簡易檢索 / 詳目顯示

研究生: 蕭安堯
An-Yao Hsiao
論文名稱: 應用於5G手持式裝置毫米波天線設計與UHF射頻辨識系統近場天線設計
A Study on Millimeter-Wave Antenna Design for 5G Handheld Devices and Near-Field Antenna Design for UHF RFID System
指導教授: 楊成發
Chang-Fa Yang
口試委員: 陳文士
廖文照
張玉斌
林健維
楊成發
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 104
中文關鍵詞: 第五代行動通訊毫米波場型可重置天線波束切換射頻辨識系統近場天線物件標籤
外文關鍵詞: 5G mobile communications, Millimeter wave, Pattern reconfigurable antenna, Beam switching, Radio frequency identification, Near-field antenna, Item-level tag
相關次數: 點閱:518下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對應用於第五代行動通訊(5G)手持式裝置之場型可重置天線以及超高頻(UHF)射頻辨識系統近場天線進行研究。第一部分將提出以可重置功率分配電路,並與準八木天線和單極天線及寄生元件結合而形成波束切換可重置天線,其中該可重置電路可激發 6 種高增益場型,可依照當時使用情境智慧地切換選擇合適之波束方向,來滿足毫米波天線應用於手持式裝置之訊號涵蓋需求。此可重置電路不需外加匹配電路即能使所提出波束切換可重置天線在 26 ~ 30GHz 毫米波頻帶內於所有操作狀態皆有一定的頻寬,並且實測驗證整體天線輻射效果良好。本論文所提出之天線有尺寸小、高增益、高指向、低姿態及可智慧地切換波束等特性,以達到全面性的涵蓋,期能應用於第五代行動通訊手持式裝置中。第二部分則針對應用於 UHF 頻辨識系統近場天線進行研究,並整合於博弈物品中賭桌籌碼管理系統。所提出之近場天線設計可產生較強的垂直或水平方向近場磁場,並實際驗證此系統可穩定讀取大量垂直或水平緊密堆疊的物件標籤,且此天線具良好定位功能,能明確判斷各玩家分別所下注之金額。本論文提出之天線具有良好近場特性,並配合自行開發之應用程式,可快速辨識出大量緊密堆疊籌碼,能夠節省人力清點時間及避免人工計算錯誤,有效提升遊戲中荷官判賠效率,使遊戲能更順利且快速進行。


    This thesis contains two parts. First part presents a pattern reconfigurable antenna operating in 26-30 GHz band. It is projected to be used on handheld devices for future 5G wireless communications. The proposed design is a multi-antenna system, which comprises a reconfigurable power divider that excites one or multiple antennas according to system’s commands. The diversified antenna excitation combinations provide various radiation patterns to meet the wideband mobile communication need of the future 5G handset. The main challenge is to maintain a proper matching condition under different excitation configurations. In the proposed design, a simple way is employed to match all cases. A total of six high-gain and directive radiation patterns is provided with a two-antenna system. The second part proposes two near field reader antennas for applications in the UHF radio frequency identification (RFID) system. Strong vertical and horizontal magnetic fields in near zones are respectively excited by those two reader antennas, so that the readable distance of the near-field tags attached on objects can be enhanced significantly. Thus, the reader antennas are capable of near-field identification and positioning applications, such as Gaming. For the gaming chip manage system, many stacked chips with tags embedded can be recognized by using the near-field reader antennas so that the manpower may be saved to significantly improve counting efficiency.

    摘要 I ABSTRACT III 誌謝 V 目錄 VII 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 2 1.3 論文組織 4 第二章 應用於第五代行動通訊手持式裝置之波束可重置毫米波天線設計 5 2.1 前言 5 2.2 天線設計原理與結構 7 2.3 理想與實際波束切換差異 9 2.4 更改天線設計架構 10 2.4.1 改變單體天線極化 10 2.4.2 修改饋入電路 12 2.5 可重置電路架構與匹配設計 13 2.6 初步驗證天線模擬與實測結果 14 2.7 可重置天線改良設計 20 2.8 偏壓電路設計 22 2.9 可重置天線模擬與實測結果 24 2.10 多波束天線系統驗證 29 2.11 小結 42 第三章 射頻辨識系統概述 43 3.1 前言 43 3.2 自動辨識系統 45 3.2.1 條碼系統 (BAR CODE) 45 3.2.2 光學字元辨識 (OPTICAL CHARACTER RECOGNITION, OCR) 46 3.2.3 生物辨識(BIOLOGICAL IDENTIFICATION) 46 3.2.4 晶片卡(IC CARD) 47 3.2.5 射頻辨識系統( RADIO-FREQUENCY IDENTIFICATION, RFID) 47 3.3 射頻辨識系統簡介 50 3.3.1 電子標籤 51 3.3.2 頻段 53 3.3.3 規範 54 3.4 天線理論 58 3.4.1 天線輻射場的區別 58 3.4.2 天線耦合之探討 59 3.4.3 近場效應分析 61 3.5 小結 63 第四章 應用於 UHF 射頻辨識系統之近場天線設計 64 4.1 前言 64 4.2 近場效應分析 66 4.2.1 電偶極與磁偶極天線之特性分析 66 4.2.2 標籤天線 69 4.3 近場天線設計 71 4.3.1 産生垂直磁場之近場天線 71 4.3.2 産生橫向磁場之近場天線 74 4.4 近場天線之應用 77 4.4.1 玩家下注區天線 78 4.4.2 籌碼盤天線 80 4.4.3 籌碼標籤天線 82 4.5 近場射頻辨識系統驗證 83 4.5.1 小區域賭桌(單一玩家) 85 4.5.2 籌碼盤 87 4.6 小結 90 第五章 結論 91 參考文獻 93 附錄 A 97 附錄 B 102

    [1] G. Wunder, P. Jung, and M. Kasparick, “5GNOW : Non-Orthogonal Asynchronous Waveforms for Future Mobile Applications,” IEEE Comm., vol. 52, pp. 97-105, Feb. 2014.
    [2] F. Boccardi, Robert W. Heath Jr., “Five Disruptive Technology Directions for 5G,” IEEE Comm., vol. 52, pp.74-80, Feb. 2014.
    [3] Z. Gao, L. Dai, D. Mi, Z. Wang, M.-A. Imran, and M.-Z. Shakir, “MMwave Massive-MIMO-Based Wireless Backhaul for the 5G Ultra-Dense Network,” IEEE Comm., vol. 22, pp.13-21, Oct. 2015.
    [4] T.-Narasimhan, P. Raviteja, and A. Chockalingam, “Large-Scale Multiuser SMMIMO Versus Massive MIMO,” Information Theory and Applications Workshop (ITA), pp. 1-9, Feb. 2014.
    [5] J. Shen, S. Suyama, T. Obara, and Y. Okumura, “Requirements of Power Amplifier on Super High Bit Rate Massive MIMO OFDM Transmission Using Higher Frequency Bands,” Globecom Workshops (GC Wkshps), pp. 433-437, Dec. 2014.
    [6] B. Panzner, W. Zirwas, S.-D. Lauridsenz, P. Mogensenz, K. Pajukoskix and D. Miao, “Deployment and Implementation Strategies for Massive MIMO in 5G,” Globecom Workshops (GC Wkshps), pp. 346-351, Dec. 2014.
    [7] K. Ogawa, A. Yamamoto, and J.-I Takada, “Multipath Performance of Handset Adaptive Said Array Antennas in the Vicinity of a Human Operator,” IEEE Trans. Antennas Propag., vol. 53, pp. 2422-2436, Aug. 2005.
    [8] N. Nonaka, Y. Kakishima, and K. Higuchi, “Investigation on Beamforming Control Methods in Base Station Cooperative Multiuser MIMO Using Block-Diagonalized Beamforming Matrix,” IEEE Vehicular Technology Conference (VTC Fall), pp. 1-5, Sept. 2014.
    [9] S. Han, C-L I, Z. Xu, and C. Rowell, “Large-Scale Antenna Systems with Hybrid Analog and Digital Beamforming for Millimeter Wave 5G,” IEEE Comm., vol. 53, pp. 186-194, Jan. 2015.
    [10] S.-E.-E. Khamy, I.-K.-H. Moussa, A.-A.-E. Sherif, “Performance Analysis of Massive MIMO Multiuser Transmit Beamforming Techniques over Generalized Spatial Channel Model,” Radio Science Conference (NRSC), pp. 139-146, Mar. 2015.
    [11] S.-H. Wu, K.-Y. Lin and L.-K. Chiu, “Hybrid Beamforming Using Convex Optimization for SDMA in Millimeter Wave Radio,” Proc. of IEEE PIMRC 2009, Sep. 13-16, 2009.
    [12] S.-H. Wu, L.-K. Chiu, K.-Y. Lin and M.-C. Chiang, “Planar Antenna Array Hybrid Beamforming for SDMA in Millimeter Wave WPAN,” Book chapter in Radio Communications, ISBN: 978-953-307-091-9, INTECH, April 2010.
    [13] Simon R. Saunders and Alejandro Aragón-Zavala, Antennas and Propagation for Wireless Communication Systems, Wiley, 2007.
    [14] Z. Gao, L Dai, D. Mi, Z. Wang, M.-A. Imran, and M.-Z Shakir, “MMwave Massive-MIMO-Based Wireless Backhaul for the 5G Ultra-Dense Network,” IEEE Comm., vol. 22, pp. 13-21, Oct. 2015.
    [15] X. Ding, B.-Z. Wang, and G.-Q. He, “Research on a Millimeter-Wave Phased Array With Wide-Angle Scanning Performance,” IEEE Antennas and Propag., vol. 61, Issue 10, pp. 5319-5324, June 2013.
    [16] Y.-Y. Bai, S. Xiao, M.-C. Tang, Z.-F. Ding, and B.-Z. Wang, “Wide angle scanning phase array with pattern reconfigurable elements,” IEEE Antennas and Propag., vol. 55, Issue 11, pp. 4071-4076, Aug. 2011.
    [17] S. J. Yoo,K.S. Kim, T.D. Yeo, S.J. Lee, D. J. Lee,and J. W.Yu,“A compact and reconfigurable beam pattern ESPAR antenna with automatic impedance matching system,” Microwave Conference (EuMC), pp. 53-56, Oct. 2014.
    [18] M. L. Lee, Y. S. Wang, and S. J. Chung, “Pattern reconfigurable strip monopole with eight switched printed parasitic elements,” in Proc. IEEE Int. Symp. Antennas Propag., pp. 3177-3180, Jun. 2007.
    [19] I.-Y. Tarn, S.-J. Chung "A Novel Pattern Diversity Reflector Antenna Using Reconfigurable Frequency Selective Reflectors,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 3035-3042, Oct. 2009.
    [20] C. Kittiyanpunya and M. Krairiksh, “Pattern reconfigurable printed Yagi-Uda antenna,” in Proc. Int. Symp. on Antennas and Propag., pp. 325-326, Dec. 2002.
    [21] T. Sabapathy, M. F. Jamlos, R. B. Ahmad, M. Jusoh, and M. I. Jais, “A reconfigurable microstrip rectangular parasitic array antenna,” Wiressless Technology and Applications(ISWTA), pp. 363-367 Sept. 2013.
    [22] M. Jusoh, A. H. Ismail, M. R. Kamarudin, A. Alomainy, M. W. Nasrudin, and T. Sabapathy, “Multi-directional beam of patch antenna,” International Conference on Electronic Design (ICED), vol. 60, no. 12, pp. 5947-5957, Dec. 2012.
    [23] P. K. Li, Z. H. Shao, Y. J. Cheng, and Q. Wang, “A pattern reconfigurable quasi-Yagi antenna with compact size,” in Proc. (ISAP), pp. 565-567, 2013.
    [24] H. S. Tae, K. S. Oh, H. L. Lee, W. I. Son, and J. W. Yu, “Reconfigurable 1×4 power divider with switched impedance matching circuits,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 64-66, Feb. 2012.
    [25] http://www.fiercewireless.com/tech/fcc-oks-sweeping-spectrum-frontiers-rulesto-open-up-nearly-11-ghz-spectrum
    [26] Y. Cai, Z. P. Qian, Y. S. Zhang, and W. Q. Cao, “A Compact Wideband SIW-Fed Dielectric Antenna with End-Fire Radiation Pattern,” IEEE Trans. Antennas Propag., vol. 64, pp. 1502-1507, 2016.
    [27] Y. Cai, Z. P. Qian, Y. S. Zhang, J. Jin and W. Q. Cao, “Bandwidth Enhancement of SIW Horn Antenna Loaded With Air-Via Perforated Dielectric Slab,” IEEE Antennas and wireless Propag. Lett., vol. 13, pp. 571-574, 2014.
    [28] M. E. Morote, S. Member, B. Fuchs, Member, J. F. Zürcher, and J.-R. Mosig, “Novel Thin and Compact H-Plane SIW Horn Antenna,” IEEE Trans. Antennas Propag., vol. 61, on. 4, June. 2013.
    [29] M. E. Morote, S. Member, B. Fuchs, Member, J. F. Zürcher, and J.-R. Mosig, “Novel Thin and Compact H-Plane SIW Horn Antenna,” IEEE Trans. Antennas Propag., vol. 61, on. 6, June. 2013.
    [30] Y. Cai; Z. P. Qian, W. Q. Cao, Y. S. Zhang, J. Jin, L. Yang, N. Jing, “Compact Wideband SIW Horn Antenna Fed by Elevated-CPW Structure,” IEEE Trans. Antennas Propag., vol. 63, pp. 4551-4557, Oct. 2015.
    [31] W. Hong, S.-T Ko, Y. Lee, and K.-H. Baek, “Compact 28 GHz Antenna Array With Full Polarization Flexibility Uber Yaw, Pitch, Roll Motions,” Samsung Electronics, DMC R&D Center.
    [32] Daniel M. Dobkin, The RF in RFID, Newnes, 2008.
    [33] P. V. Nikitin, K. V. S. Rao, and S. Lazar, “An overview of near field UHF RFID,” in Proc. IEEE Int. Conf. RFID, pp. 167-174, Mar. 2007.
    [34] K. V. S. Rao, P. V. Nikitin and S. Lam, “Impedance matching concepts in RFID transponder design,” Proceedings of IEEE Workshop on Automatic Identification technologies, pp. 39-42, Oct. 2005.
    [35] Y.-S. Chen, and S.-Y. Chen, “Analysis of antenna coupling in near-field RFID systems,” in IEEE AP-S Int. Symp. Dig., Jun. 2009.
    [36] H. Rhyu, F. J. Harackiewicz, B. Lee, “ Wide coverage area of UHF-band RFID system using a pattern reconfigurable antenna, ” Microwave Opt Technol Lett., vol. 49, no. 9, pp. 2154-2157, Sep. 2007.
    [37] Z.-H. Wu, S.-l. Lai, “Miniaturized microstrip array for the UHF-band RFID reader,” Microwave Opt Technol Lett., vol. 48, no. 7, pp. 1299-1301, Jul. 2006.
    [38] B. Lee, B. Yu, “Compact structure of UHF band RFID tag antenna mountable on metallic objects,” Microwave Opt Technol Lett., vol. 50, no. 1, pp. 232-234, Jan. 2008.
    [39] B. Yu, S.-J. Kim, B. Jung, F. J. Harackiewicz, B. Lee, “RFID tag antenna using two-shorted microstrip patches mountable on metallic objects,” Microwave Opt Technol Lett., vol. 49, no. 2, pp. 414-416, Feb. 2007.
    [40] S.-Y Chen, P. Hsu, “CPW-fed folded-slot antenna for 5.8 GHz RFID tags,” Electron. Lett., vol. 40, no. 24, pp. 1516-1517, Nov. 2004.
    [41] X.-S. Chen, F. Lu, and T.-T. Ye, “Mutual coupling of stacked UHF RFID antennas in NFC applications,” in IEEE AP-S Int. Symp. Dig., Jun. 2009.
    [42] Constanntine A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons Inc., 3nd ed., 2005.
    [43] X.-D. Wei, H.-L. Zhang, B.-J. Hu, “Novel Broadband Center-Fed UHF Near-Field RFID Reader Antenna,” IEEE Antennas and Wireless Propag. Lett., vol 14, pp. 703-706, 2015.

    無法下載圖示 全文公開日期 2022/08/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE