簡易檢索 / 詳目顯示

研究生: 邱嘉琳
Chia-lin Chiu
論文名稱: 以奇偶模法實現二元密置陣列之集總解耦合網路
Lumped Decoupling Network for Two-Element Closely-Spaced Array Using Even-Odd-Mode Analysis
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 曾昭雄
Chao-Hsiung Tseng
楊成發
Chang-Fa Yang
廖文照
Wen-Jiao Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 56
中文關鍵詞: 密置天線陣列解耦合網路多重輸入多重輸出奇偶模分析L 型匹配網路π 型匹配網路輻射效率
外文關鍵詞: closely spaced array, decoupling network, MIMO, even-odd-mode analysis, L-section matching network, π-section matching network, radiation efficiency
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出以奇偶模分析實現二元密置陣列之集總解耦合網路。此架構乃以奇偶模分析方法為基礎,使用產業界常用之集總元件實現解耦合網路,其系統化設計之參數關係可直接透過公式推導所獲得。因此,可在不需施作試誤法的情況之下完成設計,並能同時達到完美系統阻抗匹配與端埠隔離度,有效提升多重輸入多重輸出系統之傳輸效能。
    該解耦合網路,在二元密置陣列天線饋入點處擺放集總元件電路佈局,並根據對稱型電路特性進行奇偶模分析。首先,從參數較少的偶模態進行設計,透過引入 L 型匹配網路達到奇模匹配,並決定其設計參數;接著,再進行奇模態分析,此時奇模半電路將為一π型匹配網路,並可透過剩餘設計參數完成奇模匹配的獨立設計。當奇偶模匹配同時都達成匹配時,此解耦合網路才能得到良好的系統阻抗匹配和高端埠隔離度。
    本論文將首先詳細探討傳統並聯電抗元件實現解耦合之利弊及奇偶模法實現解耦合網路之分析。經整合後依序探討以奇偶模分析實現集總解耦合網路之電路佈局、設計原理、模擬與量測結果,並進行相關討論。經模擬和實驗的驗證,都能在二元密置陣列的解耦合要求下,實現良好的整體阻抗匹配,同時擁有優秀二元密置陣列的高端埠隔離度。最后,利用兩款二元密置陣列天線充分驗證此構想之可行性,其模擬與實驗結果十分吻合,可做為未來模組化設計之依據。


    In this thesis, novel lumped decoupling networks for arbitrary two-element closely-spaced arrays are proposed and developed using even-odd-mode analysis. The framework takes the even-odd-mode analysis as the foundation and adopts frequently-used lumped elements to realize the decoupling network. The systematic design parameters can be deduced from equations directly. Therefore, the design can be accomplished without any trial-and-error method, but can still attain the perfect system resistance and port isolations matching, thus effectively improves the MIMO system transmission efficiency.
    The lumped decoupling network is located at the antenna’s feed point and developed using even-odd-mode analysis due to its symmetry. On one hand, The analysis starts from the even mode which possesses relatively less design parameters, and the even-mode matching can be realized by introducing a L-section matching network. On the other hand, by utilizing the rest of design parameters in the π-section matching network, the odd-mode matching can be completed independently. As both even- and odd-mode matching is achieved, the two-element closely-spaced array can attain a superior overall impedance matching and high port isolation.
    This thesis will first investigates both advantages and disadvantages of the conventional decoupling method using parallel reactive elements and another one developed based on the even-odd-mode analysis. Then, the circuit layout, design principles, and simulated and measured results of the lumped decoupling network are discussed in detail. As verified by the simulation and measurement, the lumped decoupling network can provide the two-element closely spaced array with good overall impedance matching and high port isolation at the same time. Finally, by utilizing two kinds of coupled array antennas to demonstrate the feasibility of the proposed concept, the agreement between the simulated and measured results is excellent. The topology of this design shows high potential to be a module design pattern to the industry.

    摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 1 1.3 本文貢獻 3 1.4 論文組織 3 第二章 天線解耦合系統之理論分析 4 2.1 前言 4 2.2 以並聯電抗元件實現解耦合系統 5 2.3以奇偶模分析實現解耦合之原理 7 2.4 結語 11 第三章 集總元件實現解耦合網路 13 3.1 前言 13 3.2 設計原理 13 3.2.1 偶模分析 15 3.2.2 奇模分析 18 3.3 系統響應 19 3.3.1未施作解耦合網路之系統響應 19 3.3.2 解耦合系統響應 25 3.4 電輻射場型驗證與分析 34 3.5 結語 48 第四章 結論 50 4.1 總結 50 4.2 未來發展 50 參考文獻 53

    [1] C. Volmer, J. Weber, R. Stephan, K. Blau, and M. A. Hein, “An eigen-analysis of compact antenna arrays and its application to port decoupling,” IEEE Trans. Antennas Propagat., vol. 56, no. 2, pp. 360–370, Feb. 2008.

    [2] J. C. Coetzee and Y. Yu, “Port decoupling for small arrays by means of an eigenmode feed network,” IEEE Trans. Antennas Propagat., vol. 56, no. 6, pp. 1587–1593, Jun. 2008.

    [3] L. K. Yeung and Y. E. Wang, “Mode-based beamforming arrays for miniaturized platforms,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 1, pp. 45–52, Jan. 2009.

    [4] T.-I Lee and Y. E. Wang, “Mode-based information channels in closely coupled dipole pairs,” IEEE Trans. Antennas Propagat., vol. 56, no. 12, pp. 3804–3811, Dec. 2008.

    [5] J. C. Coetzee and Y. Yu, “New modal feed network for a compact monopole array with isolated ports,” IEEE Trans. Antennas Propagat., vol. 56, no. 12, pp. 3872–3875, Dec. 2008.

    [6] S.-C. Chen, Y.-S. Wang, and S.-J. Chung, “A decoupling technique for increasing the port isolation between two strongly coupled antennas,” IEEE Trans. Antennas Propagat., vol. 56, no. 12, pp. 3650–3658, Dec. 2008.

    [7] H. J. Chaloupka, X. Wang, and J. C. Coetzee, “A superdirective 3-element array for adaptive beamforming,” Microw. Opt. Technol. Lett., vol. 36, no. 6, pp. 425–430, Mar. 2003.

    [8] P. T. Chua and J. C. Coetzee, “Microstrip decoupling networks for low-order multi-port arrays with reduced element spacing,” Microw. Opt. Technol. Lett., vol. 46, no. 6, pp. 592–597, Sep. 2005.

    [9] H. J. Chaloupka, X. Wang, and J. C. Coetzee, “Performance enhancement of smart antennas with reduced element spacing,” in Proc. IEEE Conf. Wireless Communications and Networking, Mar. 2003, vol. 1, pp. 425–430.

    [10] J. Weber, C. Volmer, K. Blau, R. Stephan, and M. A. Hein, “Miniaturized antenna arrays using decoupling networks with realistic elements,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 6, pp. 2733–2740, Jun. 2006.

    [11] S.-W. Su, C.-T. Lee, and F.-S. Chang, “Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications,” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp.456-463, Feb. 2012.

    [12] A. Chebihi, C. Luxey, A. Diallo, P. Le Thuc, and R. Staraj, “A novel isolation technique for closely spaced PIFAs for UMTS mobile phones,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 665-668, 2008.

    [13] J.-F. Li and Q.-X. Chu, “Proximity-fed MIMO antenna with two printed IFAs and a wideband T-shaped neutralization line,” Prog. Electromagn. Res. M, vol. 21, pp. 279-294, Dec. 2011.

    [14] S. Dossche, S. Blanch, and J. Romeu, “Optimum antenna matching to minimize signal correlation on a two-port antenna diversity system,” Electron. Lett., vol. 40, no. 19, pp. 1164-1165, Jun. 2004.

    [15] Y. Cai and Y. J. Guo, “A frequency-agile compact array with a reconfigurable decoupling and matching network,” IEEE Antennas Wireless Propagat. Lett., vol. 10, pp. 1031-1034, 2011.

    [16] C. H. See, R. A. Abd-Alhameed, Z. Z. Abidin, N. J. McEwan, and P. S. Excell, “Wideband printed MIMO/diversity monopole antenna for WiFi/WiMAX applications,” IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 2028-2035, Apr. 2012.

    [17] K.-C. Lee, C.-H. Wu, C.-H. Lai, and T. -G. Ma, “Novel dual-band decoupling network for two-element closely spaced array using synthesized microstrip lines,” IEEE Trans. Antennas Propag., vol. 60, no. 11, pp. 5118-5128, Nov. 2012.

    [18] C.-H. Wu, G.-T. Zhou, Y.-L. Wu, and T.-G. Ma, “Stub-loaded reactive decoupling network for two-element array using even-odd analysis,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 452-455, 2013.

    [19] D. M. Pozar, Microwave Engineering, 3rd ed. Wiley, 2005.

    [20] X.Wang, H. D. Nguyen, and H. T. Hui, “Correlation coefficient expression by S-parameters for two omni-directional MIMO antennas,” in Proc. IEEE Antennas Propagat. Symp. Dig., Spokane, WA, Jul. 2011, pp. 301–304.

    [21] R. G. Vaughan and J. B. Andersen, “Antenna diversity in mobile communication,” IEEE Trans. Veh. Technol., vol. 36, no. 4, pp. 149-172, Nov. 1987.

    無法下載圖示 全文公開日期 2019/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE