簡易檢索 / 詳目顯示

研究生: 邱國慶
Guo-Ching Chiou
論文名稱: 智慧型多變數適應控制系統
The Intelligent Adaptive Control for Multi-variable Systems
指導教授: 黃緒哲
Shiuh-Jer Huang
口試委員: 施明璋
Min-Chang Shih
陳永平
Yon-Ping Chen
鍾鴻源
Jung-Yuan Chung
黃安橋
An-Chyau Huang
黃衍任
Yean-Ren Hwang
陳明新
Min-Shin Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 172
中文關鍵詞: 滑動模式控制多變數控制系統適應控制解耦控制類神經控制邊界層函數模糊控制
外文關鍵詞: Kalman-Yacubovich lemma, active suspension, multi-variable systems control, decoupled control, singular perturbation, decoupled adaptive controller, fuzzy sliding-mode controller
相關次數: 點閱:366下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般多變數控制系統設計的困難點,在於如何處理各個變數之間的動態耦合效應。由於多變數系統的動態不確定性及因系統模式複雜而造成的運算負荷,使以模式為基礎的解耦控制策略,很難應用於及時控制系統。本研究發展了四種智慧型適應控制器來處理上述問題,這些控制器以模糊系統或神經網路為主要架構,依據或免除Kalman-Yacubovich lemma,搭配以Lyapunov穩定準則為理論基礎的適應控制法則,來追蹤一個預設的參考模式。並採用奇異激勵(singular perturbation)的概念,先將非對稱式多變數系統解耦成數個階數較低且具不同時間常數的獨立對稱式多變數子系統,使系統穩定性可以分開確定。這些智慧型系統的可調參數的初值可設為零,然後使用一個根據Lyapunov穩定準則所推導的適應法則,將其調整至適當值。在適應法則中,並加入兩個增加系統強健性的修正項;一個是邊界層函數,可使因參數誤差及模式誤差而造成的狀態誤差收斂至一定值;另一個是e-修正項,可使系統在無持續激勵下,也可確保系統參數收斂至適當值。
    本研究利用三個模擬系統及兩個實驗載具,來驗證智慧型適應控制器的性能。分別是:(1)以解耦適應模糊滑動模式控制器(DAFSMC)控制單桿及雙桿倒單擺模擬系統,用來驗證奇異激勵技巧的解耦效用。(2)以參考模式適應模糊控制器(MRAFC)控制雙連桿機器手臂模擬系統及五軸機器人系統,用來驗證以MIMO為設計觀點的控制器的性能、穩定性、及強健性。(3)以解耦參考模式適應模糊滑動模式控制器(DMRAFSC)及解耦適應神經網路控制器(DANC)控制一個半車主動式懸吊實驗平台,以驗證多變數解耦控制器的效用,並將實驗結果與被動式懸吊系統做一比較。
    所有的模擬及實驗結果顯示,智慧型適應控制器具有極佳的控制性能、穩定性及強健性。


    Generally, the difficulty of multi-variable systems control is how to overcome the coupling effects among each degree of freedom. Due to computational burden and dynamic uncertainty of multi-variable systems, the model based decoupling approach is hard to implement in real-time control system. In this study, four intelligent adaptive controllers are proposed to handle these behaviors. The structure of these model-free new controllers are based on fuzzy/neural systems of which adaptive laws are derived based on Lyapunov stability theory to control the system for tracking a user-defined reference model. The requirement of Kalman-Yacubovich lemma is fulfilling or relaxing. In addition, a non-square multi-variable system can be decoupled into several reduced-order isolated square multi-variable subsystems by using the singular perturbation scheme for different time-scale stability analysis. The adjustable parameters of these intelligent systems can be initialized at zero, then, the novel online parameters tuning algorithms are developed based on Lyapunov stability theory. A boundary-layer function is introduced into these updating laws to cover the parameter errors and modeling errors, and to guarantee the state errors converge into a specified error bound. An e-modification is added into these updating laws to release the assumption of persistent excitation and obtain the optimal values of the adjustable parameters of intelligent systems.
    To evaluate the control performance of the proposed controllers, three simulation systems and two experimental rigs are chosen as the implemental systems. (1)A decoupled adaptive fuzzy sliding-mode controller (DAFSMC) is implemented on the single/double link inverted pendulum systems for verifying the decoupled ability of the singular perturbation scheme. (2)A model reference adaptive fuzzy controller (MRAFC) is applied to a two-link robot system and 5 degree-of-freedom (DOF) laboratory robot system to demonstrate the control performance, stability and robustness of the MIMO based controller based on numerical simulations and experiment results, respectively. (3)A decoupled model reference adaptive fuzzy sliding-mode controller (DMRAFSC) and a decentralized adaptive neural controller (DANC) are implemented on the active suspension system of a half vehicle test rig for verifying the performance of these decoupled MIMO controllers. In addition, the experimental results of these two controllers are compared with that of the passive suspension.

    目 錄 摘 要……………………………………………………………………..I Abstract…………………………………………………………….……….. II 誌 謝……………………………………………………….……………III 目 錄……………………………………………………….……………IV 符號索引…………………………………………………………………...VII 圖表索引……………………………………………………………….…...IX 第一章 緒論…………………………………………………………….…..1 1.1 研究動機與目的……………………………………………….….1 1.2 文獻回顧……………………………………………………….….2 1.2.1 懸吊系統之演進與文獻回顧…………………………….….3 1.2.2 多軸機器人的運動控制之文獻回顧………………….…….8 1.2.3 控制理論之文獻回顧…………………..…………….…….10 1.3 本研究的貢獻………………………….………………………...14 第二章 系統架構與數學模式…………………………………………….15 2.1 五軸機器人系統…………………………………………………15 2.1.1 五軸機器人之硬體架構……………………………………15 2.1.2 機械手臂之動力學分析……………………………………18 2.2 主動式懸吊控制系統實驗平台…………………………………21 2.2.1 主動式懸吊控制系統實驗平台硬體架構…………………21 2.2.2 主動式懸吊系統實驗平台動態模式………………………25 2.2.3 液壓伺服系統之動態模式………………………………....30 第三章 智慧型適應控制理論…………………………………………….33 3.1 滑動模式控制理論………………………………………………33 3.2 以Kalman-Yacubovich lemma(KY lemma) 為基礎之模式參考適應控制理論探討…………………………………………………35 3.3 singular perturbation 理論探討……………………………41 3.4 適應性模糊控制理論……………………………………………44 3.4.1 SISO適應性模糊滑動模式控制(AFSMC)…………….……44 3.4.2 SIMO解耦適應性模糊滑動模式控制(DAFSMC)……..…….49 3.4.3 對稱式MIMO系統參考模式適應模糊控制器(MRAFC)……51 3.4.4 非對稱式MIMO系統的解耦參考模式適應模糊滑動模式控制器(DMRAFSC)……………….…………………………….62 3.5 適應性神經網路控制理論………………………………………65 3.5.1 分散式適應性神經網路滑動模式控制器(DANC)………..66 第四章 模擬與實驗分析………………………………………………….76 4.1 模擬與分析……… ……………………………76 4.1.1 適用於SIMO系統的解耦適應式模糊滑動模式控制器(DAFSMC)模擬與分析………………………………………77 4.1.2 適用於對稱式MIMO系統的參考模式適應式模糊控制器(MRAFC)模擬與分析………………………………………..92 4.2 實驗與分析………………….…………………….……………101 4.2.1 以參考模式適應式模糊控制器(MRAFC)控制五軸機器人…………………………………………..………………101 4.2.2 以解耦參考模式適應模糊滑動模式控制器(DMRAFSC)來控制具非對稱式MIMO系統特性的1/2車主動式懸吊系統實驗平台………………………………………………………..112 4.2.3 以分散式適應神經網路控制器(DANC)來控制具非對稱式MIMO系統特性的1/2車主動式懸吊系統實驗平台……..128 第五章 結論……………………………………………………..……….144 5.1 結論………………………………………………………..……144 5.2 未來研究方向…………………………………………………..146 參考文獻………………………………………….………………………..147

    Reference
    [1] S. Wang and T. Tsuchiya, “Fuzzy Trajectory Planning and Its Application to Robot Manipulator Path Control,” Adv. Robot., vol. 8, no. 1, pp. 73-93, Jan. 1994
    [2] R. E. Kalman and J. E. Bertram, "Control System Analysys and Design via the "Second Method" of Lyapunov I: Continuous-Time Systems," Journal of Basic Engineering, pp. 394-400, 1960.
    [3] M. Appleyard and P.E. Wellstead,“Active Suspension:Some Background,” IEE Proc.-Control Theory Appl., Vol.142, No2, pp.123-128, March 1995.
    [4] R. S. Sharp, and D. A. Crolla, "Road Vehicle Suspension System Design – A Review," Vehicle System Dynamics, vol. 16, pp. 167-192, 1987.
    [5] E. K. Bender, D. C. Karnopp, and I. L. Paul, "On the Optimization of Vehicle Suspensions Using Random Process Theory", ASME Paper No. 67-TRAN-12, 1967.
    [6] H. Ghoneim, "On the Application of Damped Absorber to Vehicle Suspension", Trans. ASME, J. Mechanisms Transm. Autom. Des., Vol 108(1), March, pp. 22-24, 1986.
    [7] J. K. Hedrick, G. F. Billington, D. A. Dressbach, "Analysis, Design, and Optimization of High Speed Vehicle Suspension Using State Variable Technique", Trans. ASME, J. Dyn. Sys. Meas. Cont., Vol. 96, Series G, pp. 193-203, 1973.
    [8] D. C. Karnopp, "Application of Bond Graph Technique to Vehicle Dynamics", ASME Paper No. 70-DE-16, May 1970.
    [9] A. G. Thompson, "Suspension Design for Optimum Road-holding", SAE Paper No. 830663, 1983.
    [10] D. Ryba, "Improvement in Dynamic Characteristics of Automotile Suspension Systems PartII-Three-Mass Systems" Vehicle System Dynamics, 3, pp. 58-98, 1974.
    [11] D. Hrovat,“Optimal Active Suspension Structures for Quarter-Car Vehicle Models,”Automatica, Vol.26, No.5, pp.845-860, 1990.
    [12] D. C. Karnopp, M. J. Corsby, and R.A. Harwood, "Vibration Control Using Semi-Active Force Generators", Trans. ASME, J. of Engineering for Industry, Vol. 96, pp 619-626, 1974.
    [13] D. C. Karnopp, D. Margolis, "Adaptive Suspension Concepts for Road Vehicles", Vehicle System Dynamics, Vol. 13, pp. 145-160, 1984.
    [14] D. C. Karnopp, "Adaptive Damping in Road Vehicle Suspension Systems", Vehicle System Dynamics, Vol. 12, pp. 291-316, 1983.
    [15] R. Caponetto, O. Diamante, G. Fargione, A. Risitano, and D. Tringali, "A Soft Computing Approach to Fuzzy Sky-Hook Control of Semiactive Suspension," IEEE Trans. Control Systems Technology, Vol. 11, No.6, pp. 786-798, 2003.
    [16] M. Mizuguchi, T. Suda, S. Chikamori, and K. Kobayashi, "Chassis Electronic Control Systems for The Mitsubishi 1984 Galant," SAE Paper 8403341, 1984.
    [17] R. S. Sharp, and S. A. Hassan, "Performance and Design Considerations for Dissipative Semi-active Suspension Systems for Automobiles," Proc. Instn. Mech. Engrs., Vol. 201(D2), pp. 1-5, 1987.
    [18] D. C. Karnopp, "Theoretical Limitations in Active Suspensions," Vehicle System Dynamics., Vol. 15, pp. 41-54, 1986.
    [19] Han-Shue Tan, and B. Thomas, "Model Identification of An Automotive Hydraulic Active Suspension System," Proceedings of the American Control Conference. Albuquerque, New Mexico, pp. 2920-2924, 1997.
    [20] D. C. Karnopp, "Active Suspensions Based on Fast Load Levelers," Vehicle System Dynamics, Vol. 16, pp. 355-380, 1987.
    [21] D. C. Karnopp, and So, Sang-Gyun, "Energy Flow in Active Attitude Control Suspensions: A Bond Graph Analysis," Vehicle System Dynamics., Vol. 29, pp. 69-81, 1998.
    [22] E. M. Elbeheiry, D. C. Karnopp, M. E. Elaraby, and A. M. Abdelraaouf, "Advanced Ground Vehicle Suspension Systems- A Classified Bibliography," Vehicle System Dynamics, Vol. 14, No. 3, pp. 231-258, 1995.
    [23] E. K. Bender, "Optimal Linear Preview Control with Application to Vehicle Suspension," Trans. ASME Journal of Basic Engineering, Vol. 90, pp. 213-221, 1968.
    [24] M. Tomizuka, "Optimal Linear Preview Control with Application to Vehicle Suspension - Revisited," Trans. ASME Journal of Dynamic Systems, Measurement and Control, Vol. 98, pp. 309-315, 1976.
    [25] A. G. Thompson, B. R. Davis, and C. E. M. Pearce, "Optimal Linear Active Suspension with Finite Road Preview," SAE Paper 800520, 1980.
    [26] A. G. Thompson and C. E. M. Pearce, "Direct Computation of the Performance Index for an Optimally Controlled Active Suspension with Preview Applied to a Half-Car Model," Vehicle System Dynamics, Vol. 35, No 2, pp. 121-137, 2001.
    [27] Edge C. Yeh and Y. J. Tsao, “A Fuzzy Preview Control Scheme of Active Suspension for Rough Road,” Int. Journal of Vehicle Design, Vol.15, Nos. 1/2, pp.166-180, 1995.
    [28] H.D. Taghirad and E. Esmailzadeh, “Automobile Passenger Comfort Assured Through LQG/LQR Active Suspension,” Journal of Vibration and Control, Vol.4, No.5, pp.603-618, Sept. 1998.
    [29] J. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis, "State space Solution to Standard and Control Problems," IEEE Trans. Autom. Control, AC-34, pp. 831-847, 1989.
    [30] H. Kimura, Y. Lu, and R. Kawatani, "On the Structure of of Control Systems and Related Extensions," IEEE Trans. Autom. Control, AC-36, pp. 536-667, 1989.
    [31] A. Moran, and M. Nagai, "Analysis and Design of Active Suspensions by Robust Control Theory," JSME Int. J. III, vol. 35, pp. 427-437, 1992.
    [32] M.V.C Rao and V. Prahlad,“A Tunable Fuzzy Logic Controller for Vehicle Active suspension system,” Fuzzy Sets and Systems, 85.pp. 11-21,1997.
    [33] C.S. Ting, T.H.S. Li and F.C. Kung, “Design of Fuzzy Controller for Active Suspension System,” Mechatronics, Vol.5, No.4, pp.365-383, 1995.
    [34] A. Alleyne and J.K. Hedrick, “Nonlinear Adaptive Control of Active Suspensions,” IEEE Trans. on Control Systems Technology, Vol.3, No.1, pp.94-101, March 1995.
    [35] M. Sunwoo, K.C. Cheok and N.J. Huang, “Model Reference Adaptive Control for Vehicle Active Suspension Systems,” IEEE Trans. on Industrial Electronics, Vol.38, No.3, pp.217-222, June 1991.
    [36] C. Marsh, T.J. Gordon and Q.H. Wu, “Application of Learning Automata to Controller Design in Slow-Active Automobile Suspensions,” Vehicle System Dynamics, 24, pp.597-616, 1995.
    [37] Shiuh-Jer Huang and Wei-Cheng Lin, “Adaptive Fuzzy Controller with Sliding Surface for Vehicle Suspension Control,” IEEE Transactions on Fuzzy Systems, Vol. 11, No. 4, pp. 550-559, 2003.
    [38] F. Fruhauf, "Entwurf Einer Aktiven Fahrzeugfederung fur Zeitverschobene Anregungsprozesse," VDI Verlag, Reihe 12: Verkehrstechnik 57, 1985.
    [39] Y. Aoyama, K. Kawabata, A. Hasegawa, Y. Kobari, M. Sato, and E. Tsuruta, "Development of the Full Active Suspension by Nissan," SAE paper 901747, 1990.
    [40] N. Fukushima and N. Irie, "Improvement in High-Speed Safety Through Active Suspension Control," Vehicle Research Laboratory, Nissan Motor Co.,Ltd, 1990.
    [41] Y. Yokoya, R. Kizu, H. kawaguchi, and K. Ohashi, "Integrated Control System Between Active Control Suspension and Four Wheel Steering for the 1989 CELICA," SAE Paper 901748, 1990.
    [42] M. Tabata, Y. Yokoya, H. Inoue and S. Sato, "Development of Chassis Integrated Control System for the Soarer 1991," 1 st International Conf. on Motion and Vibration Control, Yokohama, Japan, pp. 748-755, 1992.
    [43] S. Nicosia, P. Tomei., "Model Reference Adaptive Control Algorithms for Industry Robots," Automatica vol. 20, pp. 635-644, 1984.
    [44] H. Durrant-Whyte, "Practical Adaptive Control of Actuated Spatial Mechanisms," In Proceedings of the 1985 IEEE Conference on Robotics and Automation, St. Louis, MO, 1985.
    [45] D. Gavel, and T. Hsia, "Decentralized Adaptive Control of Robot manipulators," In Proceedings of the 1987 IEEE Conference on Robotics and Automation, Raleigh, NC, 1987.
    [46] K. D. Young, "Controller Design for A Manipulator Using Theory of Variable Structure Systems," IEEE Transactions on Systems, Man and Cybernetics SMC-8, pp.101-109, 1978.
    [47] J. J. Slotine, and S. S. Sastry, "Tracking Control of Nonlinear Systems Using Sliding Surfaces with Application to Robot Manipulators." International journal of control, vol. 38, pp. 465-492, 1983.
    [48] H. Yu, L. D. Seneviratne, and S. W. E. Earles, "Robust Adaptive Control for Robot Manipulators Using A Combined Method," Proceedings of IEEE Conference on Robotics and Automation, Altlanta, GA, USA, Vol. 1, pp. 612-617, 1993.
    [49] E. M. Jafarov, M. N. A. Parlakc, and Y. Istefanopulos,"A New Variable Structure PID-Controller Design for Robot Manipulators," IEEE Trans. on Control Systems Technology, Vol.13, No.1, pp.122 -130, 2005.
    [50] F. L. Lewis, A. Yesildirek and K. Liu, “Multilayer Neural-Net Robot Controller with Guaranteed Tracking Performance,” IEEE Trans. Neural Network, vol. 7, no. 2, March 1996.
    [51] C. H. Tsai, C. H. Wang, and W. S. Lin, "Robust Fuzzy Model-Following Control of Robot Manipulators," IEEE Trans. on Fuzzy Systems, Vol.6, No.2, pp. 462-469, 1998.
    [52] B. Armstrong, O. Khatib, and J. Burdick, "The Explicit Dynamic Model and Inertial Parameters of the PUMA 560 Arm," Proceedings of the IEEE International Conference on Robotics and Automation, pp. 510-518, 1986.
    [53] M. Tomizuka, R. Horowitz, G. Anwar, and Y. L. Jia, "Implementation of Adaptive Technique for Motion Control of Robot Manipulators," ASME Journal of Dynamical Systems, Measurement and Control Vol. 110, pp. 62-69, 1988.
    [54] S. J. Huang, R. J. Lian, "A Hybrid Fuzzy Logic and Neural Network Algorithms for Robot Motion Control," IEEE Transactions on Industrial Electronics, Vol. 44, No. 3, pp. 408-417. 1997
    [55] L. Villani, C. Natale, B. Siciliano, and C. de Wit Carlos, "An Experimental Study of Adaptive Force/Position Control Algorithms for an Industrial Robot," IEEE Trans. on Control Systems Technology, Vol.8, No.5, pp.777 -786, 2000.
    [56] R. Boukezzoula, S. Galichet, and L. Foully,"Observer-Based Fuzzy Adaptive Control for a Class of Nonlinear Systems:Real-Time Implementation for a Robot Wrist," IEEE Trans. on Control Systems Technology, Vol.12, No.3, pp.340 -351, 2004.
    [57] A. M. Lyapunov, "The general problem of motion stability,"(1982) in Russian. Translated in French, Ann. Fac. Sci. Toulouse 9, pp. 203-474(1907). Reprinted in Ann. Math. Study No. 17, Princeton Univ. Press(1949).
    [58] R. F. Drenick, and R. A. Shahbender, "Adaptive Sevomechanisms," AIEE Transactions vol.76, pp. 286-292, 1957.
    [59] R. E. kalman, and J. E. Bertram, "Control System Analysis and Design via the "Second Method" of Lyapunov I:Continuous-Time Systems," Journal of Basic Engineering, pp. 394-400, 1960.
    [60] J. La Salle, and S. Lefschetz, Stability by Lyapunov's Direct Method, Academic Press, 1961.
    [61] V. M. Popov, Hyperstability of Automatic Control Systems., Springer Verlag, New York, 1973.
    [62] R. E. Kalman, "Lyapunov Functions for the Lur'e in Automatic Control," In Proceedings of the National Academmy of Sciences vol. 49, pp. 201-205, 1963.
    [63] V. A. Yakubovich, "Solution of Certain Matrix Inequalities in the Stability Theory of Nonlinear Control Systems," Dokl. Akad. Nauk. USSR, no. 143, 1962.
    [64] K. R. Meyer, "On the Existence of Lyapunov Functions for the Problem on Lur'e," SIAM Journal of Control, vol. 3, pp.373-383, 1965.
    [65] J. H. Chow, and P. V. Kokotovic, "A Decomposition of Near-Optimum Regulators with Slow and Fast Modes," IEEE Trans. On Automatic Control, vol. AC-21, no. 5, pp. 701-705, 1976.
    [66] K. S. Narendra, and A. M. Annaswamy, “A New Adaptive Law for Robust Adaption Without Persistent Excitation,” IEEE Trans. Automat. Contr., vol. AC-32, no. 2, pp. 134-145, Feb. 1987.
    [67] Q. H. Wu, L. Jiang, and J. Y. Wen, "Decentralized Adaptive Control of Interconnected Non-linear Systems Using High Gain Observer," Int. J. Control, vol. 77, no. 8, pp. 703-712, 2004.
    [68] V. I. Utkin, “Variable Structure System with Sliding Modes,” IEEE Trans. Automatic Control, Vol.AC-22, No.2. pp. 212-222, April 1977.
    [69] J.-J. E. Slotine,“Sliding Controller Design for Nonlinear Systems,” Int. Journal of Control, Vol.40, No.2, pp.421-433, 1984.
    [70] J.-J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.
    [71] L. A. Zadeh,“Fuzzy Sets,” Information and Control, Vol.8, pp.338-353, 1965.
    [72] C. C. Lee,“Fuzzy Logic in Control Systems:Fuzzy Logic Controller Part I & II,”IEEE Trans. on system, Man, and Cybernetics, Vol.20, No.2, pp. 404-435, 1990.
    [73] E. H. Mamdani,“Application of Fuzzy Algorithms for Control a Simple Dynamic Plant,”Proc. of IEEE, Vol.121, No.12, pp. 1585-1588, 1974.
    [74] G. C. Huang and S. C. Lin,“A Stability Approach to Fuzzy Control Design for Nonlinear Systems,”Fuzzy Sets and Systems., Vol.48, pp.269-278, 1992.
    [75] R. Palm, "Sliding Mode Fuzzy Control,” IEEE Int. Conference Fuzzy System, San Diego, CA, pp.519-526, Mar. 1992.
    [76] S. W. Kim and J. J. Lee, “Design of A Fuzzy Controller with Fuzzy Sliding Surface,” Fuzzy Sets and Systems, Vol.71, pp.359-367, 1995.
    [77] L. X. Wang, “Stable Adaptive Fuzzy Control of Nonlinear Systems,” IEEE Trans. Fuzzy System, vol.1, pp.146-155, 1993.
    [78] L. X. Wang, “Fuzzy Systems Are Universal Approximation,“ Proc. IEEE Internat. Conf. Fuzzy System, pp. 1163-1170, 1992.
    [79] T. K. Yin and C. S. Lee, "Fuzzy Model-Reference Adaptive Control," IEEE Trans. Syst., Man, Cybern., Vol. 5, No.12, pp. 1606-1615, 1995.
    [80] J. C. Lo and Y. H. Kuo, “Decoupled Fuzzy Sliding Mode Control,” IEEE Trans. on Fuzzy Systems, Vol.6, No.3 pp.426-435, 1998.
    [81] S. Y. Chen, Yu, F. M., and H. Y. Chung, "Decoupled Fuzzy Controller Design with Single-Input Fuzzy Logic," Fuzzy sets and systems, 129, 335-342., 2002.
    [82] R. L. Hardy, “Multiquadric Equations of Topograghy and Other Irregular Surfaces,” J. Geophys. Res., vol. 76, pp. 1905-1915, 1971.
    [83] M. J. D. Powell, “Radial Basis Functions for Multivariable Interpolation: A Review,” in Algorithms for Approximation, J. C. Mason and M. G. Cox, Eds. Oxford, U.K.: Clarendon, 1987, pp. 143-167.
    [84] M. J. D. Powell, “The Theory of Radial Functions for Multivariable Approximation in 1990,” in Advances in Numerical Analysis II W. Light, Ed. Oxford, U.K.: Oxford Univ. Press, 1992.
    [85] T. Poggio and F. Girosi, “A Theory for Approximation and Learning,” Mass. Inst. Technol., A.I. Memo 1140, 1989.
    [86] T. Poggio and F. Girosi, “Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks,” Sci., vol. 247, pp. 978-982, Feb. 1990.
    [87] R. M. Sanner and J.-J. E. Slotine, “Gaussian Network for Direct Adaptive Control,” IEEE Trans. Neural Networks, vol. 3, pp. 837-863, Nov.1992.
    [88] J. Park and I. W. Sandberg, "Universal Approximation Using Radial-Basis-Function Network," Neural computation vol. 3, pp. 246-257, 1991.
    [89] C. L. Hwang, “Neural-Network-Based Variable Structure Control of Electrohydraulic Servosystems Subject to Huge Uncertainties Without Persistent Excitation,” IEEE Trans. on mechatronics Vol. 4,No. 1,pp. 50-59,1999.
    [90] W. S. Lin and C. H. Tsai, "Neuralfuzzy-Model-Following Control of MIMO Nonlinear Systems," IEE Proc.-Control Theory Appl. Vol. 146, no. 2, pp.157-164, 1999.
    [91] S. Tong and H. X. Li, "Fuzzy Adaptive Sliding-Mode Control for MIMO Nonlinear Systems," IEEE Trans. Fuzzy System, vol.11, no. 3, pp.354-359, 2003.
    [92] J. J. Craig, Introduction to Robotics: Mechanics and Control, Reading, Massachusetts:Addition-Wesley, 1985.
    [93] H.E. Meritt, Hydraulic Control Systems, New York: Wiley, 1967.
    [94] Hassan K. Khalil, Nonlinear Systems, Prentice-Hall, 1996.
    [95] S. C. Lin, and Y. Y. Chen, "Design of Adaptive Fuzzy Sliding Mode Control for Nonlinear System Control," in Pro. 3rd IEEE Conf. Fuzzy Syst., IEEE World Congress Computat. Intell., Orlando, FL, June 1994, vol. 1, pp. 35-39.
    [96] C.-C. Liu and F.-C. Chen, “Adaptive Control of Nonlinear Continuous Time Systems Using Neural Networks General Relative Degree and MIMO Case,” Int. J. Contr., vol. 58, no. 2, pp. 317-335, 1993.
    [97] J. Park and I. W. Sandberg, "Universal Approximation Using Radial-Basis-Function Network," Neural computation vol. 3, pp. 246-257, 1991.

    QR CODE