簡易檢索 / 詳目顯示

研究生: 賴汎軒
Fan-Hsuan Lai
論文名稱: 以相位可調合成傳輸線實現波束掃描平面陣列系統
A Study of Beam-scanning Planar Phased Array Using Phase Tunable Synthesized Transmission Lines
指導教授: 馬自莊
Tzyh-Ghuang Ma
朱輝南
Huy-Nam Chu
口試委員: 廖文照
Wen-Jiao Liao
曾昭雄
Chao-Hsiung Tseng
陳晏笙
Yen-Sheng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 124
中文關鍵詞: 天線陣列波束切換波束控制相位陣列功率分配器功率分配比合成傳輸線孔徑耦合天線陣列
外文關鍵詞: antenna array, beam-switching, beam-steering, phase array, power divider, power division ratio, synthesized transmission line, aperture coupling antenna array
相關次數: 點閱:289下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了一款2 × 2平面波束掃描陣列天線系統。此系統以三層金屬層的方式實現之,最底層為相移饋入網路系統,第二層為孔徑耦合層,而第三層則為天線輻射體層。
    首先,本論文以集總等效電路模型之形式,介紹右手合成傳輸線以及左手合成傳輸線之電氣響應,並以相位可重置合成傳輸線為基礎,提出連續相位可調合成傳輸線,該傳輸線係以線電感以及變容器組合成左右手合成傳輸線。該合成傳輸線操作於特定電壓時,可提供特定電容值,使該合成傳輸線於特定頻率具有一定的相位延遲或是相位領先,此特性將為構成2 × 2平面波束掃描陣列天線系統之主要核心元件。
    而後,為了讓各天線間產生漸變相移量,將兩款相位可調合成傳輸線連接T型不等分功率分波器完成一相移饋入網路系統,而T型不等分功率分波器是為了補償傳輸路徑相移器個數不同所造成的損耗,其實測電氣響應將符合天線陣列主波束切換所需的相位。
    再者,將相移饋入網路系統與孔徑饋入貼片天線作整合,將前述相移饋入網路系統之操作電壓一一紀錄之,利用所紀錄之電壓,經輻射場型之實驗量測,驗證其工作電壓是否具有之波束掃描系統之能力。
    最後,此陣列天線最大的優勢即為使用三個相移器便可達成二維波束掃描,大大的減少了昂貴的相移器使用個數,而缺點則是需要犧牲些許的頻寬,由於各天線單元間經過相移器個數不同的緣故。
    本論文詳盡討論此系統架構之設計概念、電路佈局,模擬與量測結果之比較,並進行分析與討論。


    A novel 2 × 2 planar beam scanning array antenna system is proposed in this thesis. This system is implemented in the form of three metal layers using two dielectric substrates with air gap in-between. The bottom layer is the phase-shift feeding network system, the second layer is the aperture coupling layer, and the third layer is the antenna radiator layer.
    First, the electrical response of the right-handed synthesized transmission line and the left-handed synthesized transmission line in the form of a lumped equivalent circuit model is introduced. Based on the reconfigurable synthesized transmission line, a continuous-phase adjustable synthesized transmission line is proposed. The synthesized line comprises quasi-lumped line inductors and varactors. By properly selecting the bias voltage of the varactors, the synthesized transmission line can have a phase delay or phase advance at the center frequency. This characteristic will be the cornerstone of the 2 × 2 planar beam scanning array antenna system.
    Then, in order to produce progressive phase shift between antennas, synthesized transmission lines are connected to T-junctions to fulfill the phase shift feeding network. The T-junction has unequal power splitters to compensate for the variation of loss due to different number of phase shifters in each path. The measured electrical response matches the predication.
    Furthermore, the phase shift feeding network and the aperture coupling patch antenna array are integrated to validate the main beam scanning capability by experiments. The advantage of the proposed array antenna relies on achieving two-dimensional beam scanning capability merely with three low-cost phase shifters with synthesized lines, which greatly reduces overall fabrication cost. Nonetheless, this is fulfilled at the expense of somewhat sacrificing operational bandwidth because of the number of phase shifters between antenna units is different.

    摘要 I Abstract V 誌謝 I 目錄 VII 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 3 1.4 論文組織 3 第二章 相位可調合成傳輸線 2 × 2平面波束掃描陣列天線系統 4 2.1 前言 4 2.2 集總與準集總等效電路模型 5 2.2.1 右手合成傳輸線 5 2.2.2 左手合成傳輸線 6 2.3 相位可調合成傳輸線 9 2.4 2 × 2平面波束掃描陣列系統架構 10 2.5 結語 12 第三章 2 × 2平面波束掃描陣列天線系統之構成元件 13 3.1 前言 13 3.2 相位可調合成傳輸線 13 3.2.1 合成傳輸線A 13 3.2.2 合成傳輸線B 24 3.3 T型不等分功率分波器 29 3.3.1 系統損耗估計 29 3.3.2 功率分波器A 30 3.3.3 功率分波器B 34 3.3 相移饋入網路設計 38 3.3.1 設計規格與評估 38 3.3.2 相移饋入網路之電氣響應 39 3.4 天線 54 3.5 結語 59 第四章 2 × 2平面波束掃描陣列天線系統之實際驗證 60 4.1 前言 60 4.2 2 × 2平面波束掃描陣列天線系統實作 60 4.2.1 設計規格與評估 60 4.2.2 輻射場型量測驗證 62 4.3 相移器數量優劣分析 82 4.4 結語 84 第五章 結論 85 5.1 總結 85 5.2 未來發展 86 參考文獻 87 附錄 92

    [1] H.V. Cottony, “Wide-frequency-band radar array antenna system with suppressed
    grating lobes,” IEEE Trans. Antennas Propag., vol. 18, no. 6, pp. 774-779, Nov. 1970.
    [2] R. Pokuls, J. Uher, and D. M. Pozar, “Microstrip antennas for SAR applications,” IEEE
    Trans. Antennas Propag., vol. 46, no. 9, pp. 1289-1296, Nov. 1998.
    [3] W. Wang, J. Jin, J. G. Lu, and S. S. Zhong, “Waveguide slotted antenna array with
    broadband, dual-polarization and low cross-polarization for X-band SAR applications,”
    in Proc.IEEE Int. Radar Conf., 2005, pp. 653-656.
    [4] S. O. Al-Jazzar, H. J. Strangeways, and D. C. McLernon, “2-D angle of arrival
    estimation using a one-dimensional antenna array,” in Proc. European Signal Process.
    Conf., 2014, pp. 1905-1909.
    [5] X. Wang, F. Gao, and Q. Liu, “Design of antenna array used as smart antenna for TDSCDMA
    systems,” in Proc.IEEE Int. Conf. Commun. Circuits Syst., 2004, pp. 176-180.
    [6] M. Moghaddam, Y. Rahmat-Samii, P. Partridge, L. Van Nieuwstadt, J. Vitaz, M. Haynes,
    J. Huang, and V. Cable, “Dual polarized UHF/VHF honeycomb stacked-patch feed
    array for a large-aperture space-borne radar antenna,” in Proc. IEEE Aerosp. Conf.,
    2007, pp. 1-10.
    [7] J. F. Frigon and B. Daneshrad, “Field measurements of an indoor high-speed QAM
    wireless system using decision feedback equalization and smart antenna array” IEEE
    Trans. Wireless Commun., vol. 1, no. 1, pp. 134-144, Jan. 2002.
    [8] S. S. Jeon, Y. Wang, Y. Qian, and T. Itoh, “A novel smart antenna system
    implementation for broad-band wireless communications,” IEEE Trans. Antennas
    Propag., vol. 50, no. 5, pp. 600-606, May 2002.
    [9] J. Nolen, “Synthesis of multiple beam networks for arbitrary illuminations,” Ph.D.
    dissertation, Bendix Corporation, Radio Division, Baltimore, MD, USA, 1965.
    [10] J. Butler and R. Lowe, “Beam forming matrix simplifies design of electronically
    scanned antennas,” Electron. Design, vol. 9, pp. 170–173, Apr. 1961.
    [11] J. Blass, “Multidirectionnal antenna, a new approach to stacked beams - Part I,” in IRE
    Int. Conf. Rec., 1960, vol. 8, pp. 48–50.
    [12] D. Parker and D. C. Zimmermann, “Phased arrays—Part II: Implementations,
    applications, and future trends,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 3, pp.
    688–698, Mar. 2002.
    [13] R. J. Mailloux, Phased Array Antenna Handbook, Norwood, MA: Artech House, 1994.
    [14] R. Vescovo, “Reconfigurability and beam scanning with phase-only control for antenna
    arrays,” IEEE Trans. Antennas Propaga., vol. 56, no. 6, pp. 1555-1565, Jun. 2008.
    [15] F. Ellinger, H. Jäckel, and W. Bächtold, “Varactor-loaded transmission-line phase
    shifter at C-band using lumped elements,” IEEE Trans. Microw. Theory Tech., vol. 51,
    no. 4, pp. 1135–1140, Apr. 2003.
    [16] M. A. Y. Abdalla, K. Phang, and G. V. Eleftheriades, “A 0.13-μm CMOS phase shifter
    using tunable positive/negative refractive index transmission lines,” IEEE Microw.
    Wireless Compon. Lett., vol. 16, no.12, pp. 705–707, Dec. 2006.
    [17] D. Kuylenstierna, A. Vorobiev, P. Linnér, and S. Gevorgian, “Composite right/left
    handed transmission line phase shifter using ferroelectric varactors,” IEEE Microw.
    Wireless Compon. Lett., vol. 16, no. 4, pp.167–169, Apr. 2006.
    [18] J.-C. Wu, T.-Y. Chin, S.-F. Chang, and C.-C. Chang, “2.45-GHz CMOS reflection-type
    phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,”
    IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2180–2189, Oct. 2008.
    [19] C.-S. Lin, S.-F. Chang, and W.-C. Hsiao, “A Full-360° reflection-type phase shifter with
    constant insertion loss,” IEEE Trans. Microw. Theory Tech., vol. 18, no. 2, pp. 106–108, Feb. 2008.
    [20] W. J. Liu, and S. Y. Zheng, Y. M. Pei, Y. X. Li, and Y. L. Long, “A wideband tunable
    reflection-type phase shifter with wide relative phase shift,” IEEE Trans. Circuits Syst.
    II, Exp. Briefs, vol. PP, no. 99, Jan. 2017.
    [21] S. Gong, H. Shen, and N. S. Barker, “A 60-GHz 2-bit switched-line phase shifter using
    SP4T RF-MEMS switches,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 4, pp.
    894–900, Apr. 2011.
    [22] B. M. Shifmann, “A new class of broad-band microwave 90-degree phase shifters,”
    IEEE Trans. Microw. Theory Tech., vol. 6, no. 2, pp. 232-237, Jul. 1958.
    [23] S. J. Kim and N. H. Myung, “A new active phase shifter using a vector sum method,”
    IEEE Microw. Guided Wave Lett., vol. 10, no. 6, pp. 233–235, Jun. 2000.
    [24] Duffy, S. M., and D. M. Polar, "Aperture coupled microstrip subarrays," Electron. Lett.,
    vol. 30. no. 23,pp. 1901-1902,Nov. 1994.
    [25] X. H. Yang and L. Shafai, “Characteristics of aperture coupled microstrip antennas with
    various radiating patches and coupling apertures,” IEEE Trans. Antennas Propag., vol.
    46, no. 1, pp. 72–78, Jan. 1995.
    [26] M.Singh, A.Basu & S.K.Koul, “Design of Aperture Coupled Fed Microstrip Patch
    Antenna for Wireless Communication”, India Conference, 2006 Annual IEEE, 15-17
    September 2006.
    [27] W. Wang, T. G. Ma, and C. F. Yang, “A new planar artificial transmission line and its
    applications to miniaturized Butler matrix,” IEEE Trans. Microw. Theory IEEE Trans.
    Microw. Theory Techn.,Techn., vol. 55, no. 12, pp. 2792-2801, Dec. 2007.
    [28] C. C. Wang, C. H. Lai and T. G. Ma,“Miniaturized Coupled-Line Couplers Using
    Uniplanar Synthesized Coplanar Waveguides,”IEEE Trans. Microw. Theory Techn.,vol.
    58, no. 8, pp. 2266-2276, Aug. 2010.
    [29] L. Chang and T. G. Ma, “Dual-mode branch-line/rat-race coupler using composite
    right-/left-handed lines,” IEEE Microw. Wireless Comp. Lett., vol. 27, no. 5, pp. 449-
    451, May 2017.
    [30] J. H. Choi and T. Itoh, “Dual band composite right/left handed (CRLH) phased array
    antenna,” IEEE Antennas Wireless Propag . Lett., vol. 11, pp. 732 735, 2012.
    [31] M. R. M. Hashemi and T. Itoh, “Dual-band composite right/left-handed metamaterial
    concept,” IEEE Microw. Wireless Comp. Lett., vol. 22, no. 5, pp. 248-250, May 2012.
    [32] C. H. Lai, G. T. Zhou, and T. G. Ma, “On-chip miniaturized diplexer using jointed dualmode
    right-/left-handed synthesized coplanar waveguides on GIPD process,” IEEE
    Microw. Wireless Comp. Lett., vol. 24, no. 4, pp. 245-247, April 2014.
    [33] C. H. Lai, C. Y. Shiau, and T. G. Ma, “Microwave three-channel selector using tri-mode
    synthesized transmission lines,”IEEE Trans. Microw. Theory Techn., vol. 61, no. 10, pp.
    3529-3540, Oct. 2013.
    [34] H. N. Chu, H. Liao, G. Li and T. Ma, “Novel phase reconfigurable synthesized
    transmission line and its application to reconfigurable hybrid coupler,” 2017 47th
    European Microwave Conference (EuMC), Nuremberg, 2017, pp. 1077-1080, doi:
    10.23919/EuMC.2017.8231033.
    [35] Datasheet of Skywork SMV2020 [Online]. Available:
    http://www.skyworksinc.com/Product/792/SMV2020-079LF.
    [36] Datasheet of Skywork SMV1405 [Online]. Available:
    http://www.skyworksinc.com/Product/552/SMV1405_Series
    [37] Pozar, David M. Microwave Engineering. Hoboken, NJ :Wiley, 2012.
    [38] M. Nikfalazar et al., "Two-Dimensional Beam-Steering Phased-Array Antenna With
    Compact Tunable Phase Shifter Based on BST Thick Films," in IEEE Antennas and
    Wireless Propagation Letters, vol. 16, pp. 585-588, 2017.
    [39] M. Sazegar et al., "Low-Cost Phased-Array Antenna Using Compact Tunable Phase
    Shifters Based on Ferroelectric Ceramics," in IEEE Transactions on Microwave Theory
    and Techniques, vol. 59, no. 5, pp. 1265-1273, May 2011.
    [40] M. Nikfalazar et al., "Beam Steering Phased Array Antenna With Fully Printed Phase
    Shifters Based on Low-Temperature Sintered BST-Composite Thick Films," in IEEE
    Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 70-72, Jan. 2016.
    [41] P. Loghmannia, M. Kamyab, M. Ranjbar Nikkhah and R. Rezaiesarlak, "Miniaturized
    Low-Cost Phased-Array Antenna Using SIW Slot Elements," in IEEE Antennas and
    Wireless Propagation Letters, vol. 11, pp. 1434-1437, 2012.
    [42] A. Tombak and A. Mortazawi, "A novel low-cost beam-steering technique based on the
    extended-resonance power-dividing method," in IEEE Transactions on Microwave
    Theory and Techniques, vol. 52, no. 2, pp. 664-670, Feb. 2004.
    [43] M. Tsuji, T. Nishikawa, K. Wakino and T. Kitazawa, "Bi-directionally fed phased-array
    antenna downsized with variable impedance phase shifter for ISM band," in IEEE
    Transactions on Microwave Theory and Techniques, vol. 54, no. 7, pp. 2962-2969, July
    2006.
    [44] Y. Ji, L. Ge, J. Wang, Q. Chen, W. Wu and Y. Li, "Reconfigurable Phased-Array
    Antenna Using Continuously Tunable Substrate Integrated Waveguide Phase Shifter,"
    in IEEE Transactions on Antennas and Propagation, vol. 67, no. 11, pp. 6894-6908,
    Nov. 2019.

    無法下載圖示 全文公開日期 2025/07/24 (校內網路)
    全文公開日期 2025/07/24 (校外網路)
    全文公開日期 2025/07/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE