簡易檢索 / 詳目顯示

研究生: 陳敏中
Min-Chung Chen
論文名稱: 應用多層共平面波導搭配折疊式步階阻抗諧振器於無晶片射頻辨識之研究
Research of Multilayer Coplanar Waveguide Loaded with Folded Stepped Impedance Resonators as Chipless Radio Frequency Identification
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 楊成發
Chang-Fa Yang
朱輝南
Huy Nam Chu
廖文照
Wen-Jiao Liao
馬自莊
Tzyh-Ghuang Ma
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 86
中文關鍵詞: 射頻辨識標籤共平面波導折疊式步階阻抗諧振器耦合槽線模態向量網路分析儀超寬頻天線
外文關鍵詞: RF Identification (RFID) tag, coplanar waveguide, folded stepped impedance resonator, coupled slot-line mode, vector network analyzer, ultra-wideband antennas
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一款以一般印刷電路板製程實現之六位元射頻辨識標籤電路。此款電路以共平面波導(Coplanar Waveguide, CPW)結構,搭配多重折疊式步階阻抗諧振器,以多層結構雙層基板之形式實現。
    首先,本研究從無晶片射頻辨識標籤技術之回顧開始,接著說明發展低成本無晶片射頻辨識標籤之緣由,再將現有文獻之無晶片射頻辨識標籤技術分為基於時域反射法、基於頻譜特徵與基於振幅/相位反向散射調變三大類,最後再針對其中之基於頻譜特徵之多重諧振器設計之電路架構進行實驗探討。
    透過文獻之探討,標籤之設計利用折疊式步階阻抗諧振器,以CPW饋入形式沿著訊號線蝕刻三個步階阻抗諧振器於基板背面,並另外使用一基板蝕刻三個諧振器成反向180°正對排列呈現,再將CPW之接地面以銅線空氣橋連接抑制因使用該結構導致不連續所激發出的耦合槽線模態,並以諧振器之存在與否進行傳輸係數模擬。再以夾板式接頭連接輸入與輸出端並將兩基板三層結構以適當間距疊合並以塑膠鉚釘加以固定,復接上向量網路分析儀以量測整體結構之散射參數。最後使用四支超寬頻天線分別作為讀取器及標籤之收發天線,並以手持式網儀作為讀取器於無反射實驗室進行標籤編碼回傳之驗證以實現射頻辨識系統。


    This thesis presents circuit designs for 6-bit radio frequency identification (RFID) tags, which were produced by printed circuit board manufacturing process. These circuits feature a coplanar waveguide (CPW) with folded stepped impedance resonators (folded SIRs), forming multilayer dual-substrate structures.
    This research begins with reviewing chipless RFID technology and explored the reasons that prompted the development of chipless RFID tags, and categorized it into three types: time–domain reflectometry–based, spectral signature–based, and amplitude/phase backscatter modulation–based. Following that, an experiment was conducted by the spectral signature–based structures.
    According to the literatures, we designed tags by using three folded SIRs etched in the back of a substrate in CPW configuration along, and another three folded SIRs were etched in the back of another substrate in reverse order. Air bridges were used to connect the ground planes of the CPW, thus suppressing the coupled slot-line mode induced by the discontinuous configuration. The presence or absence of resonators was adopted for simulation of the structure’s transmission coefficients. Subsequently, straddle type connectors were fixed to the input and output ends of the structures, the multilayer dual-substrates were overlaid with an adequate space and fixed using plastic screws. A vector network analyzer (VNA) was used to measure the transmission coefficients of the structures.
    Finally, four ultra-wideband antennas were used for reader and tags transmit and received ends, and a hand-held VNA was adopted as an RFID reader to verify the RFID system in an anechoic chamber.

    摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 3 1.3 研究貢獻 4 1.4 論文組織 5 第二章 無晶片射頻辨識標籤技術之探討 6 2.1 前言 6 2.2 無晶片射頻辨識標籤之回顧與分類 6 2.2.1 無晶片射頻辨識標籤之分類 8 2.2.2 無晶片射頻辨識標籤電路系統架構 16 2.3 結語 19 第三章 共平面波導搭配步階阻抗諧振器之無晶片RFID標籤實驗驗證 20 3.1 前言 20 3.2 共平面波導搭配步階阻抗諧振器結構之電磁模擬 20 3.2.1 三位元RFID標籤之傳輸係數模擬 20 3.2.2 以空氣橋連接之共平面波導饋入不連續結構 27 3.2.3 六位元RFID標籤之傳輸係數模擬 29 3.3 共平面波導搭配步階阻抗諧振器結構之量測驗證 40 3.3.1 六位元RFID標籤傳輸係數模擬與量測結果比較 40 3.3.2 六位元RFID標籤之自由空間傳輸驗證與標籤辨識測試 52 3.4 結語 76 第四章 結論 77 4.1 總結 77 4.2 未來發展 77 參考文獻 79

    [1]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,“Magnetism from conductors and enhanced nonlinear phenomena, ”IEEE Trans. Microw. Theory Techn., vol. 47, no. 11, pp. 2075–2084, Nov. 1999.
    [2]F. Martín, F. Falcone, J. Bonache, R. Marqués, and M. Sorolla, “Split ring resonator-based left-handed coplanar waveguide,” Appl. Phys. Lett.,vol. 83, no. 22, pp. 4652–4654, Nov. 2003.
    [3]F. Falcone, T. Lopetegi, J. D. Baena, R. Marques, F. Martín, and M. Sorolla, “Effective negative-stop-band microstrip lines based on complementary split ring resonators,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 6, pp. 280–282, Jun. 2004.
    [4]F. Falcone et al., “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett., vol. 93, p. 197401, Nov. 2004.
    [5]F. Martín, Artificial Transmission Lines for RF and Microwave Applications. Hoboken, NJ, USA: Wiley, 2015.
    [6]G. Sisó, M. Gil, J. Bonache, and F. Martín, “Applications of resonanttype metamaterial transmission lines to the design of enhanced bandwidth components with compact dimensions,” Microw. Opt. Technol.Lett., vol. 50, no. 1, pp. 127–134, Jan. 2008.
    [7]J. Bonache, G. Siso, M. Gil, Á. Iniesta, J. Garcia-Rincon, and F. Martín,“Application of composite right/left handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs) to the design of dual-band microwave components,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 524–526, Aug. 2008.
    [8]M. Duran-Sindreu, G. Siso, J. Bonache, and F. Martín, “Planar multi-band microwave components based on the generalized composite right/left handed transmission line concept,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 3882–3891,Dec. 2010.
    [9]G. Zamora, S. Zuffanelli, F. Paredes, F. J. Herraiz-Martínez, F. Martín, and J. Bonache, “Fundamental-mode leaky-wave antenna (LWA) using slotline and split-ring-resonator (SRR)-based metamaterials, ”IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1424–1427,Oct. 2013.
    [10]J. Bonache, F. Martín, J. García-García, I. Gil, R. Marqués, and M. Sorolla, “Ultra wide band pass filters (UWBPF) based on complementary split rings resonators,” Microw. Opt. Technol. Lett., vol. 46, no. 3, pp. 283–286, Aug. 2005.
    [11]J. Bonache, I. Gil, J. García-García, and F. Martín, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 265–271, Jan. 2006.
    [12]F. J. Herraiz-Martinez, L. E. García-Muñoz, D. González-Ovejero, V.González-Posadas, and D. Segovia-Vargas, “Dual-frequency printed dipole loaded with split ring resonators,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 137–140 ,2009.
    [13]F. J. Herraiz-Martínez, G. Zamora, F. Paredes, F. Martín, and J. Bonache,“Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1528–1531, Dec. 2011.
    [14]J. Naqui, M. Durán-Sindreu, and F. Martín, “On the symmetry properties of coplanar waveguides loaded with symmetric resonators: Analysis and potential applications,” in IEEE MTT-S Int. Microw. Symp. Dig., Montreal, QC, Canada, Jun. 2012, pp. 1–3.
    [15]C. Mandel, B. Kubina, M. Schüßler, and R. Jakoby, “Passive chipless wireless sensor for two-dimensional displacement measurement,” in Proc. 41st Eur. Microw. Conf., Manchester, U.K., Oct. 2011, pp. 79–82.
    [16]J. Naqui, M. Durán-Sindreu, and F. Martín, “Novel sensors based on the symmetry properties of split ring resonators (SRRs),” Sensors, vol. 11, no. 8, pp. 7545–7553, 2011.
    [17]J. Naqui and F. Martín, “Transmission lines loaded with bisymmetric resonators and their application to angular displacement and velocity sensors,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4700–4713, Dec. 2013.
    [18]J. Naqui and F. Martín, “Angular displacement and velocity sensors based on electric-LC (ELC) loaded microstrip lines,” IEEE Sensors J., vol. 14, no. 4, pp. 939–940, Apr. 2014.
    [19]J. Naqui, J. Coromina, A. Karami-Horestani, C. Fumeaux, and F. Martín, “Angular displacement and velocity sensors based on coplanar waveguides (CPWs) loaded with S-shaped split ring resonators (S-SRR),” Sensors, vol. 15, no. 5, pp. 9628–9650, Apr. 2015.
    [20]D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett., vol. 88, no. 4, p. 041109, Jan. 2006.
    [21]J. Mata-Contreras, C. Herrojo, and F. Martín, "Application of Split Ring Resonator (SRR) Loaded Transmission Lines to the Design of Angular Displacement and Velocity Sensors for Space Applications,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4450–4460, Nov. 2017.
    [22]M. Makimoto, S. Yamashita, "Bandpass filters using parallel coupled stripline stepped impedance resonators", IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 1413-1417, 1980.
    [23]D. Packiaraj, M. Ramesh, and A. T. Kalghatgi, “Design of a trisection folded SIR filter”, IEEE Microw. Wireless Comp. Lett.,vol. 16, pp. 317-319, May 2006.
    [24]K. Finkenzeller, RFID Handbook, 2nd ed. New York: Wiley, 2003.
    [25]U. Kraiser and W. Steinhagen, “A low-power transponder IC for high-performance identification systems,” IEEE J. Solid-State Circuits, vol. 30, no. 3, pp. 306–310, Mar. 1995.
    [26]S. Preradovic and N. Karmakar. (2009, Aug.). Modern RFID readers. Microwave J. [Online]. Available: http://www.mwjournal.com/article.asp?HH_ID=AR_4830
    [27]S. Preradovic, N. Karmakar, and I. Balbin, “RFID transponders, ”IEEE Microwave Mag., vol. 9, no. 5, pp. 90–103, Oct. 2008.
    [28]C. S. Hartmann. (2002, Oct.). A global SAW ID tag with large data capacity. Proc. 2002 IEEE Ultrasonics Symp., Munich, Germany, vol.1, pp. 65–69 [Online]. Available: http://www.rfsaw.com/pdfs/Global_SAW_ID_Tag_lg.pdf
    [29]S. Preradovic and N. Chandra-Karmakar, “Chipless RFID: bar code of the future”, IEEE Microw. Mag., vol. 11, pp. 87-98, Dec. 2010.
    [30]J. Vemagiri, A. Chamarti, M. Agarwal, and K. Varahramyan,“Transmission line delay-based radio frequency identification(RFID) tag,” Microwave Opt. Technol. Lett., vol. 49, no. 8, pp. 1900–1904, 2007.
    [31]I. Jalaly, D. Robertson, "Capacitively-tuned split microstrip resonators for RFID barcodes", 2005 European Microwave Conference, vol. 2 pp:4, Paris, France, 4-6 Oct. 2005.
    [32]J. McVay, A. Hoorfar, and N. Engheta, “Space-filling curve RFID tags,” in 2006 IEEE Radio and Wireless Symp. Dig., San Diego, Jan.17–19, 2006, pp. 199–202.
    [33]Tagsense, Inc. (2006, Oct.). Chipless RFID products. Data Sheet [Online]. Available: http://www.tagsense.com/ingles/products/ product_chipless.html
    [34]I. Balbin and N. Karmakar, “Novel chipless RFID tag for conveyor belt tracking using multi-resonant dipole antenna,” in Proc. 39th European Microwave Conf., Rome, Italy, Sept. 2009, pp. 1109–1112.
    [35]M. Schuler, C. Mandel, M. Maasch, A. Giere, and R. Jakoby,“Phase modulation scheme for chipless RFID- and wireless sensor tags,” in Proc. Asia Pacific Microwave Conf. 2009, Singapore, Dec. 2009, pp. 229–232.
    [36]C. Mandel, M. Schussler, M. Maasch, and R. Jakoby, “A novel passive phase modulator based on LH delay lines for chipless microwave RFID applications,” in Proc. IEEE MTT-S Int. Microwave Workshop Wireless Sensing, Local Positioning and RFID 2009, Cavtat, Croatia, Sept. 2009, pp. 1–4.
    [37]S. Mukherjee, “Antennas for chipless tags based on remote measurement of complex impedance,” in Proc. 38th European Microwave Conf., Amsterdam, Netherlands, Oct. 2008, pp. 71–74.
    [38]S. Mukherjee, “Chipless radio frequency identification by remote measurement of complex impedance,” in Proc. 37th European Microwave Conf., Munich, Germany, Oct. 2007, pp. 1007–1010.
    [39]I. Balbin and N. C. Karmakar, “Phase-encoded chipless RFID transponder for large-scale low-cost applications,” IEEE Microwave Wireless Compon. Lett., vol. 19, no. 8, pp. 509–511, Aug. 2009.
    [40]L. Yang, R. Zhang, D. Staiculescu, C. P. Wong, and M. M. Tentzeris,“A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications,” IEEE Antennas Wireless Propagat. Lett., vol. 8, pp. 653–656, 2009.
    [41]S. Preradovic and N. Karmakar, “Design of fully printable planar chipless RFID transponder with 35-bit data capacity,” in Proc. 39th European Microwave Week, Rome, Italy, Sept. 2009, pp. 13–16.
    [42]S. Preradovic, I. Balbin, and N. Karmakar, “The development and design of a novel chipless RFID system for low-cost item tracking,”in Proc. Asia Pacific Microwave Conf. (APMC) 2008, Hong Kong, Dec.2008, pp. 1–4.
    [43]S. Preradovic, S. Roy, and N. Karmakar, “Fully printable multibit chipless RFID transponder on flexible laminate,” in Proc. Asia Pacific Microwave Conf. (APMC’09), Singapore, Dec. 2009, pp. 2371–2374.
    [44]S. Preradovic, I. Balbin, N. Karmakar, and G. Swiegers, “A novel chipless RFID system based on planar multiresonators for bar code replacement,” in Proc. IEEE Int. Conf. RFID 2008, Las Vegas, NV, Apr. 2008, pp. 289–296.
    [45]S. Preradovic, I. Balbin, N. C. Karmakar, G. F. Swiegers, "Multiresonator-based chipless RFID system for low-cost item tracking", IEEE Trans. Microwave Theory Tech., vol. 57, no. 5, pp. 1411-1419, May 2009.
    [46]C. P. Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microwave Theory Tech., vol. Mn-17, pp. 1087-1090, Dec. 1969.
    [47]N. H. L. Koster, S. Koslowski, R. Bertenburg, S. Heinen, and I. Wolff,“Investigations on air bridges used for MMICs in CPW technique,” in Proc. Eur. Microw. Conf., Sep. 1989, pp. 666–671.
    [48]K. Beilenhoff, W. Heinrich, and H. L. Hartnagel, “The scattering behaviour of air bridges in coplanar MMIC’S,” in Proc. Eur. Microw. Conf., Sep. 1991, pp. 1131–1135.
    [49]M. A. Llamas, M. Ribo, D. Girbau, and L. Pradell, “A rigorous multimodal analysis and design procedure of a uniplanar 180° hybrid, ”IEEE Trans. Microw. Theory Techn., vol. 57, no. 7, pp. 1832–1839, Jul. 2009.
    [50]M. A. Llamas, D. Girbau, M. Ribo, L. Pradell, F. Giacomozzi, and S. Colpo, “RF-MEMS uniplanar 180° phase switch based on a multimodal air-bridged CPW cross,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1769–1777, Jul. 2011.
    [51]C.-C. Wang, C.-H. Lai, and T.-G. Ma, “Miniaturized coupled-line couplers using uniplanar synthesized coplanar waveguides,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2266–2276, Aug. 2010.
    [52]C.-C. Wang, H.-C. Chiu, and T.-G. Ma, “A slow-wave multilayer synthesized coplanar waveguide and its applications to rat-race coupler and dual-mode filter,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1719–1729, Jul. 2011.
    [53]Koley, S., and D. Mitra. 2017. “A Frequency-Reconfigurable Elliptical Monopole Antenna for Cognitive Radio Networks.” Turkish Journal of Electrical Engineering & Computer Sciences 25 (3): 2535–2546.
    [54]H. M. Jafari, "A study of ultrawideband antennas for near-field imaging", IEEE Trans. Antennas Propag., vol. 55, no. 4, pp. 1184-1188, Apr. 2007.
    [55]Z. N. Chen, A. Cai, T. S. P. See, M. Y. W. Chia, "Small planar UWB antennas in proximity of the human head", IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1846-1857, Jun. 2006.
    [56]E.E. Angelopoulos, A. Z. Anastopoulos, D. I. Kaklamani, A. A. Alexandridis, F. Lazarakis, K. Dangakis, “Circular and elliptical CPWFed slot and microstri-fed antennas for ultrawideband applications”, IEEE Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp:294-297, December 2006.
    [57]Burell G.A & Jamieson A.R, “Antenna Radiation Pattern Measurement using Time to Frequency Transformation (TFT) Techniques”, IEEE Transactions on Antennas and Propagation, Vol. AP21, No. 9, 1973, pp. 702-703.
    [58]Henderson A., James J.R., Newham P., Morris G., “Analysis of gating errors in time domain antenna measurements”, Microwaves, Antennas and Propagation, IEE Proceedings, Vol. 136(4), 1989, pp.311-320.
    [59]T. Jin, Z. Linxi, L. Nanjing, C. Weijun, "Time-gating method for V/UHF antenna pattern measurement inside an anechoic chamber", Proc. Int. Conf. Microw. Millim. Wave Technol., vol. 2, pp. 942-945, 2008.
    [60]D. Camell, T. Johnk, D. Novotny, C. Grosvenor, "Free space antenna factors through the use of time-domain signal processing", Conformity Mag., vol. 12, no. 9, pp. 12-21, Sep. 2007.
    [61]Keysight FieldFox Analyzers N9915A User’s Guide [Online].Available: http://literature.cdn.keysight.com/litweb/pdf/N9927-90001.pdf
    [62]P. Piasecki, J. Strycharz, "Measurement of an omnidirectional antenna pattern in an anechoic chamber and an office room with and without time domain signal processing", Signal Processing Symposium, 10-12 June 2015.

    無法下載圖示 全文公開日期 2024/10/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE