簡易檢索 / 詳目顯示

研究生: 陳宏毅
Hung-Yi Chen
論文名稱: 具自調模糊補償之適應性滑動模式控制器於車輛懸吊系統之控制
Adaptive Sliding Controller with Self-tuning Fuzzy Compensation for Vehicle Suspension Control
指導教授: 黃緒哲
Shiuh-Jer Huang
口試委員: 周瑞仁
Jui-Jen Chou
陳榮順
Rong-Shun Chen
黃衍任
Yean-Ren Hwang
黃國修
K. David Huang
黃安橋
An-Chyau Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 154
中文關鍵詞: 主動式懸吊系統函數近似法適應性模糊滑動模式控制
外文關鍵詞: active suspension system, functional approximation technique, adaptive fuzzy sliding mode control
相關次數: 點閱:337下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在汽車工業發展中,主動式懸吊系統之設計是用來提供車輛更佳之駕駛操控性與乘座舒適性。因為主動式懸吊系統具有非線性時變之特性,所以要針對其動態特性建立精確之系統數學模式,以做為控制器設計是不容易的,因此本研究利用函數近似法來替代真正之系統數學模式,並結合適應性滑動模式模糊控制方法以補償其誤差,以設計車輛主動式懸吊系統之控制器。其中函數近似法被用來代表系統動態模式中之未知函數,以去除滑動模式控制需要系統數學模式之限制,另外加入具即時自調能力之模糊控制補償器來進行有限項函數近似誤差之補償,改善控制效果及減少實際控制系統實現之困難度。研究中利用Lyapunov 穩定法則來確保控制系統受控過程之穩定性,並藉以獲得系統控制參數之更新律。本研究所提出之控制方法除了藉由電腦模擬之進行,並實際應用於一座1/4車油壓致動主動式懸動系統,透過實驗之結果來驗證其控制效果,並將控制結果與未加入模糊控制補償之控制結果,及利用鑑定所得之系統數學模式所設計之滑動模式控制器來進行比較,以進一步呈現本研究所提出之適應性滑動模式控制器加入模糊控制補償器對於車輛操控性與舒適度之控制成效。


    Active suspension systems are designed to provide better ride comfort and handling capability in the automotive industry. Since the active suspension system has nonlinear and time-varying characteristics, it is difficult to establish an accurate dynamic model for designing a model-based controller. Here, a model-free functional approximation based adaptive sliding controller with fuzzy compensation is proposed for an active suspension system. The functional approximation technique is employed to represent the unknown functions, which releases the model-based requirement of the sliding mode control. In addition, a fuzzy scheme with online learning ability is employed to compensate for the modeling error of the functional approximation with finite number of terms for reducing the implementation difficulty. To guarantee the control system stability, the update laws of the coefficients of the approximation function and the fuzzy tuning parameters are derived from the Lyapunov theorem. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test rig to investigate the control performance. To verify the dynamic performance improvement of inducing a fuzzy compensation in this model-free controller, the simulation and experimental dynamic responses of the proposed controller are compared with those of the adaptive sliding controller without fuzzy compensation and those of the model-based sliding mode controller.

    摘 要………………………………………………………………… I Abstract…………………………………………………………………… II 誌 謝………………………………………………………………… III 目 錄…………………………………………………………………IV 圖表索引……………………………………………………………… VII 第一章 緒論……………………………………………………………..1 1.1 前言…………………………………………………………….1 1.2 文獻回顧………….…………………………………………….5 1.3 研究目的與動機.…………………………………………….9 1.4 論文架構………………………………………………………11 第二章 懸吊系統架構與系統數學模式……………………………….12 2.1 主動式懸吊系統數學模式與動態描述(模擬部分)…………12 2.2 主動式懸吊系統數學模式與動態描述(實驗部分)…………14 2.2.1 系統機構部分………………………………………15 2.2.2 系統機電整合部分……………………………………17 2.2.3 系統模式與動態描述…………………………………19 第三章 控制理論………………………………………..……..…..22 3.1 函數近似法(Functional Approximation Technique)…………22 3.2 滑動模式控制(Sliding Mode Control)……………….…….…26 3.2.1 滑動模式控制之理論基礎 ……………...……………28 3.2.2 平滑化滑動模式控制……………………….…………31 3.3 適應性模糊滑動模式控制………………….…….…….…33 3.3.1 基本模糊控制器架構………………….…….…….…35 3.3.2 適應性模糊滑動模式控制器……………….…………38 第四章 系統鑑定………………………………….……………………46 4.1 系統模式選擇…………………………………………………47 4.2 主動式懸吊系統參數鑑定……………………………………48 第五章 控制器設計……………………………………..…………….51 5.1 系統控制模擬……………………………………………..51 5.1.1 函數近似法 ( 已知且 ) 加AFSMC補償...51 5.1.2 函數近似法 ( 未知, ) 加AFSMC補償…58 5.2 系統控制實驗…………………………………………………64 5.2.1 實驗一:滑動模式控制器……………..…………….…66 5.2.2 實驗二:函數近似法 ( 已知且 ) 加AFSMC補償之控制器…………………69 5.2.3 實驗三:函數近似法 ( 未知, ) 加AFSMC補償之控制器.....…………..……75 第六章 模擬與實驗結果………………………………..…………….82 6.1 系統控制模擬結果……………..……………………………83 6.1.1 函數近似法 ( 已知且 ) 加AFSMC 補償之控制結果…………………………….………..83 6.1.2 函數近似法 ( 未知, ) 加AFSMC 補償之控制結果.…………………………..…………96 6.2 系統控制實驗結果………………………….……………….110 6.2.1 函數近似法 ( 已知且 ) 加AFSMC 補償之控制結果……………….………..……………110 6.2.2 函數近似法 ( 未知, ) 加AFSMC 補償之控制結果…………………………...…………128 第七章 結論……..……..……………………………………………...143 7.1 結論………………………………………….……………….143 7.2 建議………………………………………….……………….145 參考文獻 ………………………………………………………………...146 作者簡歷………………………………………………………………...153 授權書…………………………………………………………………..154

    [1] M. Sunwoo, K. C. Cheok and N. J. Huang, “Model reference adaptive control for vehicle active suspension systems,” IEEE Trans. on Industrial Electronics, Vol. 38, no. 3, pp. 217-222, June, 1991.
    [2] A. Alleyne and J. K. Hedrick, “Nonlinear adaptive control of active suspensions,” IEEE Transactions on Control Systems Technology, vol. 3, no. 1, pp. 94-101, 1995.
    [3] R. Rajamani and J. K. Hedrick, “Adaptive observers for active automotive suspensions: Theory and Experiment,” IEEE Transactions on Control Systems Technology, vol. 3, no. 1, pp. 86-93, 1995.
    [4] E.-S. Kim, “Nonlinear indirect adaptive control of a quarter car active suspension,” in Proceedings of the 1996 IEEE International Conference on Control Applications, Dearborn, MI, 1996, pp. 61-66.
    [5] Y. Ando and M. Suzuki, “Control of active suspension systems using the singular perturbation method,” Control Engineering Practice, Vol. 4, No. 3, 1996, pp. 287-293.
    [6] S. Chantranuwathana and H. Peng, “Adaptive robust control for active suspensions,” in Proceedings American Control Conference, 1999, pp. 1702-1706.
    [7] K. Hayakawa, K. Matsumoto, M. Yamashita, Y. Suzuki, K. Fujimori and H. Kimura, “Robust -output feedback control of decoupled automobile active suspension systems,” IEEE Trans. on Automatic Control, Vol. 44, no. 2, Feb. 1999, pp. 392-396.
    [8] T. Fukao, A. Yamawaki and N. Adachi, “Nonlinear and control of active suspension system with hydraulic actuators,” in Proceedings of Conference on Decision and Control, 1999, pp. 5125-5128.
    [9] T. T. Nguyen, T. H. Bui, T. P. Tran and S. B. Kim, “A hybrid control of active suspension system using and nonlinear adaptive controls,” in Proceedings IEEE International Symposium on Industrial Electronics, 2001, vol. 2, pp. 839-844.
    [10] S. B. Choi, Y. T. Choi and D. W. Park, “A sliding mode control of a full-car electrorheological suspension system via hardware in-the loop simulation,” ASME J. Dyn. Syste., Meas., Control, Vol.122, pp.114-121, March, 2000.
    [11] M. C. Smith and F.-C. Wang, “Controller Parameterization for disturbance response decoupling: application to vehicle active suspension control,” IEEE Transactions on Control Systems Technology, vol. 10, no.3, pp. 393-407, 2002.
    [12] I. Fialho and G. J. Balas, “Road adaptive active suspension design using linear parameter-varying gain-scheduling,” IEEE Transactions on Control Systems Technology, vol. 10, no.1, pp. 43-54, 2002.
    [13] Y. M. Sam, J.H.S. Osman, M.R.A. Ghani, “A class of proportional-integral sliding mode control with application to active suspension system,” Systems & Control Letters, vol.51, pp.217-223, 2004.
    [14] C. Kim, P. I. Ro, H. Kim, “Effect of the suspension structure on equivalent suspension parameters,” Proceedings of the Institution of Mechanical Engineers, part D, vol. 213, pp. 457-470, 1999.
    [15] C. Kim and P. I. Ro, “A sliding mode controller for vehicle active suspension systems with non-linearities,” Proceedings of the Institution of Mechanical Engineers, part D, vol. 212, pp. 79-92, 1998.
    [16] A.C. Huang and Y. S. Kuo, “Sliding control of nonlinear systems containing time-varying uncertainties with unknown bounds,” International Journal of Control, vol. 74, no. 3, pp. 252-264, 1999.
    [17] J. T. Spooner, M. Maggiore, R. Ordonez, and K. M. Passino, Stable Adaptive Control and Estimation for Nonlinear Systems – Neural and Fuzzy Approximator Techniques, Wiley, New York, 2002.
    [18] P. C. Chen and A. C. Huang, “Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings,” Journal of Sound and Vibration, vol. 282, pp. 1119-1135, 2005.
    [19] E. C. Yeh and Y. J. Tsao, “Fuzzy preview control scheme of active suspension for rough road,” International Journal of Vehicle Designs, vol. 15, pp. 166-180, 1994.
    [20] A. S. Cherry and R. P. Jones, “Fuzzy logic control of an automotive suspension systems,” IEE Proceedings D: Control Theory Application, vol. 142, no. 2, pp. 149-160, 1995.
    [21] C. S. Ting, T.H.S. Li and F. C. Kung, “Design of fuzzy controller for active suspension system,” Mechatronics, Vol.5, no. 4, pp. 365-383, 1995.
    [22] M.V.C. Rao and V. Prahlad, “A tunable fuzzy logic controller for vehicle-active suspension systems,” Fuzzy Sets and Systems, vol. 85, pp. 11-21, 1997.
    [23] Y.-P. Kuo and T.-H. S. Li, “GA-based fuzzy PI/PD controller for automotive active suspension system,” IEEE Transactions on Industrial Electronics, vol. 46, no. 6, pp. 1051-1056, 1999.
    [24] F. J. D’Amato and D. E. Viassolo, “Fuzzy control for active suspensions,” Mechatronics, vol. 10, pp. 897-920, 2000.
    [25] S. J. Huang and H. C. Chao, “Fuzzy logic controller for a vehicle active suspension system,” Proceedings of the Institution of Mechanical Engineers, part D, vol. 214, pp. 1-12, 2000.
    [26] A. B. Sharkawy, “Fuzzy and adaptive fuzzy control for the automobiles’ active suspension system,” Vehicle System Dynamics vol. 43, no.11, pp. 795-806, 2005.
    [27] A.-H. Nizar, L. Tarek, S. J. Dae, W. Jonathan and A.-A. Faysal, “Sliding mode neural network inference fuzzy logic control for active suspension systems,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 234-246, 2002.
    [28] N. Al-Holou, J. Weaver, T. Lahdhiri and D. S. Joo, “Sliding mode-based fuzzy logic controller for a vehicle suspension system,” In: Proceedings of the American Control Conference, San Diego, CA, pp. 4188-4192, 1999.
    [29] M. Mahfouf and M. Jamei, “Rule-base generation via symbiotic evolution for a Mamdani-type fuzzy control system,” Proceedings of the Institution of Mechanical Engineers, Part I, Journal of System & Control Engineering, vol. 218, No. 8, pp. 621-635, 2004.
    [30] M. Jamei, M. Mahfouf and D. A. Linkens, “Elicitation and fine-tuning of fuzzy control rules using symbiotic evolution,” Fuzzy Sets & Systems, vol. 147, No. 1, pp. 57-74, 2004.
    [31] S. J. Huang and W. C. Lin, “A self-organizing fuzzy controller for an active suspension system,” Journal of Vibration and Control, vol. 9, pp. 1023-1040, 2003.
    [32] S. J. Huang and W. C. Lin, “Adaptive fuzzy controller with sliding surface for vehicle suspension control,” IEEE Trans. on Fuzzy Systems, vol. 11, no. 4, pp. 550-559, 2003.
    [33] S. J. Huang and C. W. Lin, “Application of a fuzzy enhance adaptive control on active suspension system,” International Journal of Computer Applications in Technology, vol. 20, No. 4, pp. 152-160, 2004.
    [34] F. B. Hildebrand, Advanced Calculus for Applications. Englewood Cliffs, NJ: Prentice Hall, 1976.
    [35] V. I. Utkin,“Variable structure system with sliding modes,”IEEE Trans. Automatic Control, Vol.AC-22, No.2, pp. 212-222, April, 1977.
    [36] J.-J. E. Slotine,“Tracking Control of Nonlinear Systems using Sliding Surfaces,”Doctoral Dissertation, Massachusetts Institute of Technology, 1983.
    [37] J.-J. E. Slotine and W. Li, Applied nonlinear control, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.
    [38] L. A. Zadeh,“Fuzzy Sets,”Information and Control, Vol.8, pp.338-353, 1965.
    [39] C. C. Lee,“Fuzzy Logic in Control Systems:Fuzzy Logic Controller Part I & II,”IEEE Trans. on system, Man, and Cybernetics, Vol.20, No.2, pp. 404-435, 1990.
    [40] S. W. Kim and J. J. Lee, “Design of a fuzzy controller with fuzzy sliding surface,”Fuzzy Sets and Systems, Vol.71, pp.359-367, 1995.
    [41] L. X. Wang,“Stable adaptive fuzzy control of nonlinear systems,”IEEE Trans. Fuzzy System, vol.1, pp.146-155, 1993.
    [42] R. Palm,“Sliding mode fuzzy control,”IEEE Int. Conference Fuzzy System, San Diego, CA, pp.519-526, Mar. 1992.
    [43] R. Palm,“Robust control by fuzzy sliding mode,”Automatica, Vol.30, No.9, pp.1429-1437, 1994.
    [44] F. J. Lin and S. L. Chiu,“Adaptive fuzzy sliding-mode control for PM synchronous servo motor drives,”IEE Proc.-Control Theory Appl., Vol.145, No.1, January 1998.
    [45] H. Lee and H. J. Kang,“Design of a sliding mode controller with fuzzy sliding surfaces,”IEE Proc.-Control Theory Appl., Vol.145, No.5, September 1998.
    [46] H. S. Tan and T. Bradshaw, “Model identification of an automotive hydraulic active suspension system,” Proceedings of the American Control Conference, Albuquerque, New Mexico, pp. 2920-2924, June, 1997.
    [47] G. C. Goodwin and K. S. Sin, Adaptive filtering prediction and control, Englewood Cliffs, NJ: Prentice-Hall, 1984.
    [48] L. Ljung, System identification toolbox for use with MATLAB. The Mathworks Inc., 2000.
    [49] K. S. Narendra and A. M. Annaswamy, “A new adaptive law for robust adaptation without persistent excitation,” IEEE Trans. on Automatic Control, vol. AC-32, no. 2, pp. 134-145, 1987.
    [50] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. Englewood Cliffs, NJ: Prentice Hall, 1989.
    [51] 郭有順,“不確定時變系統之適應控制研究”,國立台灣科技大學機械工程研究所,博士學位論文,2002。
    [52] 趙紘慶,“車輛主動式懸吊之控制系統研究”,國立台灣科技大學機械工程研究所,碩士學位論文,1998。
    [53] 林威成,“主動式車輛懸吊系統之控制器設計”,國立台灣科技大學機械工程研究所,碩士學位論文,2000。
    [54] 林江蔚,“自調式適應控制於主動式車輛懸吊系統上之應用”,國立台灣科技大學機械工程研究所,碩士學位論文,2001。
    [55] 黃緒哲,“智慧型控制系統”上課講義,2000。
    [56] 黃安橋,“非線性控制系統”上課講義,2001。
    [57] 黃安橋,“適應性控制理論”上課講義,2002。

    QR CODE