簡易檢索 / 詳目顯示

研究生: 彭國叡
Kuo-Gui Peng
論文名稱: 於RFID中雙訊框估計捕捉效應與雜訊干擾機率
Double Frame Estimation of Probabilities of Capture Effect and Noise Interference in RFID Systems
指導教授: 賴源正
Yuan-Cheng Lai
口試委員: 賴敬能
Ching-Neng Lai
林伯慎
Bor-Shen Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理系
Department of Information Management
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 25
中文關鍵詞: 雜訊干擾捕捉效應雙訊框無線射頻標籤辨識
外文關鍵詞: Noise Interference, Capture Effect, Double Frame, Radio Frequency Identification
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線射頻標籤辨識(RFID)系統因其具有快速、便利及無需接觸物體等優勢,現已廣泛應用在自動辨識系統中。在現實環境中存在捕捉效應與雜訊干擾現象,捕捉效應為多個標籤同時回傳訊號時因某一標籤訊號較強而導致讀取器可成功辨識此標籤,如此產生成功時槽,且讓其它標籤被隱藏;雜訊干擾為辨識環境處於一易受干擾影響的狀態,造成標籤在回傳訊號時無法被正常辨識,讀取器便會將原本成功時槽誤認為碰撞時槽。過去的多數研究都假設此二種現象不存在而予以忽視,然此確實會對RFID辨識效能造成影響。由於捕捉效應與雜訊干擾的發生機率跟最佳訊框長度的設定有關,因此如何有效且準確估計其發生機率變得相當重要,本論文同時考量此二種現象,提出雙訊框(Double Frame, DF)演算法,可以準確估計環境中捕捉效應機率與雜訊干擾機率。DF方法之優點為運算複雜度低且估計準確,其捕捉效應機率的平均估計誤差為0.84%,比現有方法CAE(Capture Aware Estimation)好上19.58%;其雜訊干擾機率的平均估計誤差為0.75%,比現有方法ERE-ABS(Error Resilient Estimation and Adaptive Binary Selection)好上20.66%。


    The Radio Frequency Identification (RFID) technique is widely applied into the
    automated identification system because it has immediate, convenient and contactless identification. Capture Effect and Noise Interference exist in a realistic environment. Capture Effect is that the reader successfully identifies one tag’s ID from many tags’ responses because its signal is much stronger than others. Thus the other tags will not be further identified, i.e., hidden. Noise Interference is the wireless transmission is in an error-prone environment, causing that the tag’s signal encounters errors. Therefore the reader can’t identify the tag ID, and regards a successful slot as a collision slot. Most papers assumed that these two phenomena do not appear and can be ignored, but they really exist in a realistic environment and significantly affect the performance of RFID identification. Since the opportunities of Capture Effect and Noise Interference will influence on the setting of the optimal frame length, estimating them effectively and accurately becomes important. This thesis considers these two phenomena and proposes the Double Frame (DF) algorithm, which can accurately estimate the probabilities of Capture Effect and Noise Interference. DF has not only low computational complexity but also high accuracy. The average error ratio of Capture Effect estimation is 0.84%, which is 19.58% better than the existing method CAE (Capture Aware Estimation). The average error ratio of Noise Interference estimation is 0.75%, which is 20.66% better than the existing method ERE-ABS (Error Resilient Estimation and Adaptive Binary Selection).

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 V 表目錄 VI 一、導論 1 二、背景 3 2.1 RFID 架構3 2.1.1 Tree-based3 2.1.2 ALOHA-based3 2.1.3訊框(Frame)4 2.2 捕捉效應(Capture Effect)4 2.3 雜訊干擾效應(Noise Interference)5 2.4 文獻探討5 2.4.1 捕捉效應5 2.4.2 雜訊干擾效應6 三、研究問題 8 3.1 參數說明8 3.2 問題描述9 四、DF演算法 10 4.1 Pseudo Code…10 五、模擬 16 六、結論 21 參考文獻 22

    [1] “Information technology -- Radio frequency identification for item management -- Part 6: Parameters for air interface communications at 860 MHz to 960 MHz General,” ISO/IEC, 18000-6. 2013.
    [2] M. Azambuja, C. A. M. Marcon, and F. P. Hessel, “Survey of Standardized ISO 18000-6 RFID Anti-collision Protocols,” presented at the Sensor Technologies and Applications, 2008. SENSORCOMM ’08. Second International Conference on, pp. 468–473. 2008.
    [3] M. Jacomet, A. Ehrsam, U. Gehrig, Contacless Identification Device With Anticollision Algorithm, IEEE Conference on Circuites, System, Computers and Communications, pp. 269-273. 1999.
    [4] V. Namboodiri and Lixin Gao, “Energy-Aware Tag Anti-Collision Protocols for RFID Systems,” presented at the Pervasive Computing and Communications, PerCom ’07. Fifth Annual IEEE International Conference on, pp. 23–36.2007.
    [5] Tzay-Farn Shih and Chia-Hao Teng, “The Design of a Stride Query Tree Algorithm for RFID Systems,” International Conference on Computational Intelligence, Communication Systems and Networks, pp 108-113. 2011.
    [6] J. Choi, I. Lee, D. Z. Du, and W. Lee, “FTTP: A Fast Tree Traversal Protocol for Efficient Tag Identification in RFID Networks,” IEEE Communications
    Letters, vol.14, no. 8, pp. 713-715, Aug. 2010.
    [7] J. H. Choi, D. Lee, and H. Lee, “Query tree-based reservation for efficient RFID tag anti-collision,” IEEE Communications Letters, vol. 11, no. 1, pp.85-87, Jan. 2007.
    [8] Yonghwan Kim, Sungsoo Kim, Seongjoon Lee and Kwangseon Ahn, “Improved 4-ary Query Tree Algorithm for Anti-Collision in RFID System,” International Conference on Advanced Information Networking and Applications pp. 699-704. 2009.
    [9] Richard T. B. Ma, Vishal Misra and Dan Rubenstein, Member, “An Analysis of Generalized Slotted-Aloha Protocols,” IEEE/ACM Transactions on networking, vol. 17, no. 3, June. 2009.
    [10] H. Vogt, “Multiple object identification with passive RFID tags,” in Proc. IEEE
    Int. Conf. Syst. Man Cybern, pp. 6–12. 2002.
    [11] S. Lee, S. Joo, and C. Lee, “An enhanced dynamic framed slotted ALOHA algorithm for RFID tag identification,” in Proc. Mobiquitous, pp. 166–172. 2005.
    [12] W. T. Chen, “An Accurate Tag Estimate Method for Improving the Performance of an RFID Anticollision Algorithm Based on Dynamic Frame Length ALOHA,” IEEE Transactions on Automation Science and Engineering, vol. 6, no. 1, pp. 9-15, Jan. 2009.
    [13] Wu H, Zeng Y. “Efficient framed slotted ALPHA protocol for RFID tag Anti collision,” IEEE Transactions on Automation Science and Engineering, 8 (3):
    581 – 588. 2011.
    [14] W. Su, N. V. Alchazidis, and T. T. Ha, “Multiple RFID Tags Access Algorithm,” IEEE Transactions on Mobile Computing, vol. 9, no. 2, pp. 174-187, Feb. 2010.
    [15] C. F. Lin and Y. S. Lin, “Efficient Estimation and Collision-Group-Based Anticollision Algorithms for Dynamic Frame-Slotted ALOHA in RFID Networks,” IEEE Transactions on Automation Science and Engineering, vol. 7, no. 4, pp. 840-848, Oct. 2010.
    [16] J. Park, M. Y. Chung and T. J. Lee, “Identification of RFID Tags in Framed-Slotted ALOHA with Robust Estimation and Binary Selection,” IEEE Communications Letters, vol. 11, no. 5, pp. 452-454, May. 2007.
    [17] LAI Y, HSIAO L. General binary tree protocol for coping with the capture effect in RFID tag identification[J]. IEEE Comm, Letters, 14(3):208-210. 2010.
    [18] Bo Li and Junyu Wang, “Efficient Anti-Collision Algorithm Utilizing the Capture Effect for ISO 18000-6C RFID Protocol,” IEEE Communications Letters, March. 2011.
    [19] Haifeng Wu and Yu Zeng , “Passive RFID Tag Anti collision Algorithm for Capture Effect,” IEEE Sensors Journal, January. 2015.
    [20] Xi Yang, Haifeng Wu, Yu Zeng , and Fei Gao, “Capture-Aware Estimation for the Number of RFID Tags with Lower Complexity,” IEEE Communications Letters, October. 2013.
    [21] Jian Su and Guang-Jun Wen, “A capture-aware anti-collision algorithm for ISO 18000-6C RFID protocol,” Wavelet Active Media Technology and Information Processing (ICWAMTIP), December. 2012.
    [22] Woo Jin Shin and Jeong Geun Kim, “A capture-aware access control method for enhanced RFID anti-collision performance,” IEEE Communications Letters, May. 2009.
    [23] V. K. Y. Wu, R. H. Campbell, “Using Generalized Query Tree to Cope with the Capture Effect in RFID Singulation,” 6th IEEE Consumer Communications and Networking Conference, January. 2009.
    [24] WU Hai-Feng, ZENG Yu, LING Yong-Fa, “ABTS Protocol for RFID Tags Anti-collision Under Capture Effect,” Acta Automatica Sinica March. 2014.
    [25] J. Park and T.J Lee, “Error Resilient Estimation and Adaptive Binary Selection for Fast and Reliable Identification of RFID Tags in Error-Prone Channel,” IEEE Communications Letters, June. 2012.

    無法下載圖示 全文公開日期 2020/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE