簡易檢索 / 詳目顯示

研究生: 凌一仁
Yi-Ren Ling
論文名稱: UHF頻段天線與毫米波雷達天線照之設計
Design of UHF Band Antennas and Millimeter Wave Antenna Radome
指導教授: 楊成發
Chang-Fa Yang
口試委員: 廖文照
陳譽明
魏冠雄
楊欣哲
楊成發
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 108
中文關鍵詞: 數位電視天線射頻辨識標籤天線毫米波雷達超穎材料天線罩
外文關鍵詞: DTV Antenna, Radio Frequency Identification, Tag Antenna, Millimeter Wave Radar, Metamaterial Antenna Radome
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文包含三項研究主題,第一部分針對數位電視廣播系統(Digital Video Broadcasting, DVB)頻段,提出一款倒F形天線,其涵蓋Bands III(174 MHz ~ 216 MHz)與Bands IV/V(470 MHz ~ 700 MHz)之雙頻段數位電視接收天線。 第二部分提出兩款應用於國道電子收費系統之UHF頻段標籤天線,其中藉由提高天線增益與抑制水平方向輻射,來降低既有標籤天線受4G基地台電波干擾之問題。第三部分為超穎材料(Metamaterial)雷達天線罩設計,來針對60 GHz雷達天線模組進行天線罩設計,提出一款由ABS外殼與超穎材料結合之雷達天線罩設計,可提升封裝天線增益。


    This thesis consists of three parts. The first part presents a dual band inverted-F antenna for Digital Video Broadcasting, which covers Bands III (174 MHz ~ 216 MHz) and Bands IV/V (470 MHz ~ 700 MHz). The second part proposes two kinds of the RFID tag antenna design, which can be used in highway Electronic Toll Collection systems. By enhancing antenna gain and suppressing radiations in horizontal directions, those antennas may solve the electromagnetic interference issues of the current tag antennas due to nearby 4G base stations. The third part is to design the metamaterial antenna radome of the 60 GHz AiP radar module. The proposed radome is consisted of the metamaterial and ABS shell to improve the gain of the AiP.

    摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 概述 4 第二章 數位電視天線設計 5 2.1 前言 5 2.2 倒F天線之發展歷史與原理 5 2.2.1 倒F天線參數分析 12 2.3 應用於DVB頻段之倒F天線設計 18 2.4 應用於DVB頻段之倒F天線參數分析 22 2.4.1 調整線段長度L1及L2之分析 22 2.4.2 調整短路接地腳高度H及位置D分析 24 2.4.3 調整挖槽G1位置 28 2.5天線量測 30 2.6 小結 37 第三章 應用於電子收費系統標籤天線設計 38 3.1 前言 38 3.2 無線射頻辨識系統概述 40 3.2.1 讀取器 (Reader) 42 3.2.2 電子標籤 (Tag) 43 3.3 Higgs-3標籤晶片分析 46 3.4 Vee Dipole標籤天線 48 3.4.1 Vee Dipole標籤天線架構 50 3.5 雙單元陣列標籤天線 56 3.5.1 雙單元陣列標籤天線架構 57 3.6 量測環境說明 61 3.7 靜態讀取量測 62 3.7.1 量測說明 62 3.7.2 量測結果 63 3.8 動態讀取量測 66 3.8.1 量測說明 66 3.8.2 量測結果 67 3.9 小結 74 第四章 超穎材料雷達天線罩 75 4.1前言 75 4.2 超穎材料概述 76 4.3 超穎材料架構 78 4.3.1 十字形結構分析 78 4.3.2十字型金屬片結構分析 81 4.4 整體天線罩分析 82 4.4.1 超穎材料擺放高度分析 83 4.5 小結 90 第五章 結論 91 參考文獻 92

    [1] 陳冠宇,「應用於車內數位廣播接收系統之天線設計」,國立臺灣科技大學,中華民國100年
    [2] 蔡富任,「應用於攜帶式DAB與FM車用廣播接收裝置之可重置微型天線與射頻電路設計」,國立臺灣科技大學,中華民國100年
    [3] 徐韻皓,「應用於車內數位廣播系統之薄膜天線設計」,國立臺灣科技大學,中華民國101年
    [4] 翁嘉駿,「車用電視系統之UHF與VHF頻帶主動式接收天線設計」,國立臺灣科技大學,中華民國102年
    [5] 陳甫玹,「應用於射頻模組與筆記型電腦之微型化天線設計」,國立臺灣科技大學,中華民國100年
    [6] J. Sesena, “Commonalities and peculiarities of DVB-S, DVB-C and DVB-SMATV systems (COMM's and PEC's of DVB systems),” IBC 95 International Broadcasting Convention, 1995, pp. 165-174.
    [7] DVB Project Office
    [8] Ronold King, C. Harrison and D. Denton, “Transmission-line missile antennas," IRE Transactions on Antennas and Propagation, vol. 8, no. 1, pp. 88-90, January 1960.
    [9] C. A. Balanis, Antenna Theory, 3rd edition. New York: John Wiley & Sons, 2005, pp. 852-854
    [10] M. F. Abedin and M. Ali, “Modifying the ground plane and its effect on planar inverted-F antennas (PIFAs) for mobile phone handsets,” IEEE Antennas and Wireless Propagation Letters, vol. 2, pp. 226-229, 2003.
    [11] N. L. Bohannon and J. T. Bernhard, “Ground plane effects on planar inverted-F antennas,” Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 2012, pp. 1-2.
    [12] A. T. Arkko, “Effect of ground plane size on the free-space performance of a mobile handset PIFA antenna,” Twelfth International Conference on Antennas and Propagation, 2003 (ICAP 2003). (Conf. Publ. No. 491), 2003, pp. 316-319 vol.1.
    [13] A. Chatterjee, A. Kumar, M. Midya and M. Mitra, “Design of a Novel 2-D Printed Inverted-F Antenna with Defected Ground Structure for Ultra Wide Band Applications,” 2019 IEEE Indian Conference on Antennas and Propogation (InCAP), 2019, pp. 1-4.
    [14] C. Mias et al., “Optically transparent microstrip antennas,” IEE Colloquium on Antennas for Automotives (Ref. No. 2000/002), 2000, pp. 8/1-8/6.
    [15] 蕭安堯,「應用於5G手持式裝置毫米波天線設計與UHF射頻辨識系統近場天線設計」,國立臺灣科技大學,中華民國106年
    [16] 國際通信聯盟 International Telecommunication Union (ITU)
    [17] 交通部高速公路局.
    [18] 遠通電收
    [19] RFID4U
    [20] 國家發展委員會檔案管理局
    [21] J. D. Griffin and G. D. Durgin, “Complete Link Budgets for Backscatter-Radio and RFID Systems,” IEEE Antennas and Propagation Magazine, vol. 51, no. 2, pp. 11-25, April 2009.
    [22] C. Boyer and S. Roy, “Backscatter Communication and RFID: Coding, Energy, and MIMO Analysis,” IEEE Transactions on Communications, vol. 62, no. 3, pp. 770-785, March 2014.
    [23] 財團法人中華民國商品條碼策進會
    [24] Alien Technology Higg-3 datasheet
    [25] S. Zhi, Y. Yao, J. Yu and X. Chen, “Design of a Passive RFID Yagi-Uda Sensor Tag Antenna,” 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 2019, pp. 1-3.
    [26] Warren L. Stutzman, Gary A. Thiele, Antenna Theory and Design, 3rd ed., John Wiley & Sons, 2013.
    [27] G. Marrocco, “The art of UHF RFID antenna design: impedance-matching and size-reduction techniques,” IEEE Antennas and Propagation Magazine, vol. 50, no. 1, pp. 66-79, Feb. 2008.
    [28] M. T. Reich and C. Bauer-Reich, “UHF RFID impedance matching: When is a T-match not a T-match?,” 2014 IEEE International Conference on RFID (IEEE RFID), 2014, pp. 23-30.
    [29] J. Xi and H. Zhu, “UHF RFID impedance matching: T-match-dipole tag design on the highway,” 2015 IEEE International Conference on RFID (RFID), 2015, pp. 86-93.
    [30] .Zheng, Yuejun & Gao, Jun & Zhou, Yu-Long & cao, xiangyu & Xu, Li-Ming & Sijia, Li & Yang, Huanhuan, “Metamaterial-based patch antenna with wideband RCS reduction and gain enhancement using improved loading method,” IET Microwaves, Antennas & Propagation, 2017.
    [31] Liu, Xiao & Gao, Jun & Cao, X. & Zhao, Yi & Li, W. & Sijia, Li & Li, Nan, “A High-gain and Low-scattering Waveguide Slot Antenna of Artificial Magnetic Conductor Octagonal Ring Arrangement,” Radioengineering. 2016.
    [32] W. Liu, Z. N. Chen and X. Qing, “Metamaterial-Based Low-Profile Broadband Aperture-Coupled Grid-Slotted Patch Antenna,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 7, pp. 3325-3329, July 2015.
    [33] D. Pattar and P. Dongaokar, “Design of Metamaterial Based Patch Antenna for Gain Enhancement,” 2020 IEEE International Conference for Innovation in Technology (INOCON), 2020, pp. 1-4.
    [34] Jia-jun Tang, Xian-liang Wu, Jian Li, Xiang-yu Li and Zhong-xiang Zhang, “A high gain microstrip antenna integrated with the novel FSS,” 2015 4th International Conference on Computer Science and Network Technology (ICCSNT), 2015, pp. 1182-1185.
    [35] R.W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 7, pp. 2113-2130, 2006.
    [36] O. Breinbjerg, “Metamaterial antennas — The most successful metamaterial technology?,” 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), 2015, pp. 37-39.
    [37] Metamaterials: Critique and Alternatives, Benedikt A. Munk.
    [38] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas and Propagation Magazine, vol. 54, no. 2, pp. 10-35, April 2012.
    [39] Anil Kumar Pandey, “Metamaterial-based Miniaturized Antenna Designs for Ultra-Wide Band Applications,” 2020 EDI CON Online.

    無法下載圖示 全文公開日期 2024/08/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE