission Electron Microscope (TEM) ………………24 Chapter 3 Results and Discussion…………………………………...25 3.1 Research Motivation …………………………………………….....25 3.1.1 Nanowires Photodetector……………………………….....25 3.1.2 In-InSe Heterostructure Nanowires of Synthesis………...26 3.2 Structure and Characterization of InSe Material…………………...28 3.2.1 SEM Analysis of InSe Bulk and NWs………………….....28 3.2.2 XRD Analysis of InSe Bulk and NWs…………………....31 3.2.3 Raman Spectrum Analysis of InSe Bulk and NWs……….34 3.2.4 TEM Analysis of InSe NWs………………………………37 3.2.5 Photosensing Property of InSe Nanowires……………….39 3.2.6 Band Structure Simulation of InxSe(1-x) Nanowires…51 3.3 Structure and Characterization of In-InSe NWs ……………………54 3.3.1 SEM Analysis of In0.7Se0.3 Bulk and In-InSe NWs……..54 3.3.2 XRD Analysis of In0.7Se0.3 Bulk ………………………...57 3.3.3 STEM Analysis of In-InSe Nanowire……………………..61 3.3.4 TEM Analysis of In0.7Se0.3 Nanowires…………………...63 Chapter 4 Summary and Conclusions………………………………..65 4.1 Indium Selenides (InSe) Nanowires Photodetector…….65 4.2 In-InSe Heterostructure Nanowires…………………………..66 Chapter 5 Future Works………………………………………………67 5.1 Indium Selenides (InSe) Nanowires Photodetector…………67 5.2 In-InSe Heterostructure Nanowires………………...……….67 Chapter 6 References…………………………………………………68 Chapter 7 Appendix…………………………………………….…….80  

    [1] H. Gleiter, “nanocrystalline materials”, Materials Science, 1989, 33, 223-31.
    [2] C.M. Lieber, “One-dimensional nanostructures: chemistry, physics & applications”, Solid State Communications, 1998, 107, 607-616.
    [3] C. Lai, M. Lu and L. Chen, “Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage”, Journal of Materials Chemistry, 2012, 22, 19-30.
    [4] L. Samuelsona, C. Thelandera, M.T. Björka, M. Borgströma, K. Depperta, K.A. Dicka, A.E. Hansena, T. Martenssona, N. Paneva, A.I. Perssona, W. Seiferta, N. Skölda, M.W. Larssonb, and L.R. Wallenbergb”, Low-dimensional systems and nanostructures”, Physica, 2004, 25 313-318.
    [5] G.A. Silva, M. Sc and D. Ph, “Introduction to nanotechnology and it’s applications to medicine”, Surgical Neurology, 2004, 61,216-220.
    [6] R. Venugopal, Z. Ren, S. Datta and M.S. Lundstrom,” Simulating quantum transport in nanoscale transistors: real versusmode-space approaches”, Journal of Applied Physics, 2002, 7, 3730-3739.
    [7] L. Lutkenhaus, K.D. Hrabak, K. McEnnis and P.T. Hammond, “Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies”, American Chemical Society, 2005, 127, 17228-17234.
    [8] A. Ambrosetti1, N. Ferri1, R.A. DiStasio , A. Tkatchenko, “Wavelike charge density fluctuations and van der Waals interactions at the nanoscale”, Science, 2016, 351, 1171-1176.
    [9] R.P. Feynmen, “There’s plenty of room at the bottom,” the annual meeting of the American physical society on December 29th at the California institute of technology, 1959.
    [10] S. Saito, “Carbon nanotubes for next-generation electronics devices”, Science, 1997, 278, 77-78.
    [11] X. Duan, Y. Huang, Y. Cui, J. Wang & M. Charles, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices”, Nature, 2001, 409, 66-69.
    [12] Y. Li, X.Y. Yang, Y. Feng, Z.Y. Yuan and B.L. Su, “One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: synthesis, characterizations, properties and applications”, Critical Reviews in Solid State and Materials Sciences, 2012, 37, 1-74.
    [13] B. Ago, Klaus, S. Petritsch, Milo, P. Shaffer, A.H. Windle, and R.H. Friend, “Composites of carbon nanotubes and conjugated polymers for photovoltaic devices”, Advanced Materials,1999, 15, 1281-1285.
    [14] P. Yang and C.M. Lieber, “Nanorod-superconductor composites: A pathway to materials with high critical current densities”, Science, 1996, 273, 1836-1840.
    [15] Z.L. Wang, “Nanowires and nanobelts materials, properties and devices, nanowires and nanobelts of functional materials”, Kluwer Academic Publisher, 2003, 56, 88.
    [16] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Yin, F. Kim and H. Ya, “One-dimensional nanostructures synthesis, characterization, and applications”, Adv. Mater., 2003, 15, 353-389.
    [17] S.J. Tans, A.R.M. Verschueren and C. Dekker, “Room temperature transistor based on a single carbon nanotube”, Nature, 1998, 393, 49–52.
    [18] H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You and C. H. Yan, “High-Quality Sodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesis and Optical Properties”, Journal of the American Chemical Society, 2006, 128, 6426-6436.
    [19] Y. Zhan, X. Li, S. Member, I. , and Y. Li, “Numerical simulation of light-trapping and photoelectric conversion in single nanowire Silicon Solar Cells”, Automation,2013,19,1-8.
    [20] C. Lai, M. Lu and L. Chen, “Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage”, Journal of Materials Chemistry, 2012, 22, 19-30.
    [21] K. Li, W. Pan, J. Wang, H. Pan, S. Huang, Y. Xing and H. Q. Xu, “Growth of high material quality group III-antimonide semiconductor nanowires by a naturally cooling process”, Nanoscale Research Letters, 2016, 11, 222.
    [22] Z. Wang, M. Brust, “Fabrication of nanostructure via self-assembly of nanowires within the AAO template”, Nanoscale, 2007, 2, 34–39.
    [23] B. J. Plowman, S.K. Bhargava and A.P. Mullane” Electrochemical fabrication of metallic nanostructured electrodes for electroanalytical applications” The Royal Society of Chemistry, 2011, 2011, 136, 5107–5119.
    [24] J. Myron and Rand, “Chemical vapor deposition of thin-film platinum”, The Electrochemical Society, 1973, 15, 687-693.
    [25] M. Yudasaka, R. Kikuchi, T. Matsui, Y. Ohki and S. Yoshimura, “Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition”, Applied Physics Letters, 1995, 67, 2477.
    [26] M. Lin, D. Wu, Y. Zhou, W. Huang, W. Jiang, W. Zheng, S. Zhao, C. Jin, Y. Guo, H. Peng and Z. Liu, “Controlled growth of atomically thin In2Se3 flakes by van der waals epitaxy”, Journal of the American Chemical Society, 2013, 135, 13274-13277.
    [27] Q.L. Li, C.H. Liu, Y.T. Nie, W.H. Chen, X. Gao, X.H. Sun and S.D. Wang, “Phototransistor based on single In2Se3 nanosheets”, Nanoscale, 2014, 6, 14538-14542.
    [28] R.S. Wagner and W.C. Eliis, “Vapor‐liquid‐solid mechanism of single crystal growth”, Applied Physics Letters, 1964, 4, 89-90.
    [29] Y.N. Guo,” Structural characteristics of GaSb∕GaAs nanowire heterostructures grown by metal-organic chemical vapor deposition”, Applied Physics Letter, 2006, 89, 231917.
    [30] A. Aguilera, V. Jayaraman, S. Sanagapalli, R Singh and S Jayaraman, “Porous alumina templates and nanostructured CdS for thin film solar cell applications”, Solar Energy Materials & Solar Cells 2006, 90, 713-726.
    [31] C.C. Chen, Y. Bisrat, Z.P. Luo, R.E. Schaak, C.G. Chao1 and D.C. Lagoudas, “Fabrication of single-crystal tin nanowires by hydraulic pressure injection”, Nanotechnology ,2006, 17, 367-374.
    [32] X. Wang and G. RongHan,” Fabrication and characterization of anodic aluminum oxide template”, Microelectronic Engineering, 2003, 66,166–170.
    [33] A. Saedi, M. Ghorbani, “Electrodeposition of Ni-Fe-Co alloy nanowirein modified AAO template”, Materials Chemistry and Physics, 2005, 91, 417-423.
    [34] T.K. Fu and T. Tomita,” Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film”, Chemistry of Materials, 1996, 8, 2109-2113.
    [35] E. Mafakheri, A. Salimi, R. Hallaj, A. Ramazani and M.A. Kashi, “Synthesis of iridium oxide nanotubes by electrodeposition into polycarbonate template: fabrication of chromium (III) and arsenic (III) electrochemical sensor”, Electroanalysis, 2011, 23, 2429-2437.
    [36] W. Lee, R. Scholz, K. Nielsch, and U. Gsele,” A template-based electrochemical method for the Synthesis of multisegmented metallic nanotubes”, Angewandte Chemie International Edition, 2005, 44, 6050-6054.
    [37] C. Julien, E. Hatzikraniotis, A. Chevy and K. Kambas, “Electrical behavior of lithium intercalated layered In-Se compounds”, Mater. Materials Research Bulletin, 1985, 20, 287-292.
    [38] C. Julien, E. Hatzikraniotis, A. Chevy and K. Kambas, “Electrical behavior of lithium intercalated layered In-Se compounds”, Mater. Materials Research Bulletin, 1985, 20, 287-292.
    [39] T. Ikari, S. Shigetomi and K. Hashimoto, “Crystal structure and raman spectra of InSe”, Physica Status Solidi, 1982, 111, 477-481.
    [40] A.M. Mancini, G. Micocci and A. Rizzo, “New materials for optoelectronic devices: growth and characterization of indium and gallium chalcogenide layer compounds”, Materials Chemistry and Physics, 1983, 9, 29-54.
    [41] Z. Chen, J. Biscaras and A. Shukla, “A High performance graphene/few-layer InSe photo-detector”, Nanoscale, 2015, 7, 5981-5986.
    [42] S. Reddy, Y.Y. Lu, R. Kumar, C.D. Liao, K. Moorthy B. Cheng, F. Cheng and Y. Tsong, “High performance and bendable few-layered InSe photodetectors with broad spectral response”, Nano Lett. 2014, 14, 2800-2806.
    [43] W.J. Li, Y.N. Zhou, Z.W. Fu, “Fabrication and lithium electrochemistry of InSe thin film”, Applied Surface Science, 2011, 257, 2881-2885.
    [44] L. Mengjiao, C.Y. Lin, S.H. Yang, Y.M. Chang, J.K. Chang, F.S. Yang, C. Zhong, W.B. Jian, C.H. Lien, C.H. Ho, H.J. Liu, R. Huang, W. Li, Y.F. Lin, and J. Chu, “High mobilities in layered InSe transistors with Indium-encapsulation-Induced surface charge doping”, Advanced Materials, 2018, 30, 1803690.
    [45] C. Julien, E. Hatzikraniotis, A. Chevy and K. Kambas, “Electrical behavior of lithium intercalated layered In-Se Compounds”, Mater. Materials Research Bulletin, 1985, 20, 287-292.
    [46] T. Ikari, S. Shigetomi and K. Hashimoto, “Crystal structure and raman spectra of InSe”, physica status solidi, 1982, 111, 477-481.
    [47] A.M. Mancini, G. Micocci and A. Rizzo, “New materials for optoelectronic devices: growth and characterization of Indium and Gallium chalcogenide layer compounds”, Materials Chemistry and Physics, 1983, 9, 29-54.
    [48] Z. Chen, J. Biscaras and A. Shukla, “A high performance graphene/few-layer InSe photo-detector”, Nanoscale, 2015, 7, 5981-5986.
    [49] H.J. Sjie, P. Huang, Y. Ding, M. Wu, Y.l. Tongjun,” Origin of n-type conductivity in two-dimensional InSe: In atoms fromsurface adsorption and van der Waals gap”, Nanostructures, 2018, 98, 1386-9477.
    [50] P.H. Borcherdst and K. Kunc,” The lattice dynamics of indium pnictides”, The Institute of Physic, 1978, 11, 4145-4155.
    [51] S. Allis, F. Nicholas, S Deborah, Williams, M. Senger, C. Bruce, E. White and J. Piper, “Deep subgap feature in amorphous indium gallium zinc oxide: evidence against reduced indium”, Phys. Status Solidi, 2015, 7, 1471-1475.
    [52] A.K. Kulkarnia, K.H. Schulzb, T. Lima, M. Khan, “Electrical, optical and structural characteristics of indium-tin-oxide thin films deposited on glass and polymer substrates”, Thin Solid Films, 1997, 7, 308–309.
    [53] C. Dwight, A.G. Aitken, M. Wojtowicz and R. Lai, “The future of compound semiconductors for aerospace and defense “,Applications”,CSIC 2005. 5.7803-9250.
    [54] T. Saku, K. Muraki and Y. Hirayama, “High-Mobility Two-dimensional electron gas in an undoped heterostructure: mobility enhancement after illumination”, Appl. Phys, 1998, 37, 765-767.
    [55] A. Saku, K. Muraki and Y. Hirayama, “High-mobility two-dimensional electron gas in an undoped heterostructure: mobility enhancement after illumination”, J. Appl. Phys., 1998. 37, 765-767.
    [56] E. M. Conwell, “High field mobility in gerisianium with impurity scattering dominant”, Physical Review, 1953, 90, 769-772.
    [57] J. He, N. K. Matthew, Z. Bellus, H.Y. Chiu, D.H, Yongsheng and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures”, Nature Communications, 2014. 9, 769-77.
    [58] S. Sucharitakul, J. Nicholas, U. Rajesh Kumar, R. Sankar and A. Bogorad, “Intrinsic electron mobility exceeding 103 cm2 /(V s) in multilayer InSe FETs”, Nano Lett., 2015, 15, 3815-3819.
    [59] J. Wang, F.F. Cao, L. Jiang, Y.G. Guo, W.P. Huand and L.J. Wan, “High performance photodetectors of individual InSe single crystalline nanowire”, American Chemical Society, 2009, 131, 15602-15603.
    [60] E. Sequoia S. “Electroanalytical chemistry and interfacial electrochemistry”, Electroanal. Chem., 1971, 33, 351-378.
    [61] Z. Wang and M. Brust, “Fabrication of nanostructure via self-assembly of nanowires within the AAO template”, Nanoscale Lett, 2007, 42, 34-39.
    [62] E. Sequoia S.A., “electroanalytical chemistry and interfacial”, J. Electroanal. Chem., 1971,33, 351-378.
    [63] C. Pettenkofer, J.F. Sánchez-Royo, A. Segura, A. Klein, and W. Jaegermann, “Thin film growth and band lineup of In2O3 on the layered semiconductor InSe”, Journal of applied physics, 1999, 86, 5687-5691.
    [64] M. Osman, Y. Huang, W. Feng, G. Liu, Y. Qiua and P.A. Hu, “Modulation of opto-electronic properties of InSe thin layers via phase transformation”, The Royal Society of Chemistry., 2013, 00, 1-3.
    [65] C. Carlone, S. Jandl and H.R. Shanks, “Optical phonons and crystalline symmetry of InSe”, Physica Status Solidi, 1981, 103, 123-130.
    [66] N. kumagai, J. Shirafuji and Y. Inuishi, “Raman and infrared studies on vibrational properties of Ge-Se glasses”, Journal of the Physical, 1977, 42, 4-7.
    [67] W. Luo, Y. Cao, P. Hu, K. Cai, Q. Feng, F.an, T. Yan, X. Zhang, and K. Wan, “Gate tuning of high-performance InSe-based photodetectors using Graphene electrodes”, The Royal Society of Chemistry,” Advanced Optical Materials, 2015, 3, 1418-1423.
    [68] H.W. Yang, H.F Hsieh, R.S. Chen, C.H. Ho, K.Y. Lee and L.C. Chao, “Ultraefficient ultraviolet and visible light sensing and ohmic contacts in high-mobility InSe nanoflake photodetectors fabricated by the focused ion beam technique”, Appl Mater Interfaces, 2018, 10, 5740-5749.
    [69] Z. Yang, W. Jie, C. Hin Mak, S. Lin, H. Lin, X. Yang, F. Yan, S.P. Lau and J. Hao, “Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse”, ACS Nano, 2017, 11, 4225-4236.
    [70] M. Gharsallah, F. Serrano-Sánchez, N.M. Nemes, F.J. Mompeán, J.L. Martínez, M.T. Fernández-Díaz, F. Elhalouani and J. A. Alonso, “Giant Seebeck effect in Ge-doped SnSe”, Scientific Reports, 2016, 6, 26774.

    無法下載圖示 全文公開日期 2024/08/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE