簡易檢索 / 詳目顯示

研究生: 簡銘志
Ming-Chih chien
論文名稱: 無Regressor矩陣計算之機械臂適應控制
Adaptive Control of Robot Manipulators without Computation of Regressor Matrix
指導教授: 黃安橋
An-Chyau Huang
口試委員: 何明果
Ming-Guo Her
黃衍任
Yean-Ren Hwang
黃漢邦
Han-Pang Huang
薛文証
Wen- Jeng Hsueh
蕭俊祥
Jin-Siang Shaw
黃緒哲
Shiuh-Jer Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 193
中文關鍵詞: 適應控制機械臂控制函數近似法
外文關鍵詞: adaptive control, robot manipulator control, function approximation technique
相關次數: 點閱:351下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑑於傳統機械臂控制發展上,面對處理系統含有未知不確定項的情況下,適應控制法則需將系統轉換成線性參數化的形式,然後計算出複雜的regressor矩陣之困擾,與限制未知參數需為非時變之缺點,本論文利用函數近似的技巧,在免除計算regressor矩陣的前提之下,依機械臂在自由空間運動與受限空間運動之分,各別針對剛性與撓性關節機械臂提出適應與適應阻抗控制器,以改善傳統機械臂適應控制的缺陷,而在每一主題之下,又各細分為考慮與未考慮驅動器電氣特性的狀況。亦即本論文提出以下的無regressor矩陣計算之機械臂適應控制器:
    1. 剛性機械臂之適應控制器
    2. 電氣驅動剛性機械臂之適應控制器
    3. 撓性關節機械臂之適應控制器
    4. 撓性關節電氣驅動機械臂之適應控制器
    5. 剛性機械臂之適應阻抗控制器
    6. 電氣驅動剛性機械臂之適應阻抗控制器
    7. 撓性關節機械臂之適應阻抗控制器
    8. 撓性關節電氣驅動機械臂之適應阻抗控制器
    而本文所探討的撓性關節電氣驅動機械臂,截至目前為止,鮮少有文獻加以提出研究,原因是此系統的每一軸皆為五階系統,當在考慮n軸的機械臂時,將需要利用到5n階的微分方程式來描述整個動態行為,如此複雜的串接式機械臂系統,大大的增加了控制器設計的困難度。若在加以考慮系統含有未知的時變參數時,更使得此控制問題面臨了高難度的挑戰性。而本文針對此複雜的系統所提出的適應與適應阻抗控制器,為解決此高難度控制問題的先驅。
    本文所提出的無regressor矩陣計算之機械臂適應控制器,顧名思義,最大的貢獻便是在實現的過程當中,解決了傳統上適應控制法則需計算regressor矩陣之困擾,針對各式複雜的機械臂在面對系統含有未知時變參數的問題時,先進行有系統性的整理分類之後,再發展出統一的設計架構,使得控制器能更容易的實現。而本文所提出的控制器設計,除了皆輔有Lyapunov-like穩定性分析,以確保閉迴路系統的穩定度,證明輸出誤差皆得以有漸進收斂的結果之外,進一步的,亦針對追蹤誤差的暫態邊界進行暫態響應的分析,以確保各控制器的暫態性能。各控制器皆以兩軸機械臂為範例,並利用電腦模擬的方式來驗證其功效與可行性。


    In traditional adaptive control strategies for robot manipulators, the uncertainties should be linearly parameterizable into a regressor form. This is because traditional adaptive control strategies have a common assumption that the uncertain parameters should be constant or slowly time varying. However, derivation of the regressor matrix is tedious. It will become far more complex when more joints are considered. To deal with this problem, this dissertation utilized the function approximation technique to represent time-varying uncertainties in some finite combinations of orthogonal basis. Under consideration of joint flexibility and/or actuator dynamics, several regressor-free adaptive control strategies for robot manipulators are proposed as:
    1. Adaptive control for rigid robots
    2. Adaptive control for electrically-driven rigid robots
    3. Adaptive control for flexible-joint robots
    4. Adaptive control for flexible-joint electrically-driven robots
    5. Adaptive impedance control for rigid robots
    6. Adaptive impedance control for electrically-driven rigid robots
    7. Adaptive impedance control for flexible-joint robots
    8. Adaptive impedance control for flexible-joint electrically-driven robots
    To the best of our knowledge, this is the first research focus on the adaptive control and adaptive impedance control of robot manipulators with consideration of joint flexibility and actuator dynamics. Controller design for this problem is difficult, because each joint of the robot has to be described by a 5th-order cascade differential equation.
    In this dissertation, a systematic procedure is proposed to circumvent various configurations of robot manipulators with time-varying uncertainties. The controller design is free from real-time calculation of the regressor matrix in every sampling period which is necessary in most of the robot adaptive control strategies. The basic idea is to represent system time-varying uncertainties using finite combinations of basis functions with some unknown constant weighting vectors. Closed-loop stability and boundedness of internal signals are proved by the Lyapunov-like analysis with consideration of the function approximation error. In addition, the upper bounds of tracking errors in the transient state are also derived. A 2 DOF planar manipulator is used in the computer simulation to verify the effectiveness of the proposed controllers.

    中文摘要……………………………………………………………………..…….. Ⅰ 英文摘要………………………………………………………………………….. Ⅲ 誌謝……………………………………………………….………………………V 目錄……………………………………………………………………….………..VI 圖片索引………………………………………………………………………….. IX 表格索引…………………...………………………….………………………….. XII 第一章 緒論…………………………………………………………………………1 1.1 傳統機械臂之適應控制與適應阻抗控制…………………………………2 1.2 撓性關節機械臂之控制………………………………………………….4 1.3 考慮驅動器電氣特性之機械臂控制………………………………………5 1.4 論文貢獻……………………………………………………………………7 1.5 論文架構……………………………………………………………………9 第二章 機械臂動態方程式……..…………………………………………………10 2.1 自由空間下之剛性機械臂………..…………...……………………….…10 2.1.1 未考慮驅動器電氣特性………………………………………10 2.1.2 考慮驅動器電氣特性………………………………………..…12 2.2 自由空間下之撓性關節機械臂………..…………...………………….…12 2.2.1 未考慮驅動器電氣特性………………………………………12 2.2.2 考慮驅動器電氣特性………………………………………..…13 2.3 受限空間下之剛性機械臂………..…………...……………………….…14 2.3.1 未考慮驅動器電氣特性………………………………………14 2.3.2 考慮驅動器電氣特性………………………………………..…15 2.4 受限空間下之撓性關節機械臂………..…………...……………………16 2.4.1 未考慮驅動器電氣特性………………………………………16 2.4.2 考慮驅動氣特性……………………………………………..…16 第三章 無未知參數項之機械臂控制….…………………………………………22 3.1 剛性機械臂之運動控制………..…………………………………………22 3.1.1 未考慮驅動器電氣特性………………………………………22 3.1.2 考慮驅動器電氣特性………………………………………..…23 3.2 撓性關節機械臂之運動控制………..……………………………………25 3.2.1 未考慮驅動器電氣特性………………………………………25 3.2.2 考慮驅動器電氣特性………………………………………..…27 3.3 剛性機械臂之阻抗控制………..…………………………………………29 3.3.1 阻抗控制之簡介………..………………………………………29 3.3.2 未考慮驅動器電氣特性……………………………………..…30 3.3.3 考慮驅動器電氣特性………………………………………..…30 3.4 撓性關節機械臂之阻抗控制………..……………………………………32 3.4.1 未考慮驅動器電氣特性………………………………………32 3.4.2 考慮驅動器電氣特性………………………………………..…34 第四章 以計算regressor 矩陣為基礎之機械臂適應控制……………………..39 4.1 以計算regressor 矩陣為基礎之剛性機械臂適應控制器………..……40 4.1.1 未考慮驅動器電氣特性………………………………………40 4.1.2 考慮驅動器電氣特性………………………………………..…44 4.2 以計算regressor 矩陣為基礎之撓性關節機械臂適應控制………..…45 4.2.1 未考慮驅動器電氣特性………………………………………45 4.2.2 考慮驅動器電氣特性………………………………………..…47 4.3 以計算regressor 矩陣為基礎之剛性機械臂適應阻抗控制器……….…50 4.3.1 未考慮驅動器電氣特性……………………………………..…50 4.3.2 考慮驅動器電氣特性………………………………………..…51 4.4 以計算regressor 矩陣為基礎之撓性關節機械臂適應阻抗控制器……52 4.4.1 未考慮驅動器電氣特性………………………………………53 4.4.2 考慮驅動器電氣特性………………………………………..…55 第五章 無regressor 矩陣計算之剛性關節機械臂適應控制…...………………..60 5.1 未考慮驅動器電氣特性之剛性機械臂適應控制………………………..60 5.1.1 控制器之設計………………..……………………………..…60 5.1.2 電腦模擬……………………………………………………..…66 5.2 考慮驅動器電氣特性之剛性機械臂適應控制…………………………..70 5.2.1 控制器之設計………………..……………………………..…70 5.2.2 電腦模擬……………………………………………………..…75 5.3 驗證考慮驅動器電氣特性之必要性…..………………….……………80 5.3.1 未考慮驅動器電氣特性之適應控制器修正…………………..80 5.3.2 電腦模擬………………………………………………………..81 第六章 無regressor 矩陣計算之撓性關節機械臂適應控制...…………………..93 6.1 未考慮驅動器電氣特性之撓性關節機械臂適應控制…………………..93 6.1.1 控制器之設計………………..……………………………..…..94 6.1.2 電腦模擬…………………………………………………..……99 6.2 考慮驅動器電氣特性之撓性關節機械臂適應控制…………………..105 6.2.1 控制器之設計………………..……………………………..…105 6.2.2 電腦模擬……………………………………………………..112 第七章 無regressor 矩陣計算之剛性關節機械臂適應阻抗控制..…………121 7.1 未考慮驅動器電氣特性之剛性關節機械臂適應阻抗控制……………121 7.1.1 控制器之設計………………..……………………………….121 7.1.2 電腦模擬……………………………………………………..126 7.2 考慮驅動器電氣特性之剛性關節機械臂適應阻抗控制…………….131 7.2.1 控制器之設計………………..……………………………..131 7.2.2 電腦模擬……………………………………………………..137 第八章 無regressor 矩陣計算之撓性關節機械臂適應阻抗控制…………….145 8.1 未考慮驅動器電氣特性之撓性關節關節機械臂適應阻抗控制………145 8.1.1 控制器之設計………………..……………………………..145 8.1.2 電腦模擬……………………………………………………..152 8.2 考慮驅動器電氣特性之撓性關節關節機械臂適應阻抗控制……….158 8.2.1 控制器之設計………………..……………………………..…158 8.2.2 電腦模擬……………………………………………………..165 第九章 總結………………………………………………………………………174 參考文獻…………………………………………………………………………..178 Appendix……………………………………………………………………………189 作者簡介…………………………………………………………………………..193

    Abdallah, A, Dawson, D., Dorato, P., and Jamishidi, M., “Survey of robust control for rigid robots,” IEEE Control System Magazine, vol.11, no.2, pp.24-30, 1991.

    Ahmad, S., “Constrained motion (force/position) control of flexible joint robots,” IEEE Trans. System, Man, and Cybernetics, vol. 23, 1993.

    Albu-Schaffer, A., Ott, A., Frese, F. and Hirzinger, G.,“Cartesian impedance control of redundant robots: recent results with the DLR-light-weight-arms,” in Proc. IEEE Conf. Robotics and Automation, pp.3704-3709, 2003.

    Alonge, F., D’Ippolito, F., and Raimondi, F.M., “An adaptive control law for robotic manipulator without velocity feedback,” Control Engineering Practice, vol.11, pp.999-1005, 2003.

    Alonge, F., D’Ippolito, F., and Raimondi, F.M., “Globally convergent adaptive and robust control of robotic manipulators for trajectory tracking,” Control Engineering Practice, vol.12, pp.1091-1100, 2004.

    Arimoto, S., Liu, Y.H., and Naniwa, T., “Model-based adaptive hybrid control for geometrically constrained robots”, in Proc. IEEE Conf. on Robotics and Automation, vol.1, pp.618 –623, 1993.

    Arteaga, M.A. and Tang, Y., ”Adaptive control of robots with an improved transient performance,” IEEE Trans. Automatic Control, vol.47, no.7, pp.1198-1202, 2002.

    Bridges, M.M, Dawson, D.M., and Hu, J., “ Adaptive control for a class of direct drive manipulators,” Int. J. Adaptive Control and Signal Processing, vol.10, pp. 417-441, 1996.

    Burg, T., Dawson, D.M., Hu, J., and deQueiroz, M., “An adaptive partial state-feedback controller for RLED robot manipulators,” IEEE Trans. Robotics and Automation, vol.41, no.7, pp.1024-1030, 1996.

    Burkan, R., “Upper bounding estimation for robustness to the parameter uncertainty with trigonometric function in trajectory control of robot arms,” J. Intelligent and Robotic Systems,” vol.46, pp.263-283, 2006.

    Cai, D. and Dai, Y., “A globally convergent robust controller for robot manipulator,” in Proc. IEEE Conf. Control Applications, pp.328-332, 2001.

    Chang, Y.C. and Lee, C.H., “Robust tracking control for constrained robots actuated by DC motors without velocity measurements,” IEE Proc. Control Theory Appl., vol.146, no.2, pp.147-156, 1999.

    Chang, Y.C., ”Adaptive tracking control for electrically-driven robots without overparametrization,” Int. J. Adaptive Control and Signal Processing, vol.16, pp. 123-150, 2002.

    Chen, B.S., Uang, H.J., and Tseng, C.S., “Robust tracking enhancement of robot systems including motor dynamics: a fuzzy-based dynamic game approach,” IEEE Trans. Fuzzy Systems, vol.6, no.4, pp.538-552, 1998.

    Chen, P.C. and Huang, A.C., ”Adaptive sliding control of non-autonomous active suspension systems with time-vary loadings,” J. Sound and Vibration, vol.282, no.3-5, pp.1119-1135, 2005a.

    Chen, P.C. and Huang, A.C., “Adaptive Multiple-Surface Sliding Control of Non-autonomous Active Suspension Systems Based on Function Approximation Technique,” Journal of Vibration and Control, vol.11, pp.685-706, 2005b.

    Chen, P.C. and Huang, A.C., “Adaptive Sliding Control of Active Suspension Systems with Uncertain Hydraulic Actuator Dynamics,” Vehicle System Dynamics, vol. 44, no. 5, pp357-368, 2006.

    Chien, M.C. and Huang, A.C., “Adaptive impedance control of robot manipulators based on function approximation technique,” Robotica, vol.22, pp.395-403, 2004.

    Chien, M. C. and Huang, A.C., “Regressor-Free Adaptive Impedance Control of Flexible-Joint Robots Using FAT,” American Control Conf. , pp. 3905-3910, 2006a.

    Chien, M. C. and Huang, A.C., “FAT-Based Adaptive Control of Flexible-Joint Robots without Computation of The Regressor Matrix,” IEEE Int. Conf. On Systems, Man and Cybernetics, pp.3653-3658, 2006b.

    Chien, M.C. and Huang, A.C., “Adaptive control of flexible-joint electrically-driven robot with time-varying uncertainties,” IEEE Trans. Industrial Electronics, vol.54, no.2, pp.1032-1038, 2007a.

    Chien, M.C. and Huang, A.C., “Adaptive Control of Electrically-driven Robot without Computation of Regressor Matrix,” J. Chinese Institute of Engineers, accepted for publication, 2007b.

    Colbaugh, R., Glass, K., and Wedeward, K., “Adaptive compliance control of electrically-driven manipulators,” in Proc. IEEE Conf. Decision and Control, pp. 394-399, 1996.

    Colbaugh, R., Glass, K., and Gallegos, G., “Adaptive compliant motion control of flexible-joint manipulators,” in Proc. American Control Conf., pp. 1873-1878, 1997.

    de Queiroz, M.S., Dawson, D.M., and Canbolat, H., “Adaptive position/force control of BDC-RLED robots without velocity measurements,” in Proc. IEEE Conf. Robotics and Automation and Control, pp.525-530, 1997.

    Dixon, W.E., Zergeroglu, E., Dawson, D.M., and Hannan, M.W., “Global adaptive partial state feedback tracking control of rigid-link flexible-joint robots,” Robotica, vol.18, pp.325-336, 2000.

    ElDeeb, Y. and ElMaraghy, W. H., “Robust adaptive control of a robotic manipulator including motor dynamics,” J. Robotics Systems, vol.15, no.11, pp.661-669, 1998.

    Eppinger, S.D. and Seering, W.P., “Three dynamic problem in robot force control,” IEEE Trans. Robotics and Automation, vol.8, pp.751-758, 1992.

    Ferretti, G.., Magnani, G.., and Rocco, P., ”Impedance control for elastic joints industrial manipulators,” IEEE Trans. Robotics and Automation, vol.20, no.3, pp.488-498, 2004.

    Ge, S.S., “Adaptive controller design for flexible-joint manipulators,” Automatica, vol. 32, no. 2, pp.273-278, 1996.

    Ge, S.S., Hang, C.C., Lee, T.H. and Zang, T., Stable Adaptive Neural Network Control, Boston: Kluwer Academic, 2001.

    Good, M.C., Sweet, L.M., and Strobel, K.L.,“Dynamic model for control system design of integrated robot and drive systems,” J. Dynamic Systems, Measurement and Control, vol.107, pp.53-59, 1985.
    Guenther, R. and Hsu, L., “Variable structure adaptive cascade control rigid-link electrically-driven robot manipulators,” in Proc. IEEE Conf. Decision and Control, pp. 2137-2142, 1993.

    Hisa, T.C., “Adaptive control of robot manipulators –A review”, in Proc. IEEE Conf. Robotics and Automation, pp.2502-2508, 1986.

    Hogan, N., “Impedance control: an approach to manipulation: Part1-theory, Part2-implementation, Part3-an approach to manipulation” ASME J. Dynamic Systems, Measurement, and Control, vol.107, pp.1-24, 1985.

    Hu, Y.R. and Goldenberg, A.A., “An approach to motion and force control of coordinated robot arms in the presence of joint flexibility,” ASME J. Dynamic Systems, Measurement and Control, vol.116, no.3, pp.326-335, 1994.

    Hu, Y.R. and Vukovich, G., “Position and force control of flexible-joint robots during constrained motion tasks,” Mechanism and Machine Theory, vol.36, pp.853-871, 2001.

    Huang, A.C. and. Kuo, Y.S., ”Sliding control of nonlinear systems containing time-varying uncertainties with unknown bounds,” Int. J. Control, vol.74, pp.252-264, 2001.

    Huang, A.C. and Chen, Y.C., “Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties,” Automatica, vol. 11, pp. 1939-1945, 2004a.

    Huang, A.C. and Chen, Y.C., “Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties,” IEEE Trans. Control Systems Technology, vol. 12, pp. 770-775, 2004b.

    Huang, A.C., Wu, S.C., and Ting, W.F., “An FAT-based Adaptive Controller for Robot Manipulators without Regressor Matrix: Theory and Experiments,” Robotica, vol. 24, pp. 205-210, 2006.

    Huang, A.C. and Liao, K.K. “FAT-based Adaptive Sliding Control for Flexible Arms, Theory and Experiments,” Journal of Sound and Vibration, vol. 298, issue 1-2, pp. 194-205, 2006.
    Ider, S.K., “Force and motion trajectory tracking control of flexible-joint robots,” Mechanism and Machine Theory, vol.35, pp.363-378, 2000.

    Ishii, C., Shen, T., and Qu, Z., “Lyapunov recursive design of robot adaptive tracking control with L2-gain performance for electrically-driven robot manipulators,” Int. J. Control, vol.74, no.8, pp. 811-828, 2001.

    Jain, S. and Khorrami, F., “Robust adaptive control of flexible-joint manipulators,” Automatica, vol.34, no.5, pp.609-615, 1998.

    Jankowski, K.P. and ElMaraghy, H.A., “nonlinear decoupling for position and force control of constrained robots with flexible-joints,” in Proc. IEEE Conf. Robotics and Automation, pp.1226-1231, 1991.

    Kelly, R., Carelli, R., Amestegui, M., and Ortega, R., “An Adaptive Impedance Control of Robot Manipulators,” in Proc. IEEE Conf. Robotics and Automation, pp.572-557, 1989.

    Khalil, H.K., Nonlinear Systems, Prentice-Hall, New Jersey, 2002

    Khorasani, K. ”Adaptive control of flexible-joint robots,” IEEE Trans. robotics and Automation, vol.8, no.2, pp.250-267, 1992.

    Kim, M.S. and Lee, J.S., “Adaptive tracking control of flexible-joint manipulators without overparametrization,” J. Robotic Systems, vol.21, no.7, pp.369-379, 2004.

    Kozlowski, K. and Sauer, P., “On adaptive control of flexible-joint manipulators: theory and experiments,” in Proc. IEEE Sym. Industrial Electronics, pp.1153-1158, 1999.

    Kuc, T.Y. and Han, W.G., “Adaptive PID learning control of robot manipulators,” Automatica, vol.36, no.5, pp.717-725, 2000.

    Kwan, C.W., “Hybrid force/position control for manipulators with motor dynamics using a sliding-adaptive approack,” IEEE Trans. Automatic Control, vol.40, no.5, pp.963-968, 1995.

    Kwan, C.W., “Robust adaptive force/motion control of constrained robots,” IEE Proc. Control Theory Appl., vol.143, no.1, pp.103-109, 1996.

    Kwan, C., Lewis, F.L., and Dawson, D.M., “Robust neural-network control of rigid-link electrically driven robots,” IEEE Trans. Neural Networks, vol.9, no.4, pp.581-588, 1998.

    Leviner, M.D. and Dawson, D.M., “Hybrid adaptive tracking control of rigid-link electrically driven robots actuated by switched reluctance motors,” System Theory, Proc. SSST ’93., Twenty-Fifth Southeastern Symposium, pp.53-57, 1993.

    Lian, K.Y., Jean, J.H., and Fu, L.C., “Adaptive force control of single-link mechanism with joint flexibility,” IEEE Trans. on Robotics and Automation, vol.7, pp.540-545, 1991.

    Lim, S.Y., Dawson, D.M., Hu, J., and de Queiroz, M.S., “An adaptive link position tracking controller for rigid-link flexible-joint robots without velocity measurements,” IEEE Trans. System, Man, and Cybernetics-Part B: Cybernetics, vol. 27, no. 3, pp.412-427, 1997.

    Lim, M.S., Lim, J. and Oh, S.R., “Stiffness adaptation and force regulation using hybrid system approach for constrained robots”, in Proc. IEEE Conf. Intelligent Robots and Systems, pp.641–646, 1999.

    Lin, T. and Goldenberg, A.A., “Robust adaptive control of flexible joint robots with joint torque feedback,” in Proc. IEEE Conf. Robotics and Automation, pp.1229-1234, 1995.
    Lin, T. and Goldenberg, A.A., “A unified approach to motion and force control of flexible joint robots,” in Proc. IEEE Conf. Robotics and Automation, pp. 1115-1120, 1996.

    Lin, T. and Goldenberg, A.A., “On coordinated control of multiple flexible-joint robots holding a constrained object,” in Proc. IEEE Conf. Robotics and Automation, pp. 1490-1495, 1997.

    Liu, G. and Goldenberg, A.A., “Robust control of robot manipulators incorporating motor dynamics,” in Proc. IEEE/RSJ Conf. Intelligent Robots and System, pp.68-75, 1993.

    Lozano, R. and Brogliato, B., “Adaptive control of robot manipulators with flexible joints,” IEEE Trans. Automatic Control, vol.37, no.2, pp.174-181, 1992.

    Lu, W.S. and Meng, Q.H., “Recursive computation of manipulator regressor and its application to adaptive motion control of robots,” in Proc. IEEE Conf. on Communication, Computers and Signal Processing, pp.170-173, 1991.

    Lu, W.S. and Meng, Q.H., “Regressor formulation of robot dynamics: computation and application,” IEEE Trans. Robotics and Automation, vol.9, no.3, pp.323-333, 1993.

    Lu, W.S. and Meng, Q.H., “Impedance control with adaptation for robotic manipulations”, IEEE Trans. Robotics and Automation, vol.7, no.3, pp.408-415, 1991.
    Wedeward, K. and Colbaugh, R., ”New stability results for direct adaptive impedance control”, in Proc. IEEE Sym. on Intelligent Control, pp.281-287, 1995.

    Luo, Y.S., “Adaptive impedance control of rigid robot manipulators”, Master Thesis, National Taiwan University of Science and Technology, 2002.

    Mahmoud, M., “robust control of robot arms including motor dynamics,” Int. J. Control, vol.58, pp.853-873, 1993.

    Matko, D., Kamnik, R. and Bajd, T., “Adaptive impedance force control of an industrial manipulator”, in Proc. IEEE Sym. Industrial Electronics, pp.129-133, 1999.

    Massoud, A.T. and Elmaraghy, H.A., “Model-based motion and force control of flexible-joint robot manipulators,” Int. J. Robotics Research, vol.6, no.4, pp.529-544, 1997.

    Mut, V., Nasisi, O., Carelli, R., and Kuchen, B., “Tracking adaptive impedance robot control with visual feedback,” Robotica, vol. 18, pp.369-374, 2000.

    Nagchaudhuri, A. and Garg, D.P., “Adaptive control and impedance control for dual robotic arms manipulating a common heavy load”, in Proc. IEEE/ASME Conf. Advanced Intelligent Mechatronics, pp.683-688, 2001.

    Narendra, K. S., and Annaswamy, A.M., Stable Adaptive System, Prentice Hall, 1989.

    Ortega, R. and Spong, M.W., “Adaptive motion control of rigid robots: a tutorial,” Automatica, vol.25, pp.877-888, 1989.

    Ott, A., Albu-Schaffer, A., Kugi, A., and Hirzinger, G., “Decoupling based Cartesian impedance control of flexible-joint robots,” in Proc. IEEE Conf. Robotics and Automation, pp.3101-3107, 2003.

    Ott, A., Albu-Schaffer, A., Kugi, A., Stramigioli, S., and Hirzinger, G., “Passivity based Cartesian impedance controller for flexible joint robots-Part I: Torque feedback and gravity compensation, and Part II: Full state feedback, impedance design and experiments,” in Proc. IEEE Conf. Robotics and Automation, pp.2666-2672, 2004.

    Oya, M., Su, C.Y., and Kobayashi, T., “State observer-based robust control scheme for electrically driven robot manipulators,” IEEE Trans. Robotics, vol.20, no.4, pp.796-804, 2004.

    Ozawa, R. and Kobayashi, H., “A new impedance control concept for elastic joint robots,” in Proc. IEEE Conf. Robotics and Automation, pp.3126-3131, 2003.

    Pagilla, P.R. and Biao Yu, “Adaptive control of robotic surface finishing processes”, in Proc. American Control Conf., pp.630-635, 2001.

    Pagilla, P.R. and Tomizuka, M., “An adaptive output feedback controller for robot arms: stability and experiments,” Automatica, vol.37, no.7, pp.983-995, 2001.

    Raibert, M.H. and J.J. Craig, “Hybrid Position/Force Control of Manipulators”, ASME, J.of Dynamics Systems, Measurements and Control, vol.102, pp.126-133, 1981.

    Roy, J. and Whitcomb, L.L., “Adaptive force control of position/velocity controlled robots: theory and experiment”, IEEE Trans. Robotics and Automation, vol.18, no.2, pp.121-137, 2002.

    Sadegh, N. and Horowitz, R., “Stability and robustness analysis of a class of adaptive controller for robotic manipulators,” Int. J. of Robotics Research, vol.9, no.3, pp.74-92, 1990.

    Shin, E.S. and Lee, K.W., ”Robust output feedback control of robot manipulators using high-gain observer,” in Proc. IEEE Conf. Control Applications, pp.881-886, 1999.

    Slotine, J-J.E. and Li, W., “On the adaptive control of robotic manipulators” Int. J. Robotic Research, vol.6, no.3, pp.49-59, 1987a.

    Slotine, J-J.E. and Li, W., “Adaptive strategy in constrained manipulators”, in Proc. IEEE Conf. Robotics and Automation, pp.595-601, 1987b.

    Slotine, J-J.E. and Li, W., “Adaptive Manipulator Control: A Case Study,” IEEE Trans. Automatic Control, vol.33, no.11, pp.995-1003, 1988.

    Slotine, J-J.E. and Li, W., “Composite Adaptive Control Robot Manipulators,” Automatica, vol.25, no.4, pp.509-519, 1989.

    Slotine, J-J. E. and Li, W., Applied Nonlinear Control, Prentice Hall, NJ, 1991.

    Song, G., Longman, R.W. and Mukherjee, R., “Integrated sliding-mode adaptive-robust control”, IEE Proc. Control Theory and Applications, vol.146, no.4, pp.341–347, 1999.

    Spong, M.W., “Modeling and control of elastic joint robots,” ASME J. Dynamic Systems, Measurement, and Control, vol.109, pp.310-319, 1987.

    Spong, M.W., “Adaptive control of flexible-joint manipulators,” Systems and Control Letters, vol.13, pp.15-21, 1989a.
    Spong, M.W., “On the force control problem for flexible-joint manipulators,” IEEE Trans. Automatic Control, vol.34, pp.107-111, 1989b.

    Spong, M.W.,” Adaptive control of flexible-joint manipulators: Comments on two papers,” Automatica, vol.31, no. 4, pp.585-590, 1995.

    Spong, M.W. and Vidyasagar, M., Robot dynamics and control, John Wiley & Sons, NY, 1989.

    Spooner, J.T., Maggiore, M., Ordonez, R., and Passino, K.M., Stable Adaptive Control and Estimation for Nonlinear Systems – Neural and Fuzzy Approximator Techniques, NY: John Wiley & Sons, 2002

    Su, C.Y. and Stepanenko, Y., “Redesign of Hybrid adaptive/robust motion control of rigid-link electrically-driven robot manipulators,” IEEE Trans. Robotics and Automation, vol.14, no.4, pp. 651-655, 1998.

    Sun, D. and Mills, J.K., ” Performance improvement of industrial robot trajectory tracking using adaptive-learning scheme,” ASME J. of Dynamic System Measurement and Control, vol.121, no.2, pp.285-292, 1999.

    , D. and , , “Robust robot compliant motion control using intelligent adaptive impedance approach”, in Proc. IEEE Conf. Robotics and Automation, pp.2128-2133, 1999.

    Sweet, L.M. and Good, M.C., “Redefinition of the robot motion control problem: effects of plant dynamics, drive system constraints, and user requirements,” in Proc. IEEI Conf. Decision and Control, pp. 724-730, 1984.

    Tarn, T.J., Bejczy, A.K., Yun, X. and Li, Z.,“Effect of motor dynamics on nonlinear eedback robot arm control,” IEEE Trans. Robotics and Automation, vol.7, no.1, pp.114-122, 1991.

    Taylor, D.G., “Composite control of direct-drive robots,” in Proc. IEEE Conf. Decision and Control, pp.1670-1675, 1989.

    Tian, L. and Goldenberg, A.A., ”Robust adaptive control of flexible joint robots with joint torque feedback, in Proc. IEEE Conf. Robotics and Automation, pp.1229-1234, 1995.

    Ting, W.F., “A regressor-free adaptive controller for robot manipulators using function approximation technique”, Master Thesis, National Taiwan University of Science and Technology, 2003.

    Whitcomb, L.L., Arimoto, S., Naniwa, T., and Ozaki, F., “Adaptive model-based hybrid control of geometrically constrained robot arms”, IEEE Trans. Robotics and Automation, vol.13, no.1, pp.105–116, 1997.

    Yang, J.H., “Adaptive tracking control for manipulators with only position feedback,” in Proc. IEEE Conf. Electrical and Computer Engineering, pp.1740-1745, 1999.

    Yim, W., “Adaptive control of a flexible-joint manipulator,” in Proc. IEEE Conf. Robotics and Automation, pp.3441-3446, 2001.

    Yu, H. and Lloyd, S., “Variable structure adaptive control of robot manipulators”, IEE Proc. Control Theory and Applications, vol.144, no.2, pp.167–176, 1997.

    Yuan, J., “Adaptive control of robotic manipulators including motor dynamics,” IEEE Trans. Robotics and Automation, vol.11, no.4, pp.612-617, 1995.

    Zhang, F., Dawson, D.M., de Queiroz, M.S., and Dixon, W.E., “Global adaptive output feedback tracking control of robot manipulators,” IEEE Trans. Automatic Control, vol.45, no.6, pp.1203-1208, 2000.

    Zhen, R.R.Y. and Goldenberg, A.A., “An adaptive approach to constrained robot motion control”, in Proc. IEEE Conf. Robotics and Automation, pp.1833-1838, 1995.

    QR CODE