簡易檢索 / 詳目顯示

研究生: 周家宏
Chia-Hung Chou
論文名稱: 使用介質合成波導設計羅曼透鏡饋入可切換波束天線陣列應用於車用防撞雷達
Beam Switchable Antenna Array Design by Roman Lens with SIW Feeding Lines for Vehicular Applications
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 周錫增
Hsi-Tseng Chou
廖文照
Wen-Jiao Liao
謝松年
Sung-Nien Hsieh
林丁丙
Ding-Bing Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 55
中文關鍵詞: 微帶貼片天線天線陣列毫米波天線波束掃描羅特曼透鏡介質合成波導共平面波導天線封裝
外文關鍵詞: Patch Antenna, Antenna Array, Millimeter Wave Antenna, Beam Scan, Rotman lens, Substrate Integrated Waveguide, Coplanar waveguide, Antenna-in-Package,Aip
相關次數: 點閱:435下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是採用介質合成波導(Substrate Integrated Waveguide)設計羅特曼透鏡(Rotman lens),並使用多層板技術整合天線陣列(Antenna Array),其工作頻率設定為76GHz到81GHz,由於高頻電磁波路徑損耗較為嚴重,因此羅特曼透鏡使用介質合成波導設計,而天線將採用陣列形式提高增益,彌補路徑帶來的損耗。為了整合天線陣列與波束掃描(Beam Scan)電路,並大幅縮小尺寸,故使用天線封裝(Antenna-in-Package,Aip)與多層板疊構技術。
    本論文選擇微帶天線,並使用串接錐形天線陣列(Series-Fed Taper Antenna Array)設計,抑制旁波瓣位準(Side Lobe Level,SLL)。


    This thesis mainly studies, the Substrate Integrated Waveguide is used to design the Rotman lens, and the multi-layer board technology is used to integrate the antenna array (Antenna Array). Its operating frequency is set to 76GHz to 81GHz.
    Since the path loss of high-frequency electromagnetic waves is more serious, the Rotman lens uses a dielectric waveguide design, and the antenna will adopt an array form to increase the gain and make up for the loss caused by the path.
    This study uses a multilayer board to integrate the antenna array and the Beam Switchable circuit, which greatly reduces the size, the Antenna-in-Package (AIP) and multilayer board stacking technology are used.
    In this study, the microstrip antenna is selected and the Series-Fed Taper Antenna Array design is adopted to suppress the side lobe level.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1前言與動機 1 1.2文獻探討 4 1.3論文架構 7 第二章 微帶陣列天線設計 8 2.1 微帶天線理論 8 2.2 陣列天線理論 14 2.3 貼片串列式陣列天線設計 17 第三章 使用介質合成波導設計羅曼透鏡 22 3.1 羅曼透鏡理論 22 3.2 羅曼透鏡輪廓計算 25 3.3 使用介質合成波導設計羅曼透鏡 26 3.3.1 使用介質合成波導設計羅曼透鏡輸入端口 26 3.3.2 使用介質合成波導設計羅曼透鏡 28 第四章 多層板整合羅曼透鏡與天線陣列模擬 33 4.1 開槽耦合設計 34 4.2 合併羅曼透鏡與天線陣列模擬 37 第五章 結論 42 5.1 結論 42 5.2 未來工作 43

    [1] Z. Chen, X. Wu and F. Yang, "A compact SIW butler matrix with straight delay lines at 60 GHz," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 2017, pp. 2141-2142, doi: 10.1109/APUSNCURSINRSM.2017.8073113.
    [2] T. Djerafi and K. Wu, "A Low-Cost Wideband 77-GHz Planar Butler Matrix in SIW Technology," in IEEE Transactions on Antennas and Propagation, vol. 60, no. 10, pp. 4949-4954, Oct. 2012, doi: 10.1109/TAP.2012.2207309.
    [3] J. Lian, Y. Ban, C. Xiao and Z. Yu, "Compact Substrate-Integrated 4 × 8 Butler Matrix With Sidelobe Suppression for Millimeter-Wave Multibeam Application," in IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 5, pp. 928-932, May 2018, doi: 10.1109/LAWP.2018.2825367.
    [4] P. H. Re, C. Alistarh, S. Podilchak, G. Goussetis, J. Thompson and J. Lee, "Millimeter-Wave FMCW Radar Development using SIW Butler Matrix for Time Domain Beam Steering," 2019 16th European Radar Conference (EuRAD), Paris, France, 2019, pp. 141-144.
    [5] F. Ren, W. Hong and K. Wu, "W-band series-connected patches antenna for multibeam application based on SIW Butler matrix," 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 2017, pp. 198-201, doi: 10.23919/EuCAP.2017.7928649.
    [6] W. Rotman and R. Turner, "Wide-angle microwave lens for line source applications," in IEEE Transactions on Antennas and Propagation, vol. 11, no. 6, pp. 623-632, November 1963, doi: 10.1109/TAP.1963.1138114.
    [7] W. Lee, J. Kim and Y. J. Yoon, "Compact Two-Layer Rotman Lens-Fed Microstrip Antenna Array at 24 GHz," in IEEE Transactions on Antennas and Propagation, vol. 59, no. 2, pp. 460-466, Feb. 2011, doi: 10.1109/TAP.2010.2096380.
    [8] Yi-Chi Chi and Shyh-Jong Chung, “Multilayer Rotman Lens Antenna Using Anti-Phase Feed Series Patch Array for 77GHz Vehicle Collision Warning Radar System,” M.A. thesis, National Chiao Tung University, Hsinchu, Taiwan, Republic of China, 2011.
    [9] O. Lafond, M. Himdi, J. P. Daniel, and N. Haese-Rolland, “Microstrip/thick-slot/microstrip transitions in millimeter waves,” Microw. OpticalTech. Lett., vol. 34, no. 2, pp. 100–103, July 2002.
    [10] J. Lian, Y. Ban, H. Zhu and Y. J. Guo, "Reduced-Sidelobe Multibeam Array Antenna Based on SIW Rotman Lens," in IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 1, pp. 188-192, Jan. 2020, doi: 10.1109/LAWP.2019.2957509.
    [11] Warren L. Stutzman, Gary A. Thiele, “Antenna Theory and Design” 3 rd, John Wiley & sons,INC,1998
    [12] K. Mydhili, P. Parvathi and K. Prasanthi, "DESIGN AND SIMULATION OF EDGE FED MICROSTRIP PATCH ANTENNA ARRAY," 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2018 2nd International Conference on, 2018, pp. 356-360, doi: 10.1109/I-SMAC.2018.8653698.
    [13] Babas, D. G. and J. N. Sahalos, "Synthesis method of series-fed microstrip antenna arrays,"Electronics Letters, Vol. 43, No. 2, Jan. 2007.
    [14] Y. I. Chong and D. Wenbin, "Microstrip series fed antenna array for millimeter wave automotive radar applications," 2012 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, 2012, pp. 1-3, doi: 10.1109/IMWS2.2012.6338245.
    [15] M. Shirazi and R. Safian, "Wide-Band Series-Fed Patch Antenna Array with Low Side Lobes," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2019, pp. 1507-1508, doi: 10.1109/APUSNCURSINRSM.2019.8888578.
    [16] Y. Pang, L. Sun, Z. Li and R. Cao, "W Band Planar Series-Fed Antenna Array," 2019 IEEE 5th International Conference on Computer and Communications (ICCC), 2019, pp. 676-679, doi: 10.1109/ICCC47050.2019.9064369.
    [17] Y. Lu, B. Fang, H. Mi and K. Chen, "Mm-Wave Antenna in Package (AiP) Design Applied to 5th Generation (5G) Cellular User Equipment Using Unbalanced Substrate," 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), 2018, pp. 208-213, doi: 10.1109/ECTC.2018.00040.
    [18] D. Liu, X. Gu, C. W. Baks and A. Valdes-Garcia, "Antenna-in-Package Design Considerations for Ka-Band 5G Communication Applications," in IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6372-6379, Dec. 2017, doi: 10.1109/TAP.2017.2722873.
    [19] J. -K. Du et al., "Dual-polarized patch array antenna package for 5G communication systems," 2017 11th European Conference on Antennas and Propagation (EUCAP), 2017, pp. 3493-3496, doi: 10.23919/EuCAP.2017.7928848.
    [20] R. C. Hansen, "Design trades for Rotman lenses," in IEEE Transactions on Antennas and Propagation, vol. 39, no. 4, pp. 464-472, April 1991, doi: 10.1109/8.81458.
    [21] E. Sbarra, L. Marcaccioli, R. V. Gatti and R. Sorrentino, "A novel rotman lens in SIW technology," 2007 European Radar Conference, 2007, pp. 236-239, doi: 10.1109/EURAD.2007.4404980.
    [22] M. Rajabalian and B. Zakeri, "An implemented non-focal Rotman Lens," 2015 European Radar Conference (EuRAD), 2015, pp. 393-396, doi: 10.1109/EuRAD.2015.7346320.
    [23] 紀益吉(2011)。利用反相位饋入串接微帶陣列之多層羅曼透鏡天線應用於77 GHz 車用防撞警示雷達系統。碩士論文。國立交通大學。
    [24] Somayeh Adibifard. "Design of Wideband Rotman Lenses with Dummy Ports forWide-Scan Phased Array Applications"M.A. thesis, École de Technologie Supérieure Université du Québec.
    [25] L. T. Hall, D. Abbott and H. J. Hansen, "Design and simulation of a high efficiency Rotman lens for MM-wave sensing applications," 2000 Asia-Pacific Microwave Conference. Proceedings (Cat. No.00TH8522), 2000, pp. 1419-1422, doi: 10.1109/APMC.2000.926102.
    [26] A. A. Omar and N. I. Dib, "Analysis of slot-coupled transitions from microstrip-to-microstrip and microstrip-to-waveguides," in IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 7, pp. 1127-1132, July 1997, doi: 10.1109/22.598451.
    [27] B. Molaei and A. Khaleghi, "A Novel Wideband Microstrip Line to Ridge Gap Waveguide Transition Using Defected Ground Slot," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 2, pp. 91-93, Feb. 2015, doi: 10.1109/LMWC.2014.2382658.
    [28] X. Huang and K. Wu, "A Broadband U-Slot Coupled Microstrip-to-Waveguide Transition," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 5, pp. 1210-1217, May 2012, doi: 10.1109/TMTT.2012.2187677.

    無法下載圖示 全文公開日期 2024/07/18 (校內網路)
    全文公開日期 2024/07/18 (校外網路)
    全文公開日期 2024/07/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE