簡易檢索 / 詳目顯示

研究生: 莊采芸
Tsai-Yun Chuang
論文名稱: 無線應用之多頻與超寬頻天線開發
Development of Multi-band and Ultra-Wideband antennas for wireless applications
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 劉適嘉
周良哲
馬自莊
陳晏笙
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 85
中文關鍵詞: 超寬頻天線對數週期雙臂螺旋天線阻抗配轉換器天線陣列長期演進技術微型化天線單極天線
外文關鍵詞: ultra-wideband antenna, log-periodic spiral antenna, impedance transformer, antenna array, long term evolution, miniaturized antennas, monopole antennas
相關次數: 點閱:365下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應無線通訊與電磁傳播多樣化的應用需求,本篇論文提出了一款多頻操作的金屬機身筆記型電腦天線與一款應用於電偵系統的超寬頻天線設計。針對應用的金屬特殊環境,調整天線特性,滿足其操作需求。
    論文中第一款設計為0.5 ~ 2 GHz之超寬頻天線,可應用於電偵接收系統。單元天線結構包含天線、阻抗匹配轉換器與反射板。天線結構以對數週期型式設計達到超寬頻操作的效果,施作於印刷電路板上,天線輻射場型為天線之法線方向。由於干涉儀式電偵接收機的需求為指向性朝前之輻射場型,故加上錐形反射面來使輻射場型呈現指向性朝上。單元天線總體尺寸為36 cm × 36 cm × 12 cm,3-dB波束寬皆達60度,在各頻率具相當之一致性,而最大增益與效率可達12 dBi與60 %以上,本設計可應用於干涉儀之接收端。
    第二款天線設計為應用於窄邊框金屬背蓋之筆記型電腦LTE全頻天線,其架構主要為單極天線,搭配耦合結構與集總元件來進行設計。天線具有可調性,每個結構固定控制特定模態,因此能夠方便地調整設計,以適應環境的改變。天線尺寸為75 × 7 × 2.4 mm^3。本天線的特點為擁有較小的天線高度、可以獨立調整各共振模態,不僅在單純環境下能夠擁有好的表現,放入真實機殼中實測也有一定的效率。天線在單純環境下量測的結果,於LTE/WWAN 頻帶內,反射係數均能達到-6 dB 以下的標準,涵蓋 698-960 MHz 以及1710-2690 MHz 頻帶,天線量測效率在低頻有 30% 以上,高頻也有 50 % 以上的表現。


    This thesis presents tow topics pertinent to the development of multi-band and Ultra-Wideband antennas for wireless applications.
    The first part is a log-periodic two-arm spiral antenna design for broadband reception uses. It’s intended to be used on detection of radio sources as well as direction finding. The designed antenna operates in the 0.5~2 GHz band. Its structure consists of two spiral arms, an impedance transformer, and a conical reflector. The two arms are placed on the surface of an FR4 dielectric slab and the geometry is of log-periodic spirals. The resulting input impedance of the two-arm spiral is around 120 Ohms. Therefore, a 50-to-120 Ohm transformer is devised. To generate a directive pattern, a reflector is added beneath spiral arms. The total dimensions are 36 cm × 36 cm × 12 cm. Directive patterns are observed at all frequencies. The maximum gain is approximately 12 dBi and the total radiation efficiency is around 60%. Above features meet the direction finding need of radio sources in the UHF band.
    The second part is an LTE/WWAN antenna design for laptops with narrow bezel and metal enclosure. The antenna is composed of a monopole antenna and a coupling structure. The antenna can be conveniently adjusted to cope with various changes in the antenna platform. The total dimensions are 75 mm × 7 mm × 2.4 mm. The good performances of the proposed antenna are verified in an actual notebook. The antenna’s matching bandwidth complies with the LTE/WWAN needs. Measured radiation efficiency is above 30% in 698-960 MHz and more than 50% in 1710-2690 MHz.

    摘要 Ι ABSTRACT II 目錄 IV 圖目錄 VI 表目錄 X 第1章 第一章 緒論 1 1.1. 研究背景 1 1.2. 論文組織 2 第2章 第二章 應用於電偵接收機之超寬頻對數週期雙臂螺旋天線 3 2.1. 研究動機 3 2.2. 天線結構 6 2.2.1 天線設計參數分析 7 2.2.2 阻抗匹配轉換器設計參數分析 10 2.2.3 錐形反射面結構 17 2.3. 天線效能驗證 21 2.4. 干涉儀演算法及其對演算法效能之影響. 25 2.5. 小結 27 第3章 第三章 應用於窄邊框筆電LTE全頻天線 28 3.1. 研究動機 28 3.2. LTE全頻天線設計 30 3.2.1 天線結構 30 3.2.2 天線設計流程 32 3.3. 天線參數分析 38 3.4. 天線於真實筆電機殼中的特性分析 48 3.5. 天線效能驗證 53 3.6. 小結 61 3.7. LTE天線特性比較 62 3.8. 未來發展 63 第4章 第四章 結論 64 參考文獻 66

    [1] [Online]. Available: https://en.wikipedia.org/wiki/Electronic_warfare
    [2] [Online].https://read01.com/zh-tw/O3GaDA.html#.Wz-dhNUzZhF
    [3] B. Peng and X. Guan, “A new track association algorithm of radar and ESM,” CIE International Conference on Radar (RADAR), pp. 1-5, Oct. 2016
    [4] L. Yang, Z. Lai, Z. Liu and Y. Liang, “Joint target tracking and recognition using MTI and ESM sensors,” CIE International Conference on Radar (RADAR), pp. 1-5, Oct. 2016.
    [5] X. Tang, J. Tang, B. Tang, Z. Gao, X. Bi and J. Du, “A new electronic reconnaissance technology for MIMO radar,” Proceedings of 2011 IEEE CIE International Conference on Radar, vol. 1, pp. 79-83, Mar. 2012
    [6] P. Denisowski, A comparison of radio Direction-Finding technologies, Presentation Material, Rohde and Schwarz, Archived 2012.
    [7] C. Kopp, Warsaw Pact / Russian / PLA Emitter Locating Systems / ELINT Systems, Technical Report APA-TR-2008-0503, April 2012.
    [8] 林聖淵, 洪子翔, 江政泰, 廖文照, 劉馨勤, “軟體無線電平台之跳頻訊源定向儀研製,” 第24屆國防科技研討會, 桃園、台灣, 104年11月 19日.
    [9] N. K. Peng, "A correlation-based method for direction finding of multipath signals in frequency hopping systems, " National University of Singapore, Thesis for The Degree of Master of Engineering, 2005
    [10] N. Peng, C. C. Ko, and Wanjun Zhi, "Multipath signals tracking for frequency hopping systems," IEEE Vehicular Technology Conference, pp. 84-87 , 2004
    [11] 廖文照, 劉馨勤, 張仕勳, 林紘毅, 江秉杰,“適用於多波束陣列天線的振幅比較式訊號源定向演算法,”第20屆國防科技研討會, 桃園、台灣, 100年11月18日.
    [12] J. E. Hanson, “ On resolving angle ambiguities of n-channel interferometer systems for arbitrary antenna arrangements in a plane,” Tech Report Johns Hopkins Univ. Applied Physics Lab, 1973.
    [13] W. B. Kendall, "Unambiguous accuracy of an interferometer angle-measuring system," in IEEE Transactions on Space Electronics and Telemetry, vol. SET-11, no. 2, pp. 62-70, June 1965.
    [14] S. Van Doan, J. Vesely, P. Janu, P. Hubacekand X. L. Tran, “Optimized algorithm for solving phase interferometer ambiguity,” 17th International Radar Symposium (IRS), Krakow, pp. 1-6, 2016.
    [15] E. Jacobs and E. W. Ralston, “Ambiguity resolution in interferometry,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-17, no. 6, pp. 766-780, Nov. 1981.
    [16] 龔享銥,袁俊泉,蘇令華, “基於相位干涉儀陣列多組解模糊的波達角估計算法研究,” 電子與信息學報, 第二十八卷, 第一期, 第55-59頁, 2006.
    [17] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 3rd ed., 2012, pp. 226-232, pp. 233-238, pp. 239-243, 245-264, 250.
    [18] David M. Pozar, Microwave Engineering, 4th ed.,Wiley, 2011, pp.70-73
    [19] C. Sarkar, "Some parametric studies on Vivaldi antenna, "International Journal of u- and e- Service, Science and Technology, vol. 7, no.4, pp. 323-328, 2014.
    [20] J. E. Hanson, "On resolving angle ambiguities of n-channel interferometer systems for arbitrary antenna arrangements in a plane," Tech Report Johns Hopkins Univ. Applied Physics Lab, 1973.
    [21] W. B. Kendall, "Unambiguous accuracy of an interferometer angle-measuring system," in IEEE Transactions on Space Electronics and Telemetry, vol. SET-11, no. 2, pp. 62-70, June 1965.
    [22] S. Van Doan, J. Vesely, P. Janu, P. Hubacekand X. L. Tran, "Optimized algorithm for solving phase interferometer ambiguity ," 2016 17th International Radar Symposium (IRS), Krakow, pp. 1-6, 2016.
    [23] J.-H. Lu and F.-C. Tsai, “Planar internal LTE/WWAN monopole antenna for tablet computer application,” IEEE Trans. Antennas and Propag., vol. 61, no. 8, pp. 4358-4363, May 2013.
    [24] J.-H. Lu and Z.-W. Lin, “Planar compact LTE/WWAN monopole antenna for tablet computer application,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 147-150, Feb. 2013.
    [25] J.-H. Lu and Y.-S. Wang, “Planar small-size eight-band LTE/WWAN monopole antenna for tablet computers,” IEEE Trans. Antennas and Propag., vol. 62, no. 8, pp. 4372-4377, Aug. 2014.
    [26] C.-L. Tang, C.-M. Chiang, and C.-H. Chen, “Frequency-switchable LTE antenna for tablet application,” Asia-Pacific Microwave Conference (APMC), pp. 1-3, Dec. 2015
    [27] W.-S. Chen, Y. Chi, F.-S. Chang, and C.-Y. Hsu, “Coupled-fed LTE antenna design for tablet applications,” IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), pp. 141-142, Jul. 2016
    [28] M.-T. Chen and K.-L. Wong, “Printed loop antenna with an inductively coupled branch strip for small-size LTE/WWAN tablet computer antenna,” in Proc. International Symposium on Antennas and Propagation (ISAP), pp. 136-137, Oct. 2015.
    [29] Y.-L. Ban, S.-C. Sun, P.-P. Li, J. L.-W. Li and K. Kang, “Compact eight-band frequency reconfigurable antenna for LTE/WWAN tablet computer applications,” IEEE Trans. Antennas and Propag., vol. 62, no. 1, pp. 471-475, Oct. 2013.
    [30] C.-L. Hu, W.-F. Lee, Y.-E. Lee, C.-F. Yang and S.-T. Lin, “A compact multiband inverted-F antenna for LTE/WWAN/GPS/WiMAX/WLAN operations in the laptop computer,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 1169-1173, Dec. 2010.
    [31] C.-L. Hu, C.-F. Yang and S.-T. Lin, “A compact inverted-F antenna to be embedded in ultra-thin laptop computer for LTE/WWAN/WiMAX/WLAN applications,” IEEE International Symposium on Antennas and Propagation (APSURSI), vol. 9, pp. 1169-1173, Dec. 2010.
    [32] C.-Y. Tsai, and K.-L. Wong, “Combined-type dual-wideband and triple-wideband LTE antennas for the tablet device,” in Proc. Asia Pacific Conference on Antennas and Propagation (APCAP), pp. 411-412, Jul. 2015.
    [33] K.-L. Wong and Z.-G. Liao, “Passive reconfigurable triple-wideband antenna for LTE tablet computer,” IEEE Trans. Antennas and Propag., vol. 63, no. 3, pp. 901-908, Dec. 2014.
    [34] D. Huang, Z. Du and Y. Wang, “An octa-band monopole antenna with a small nonground portion height for LTE/WLAN mobile phones,” IEEE Trans. Antennas and Propag., vol. 65, no. 2, pp. 878-882, Dec. 2016.

    無法下載圖示 全文公開日期 2023/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE