簡易檢索 / 詳目顯示

研究生: 陳羿安
Yi-An Chen
論文名稱: 適用於行動裝置的多頻/寬頻/頻段可重置天線設計
Design of Multiband Broadband, and Band Reconfigurable Antennas on Portable Devices
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 李宇旼
none
何旻真
none
楊成發
Chang-Fa Yang
馬自莊
Tzyh-Ghuang Ma
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 83
中文關鍵詞: 數位電視可重置式天線匹配電路射頻切換器MIMO天線長程演進技術分集天線CCE天線
外文關鍵詞: handset antenna, long term evolution advanced, diversity antennas, CCE antennas.
相關次數: 點閱:234下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文第一部分,提出一款操作頻段可重置天線的解決方案,以達到天線寬頻操作的效能,該設計實現於一USB dongle尺寸接收機上,可接收VHF及UHF的數位電視廣播頻段。利用射頻切換器與阻抗匹配技術將數位電視廣播的寬頻波段分成四個子頻帶,由接收機的IO控制埠進行頻段的選擇,系統廠商可依應用需求選擇合適的天線。當更換新天線或電路板後,可藉由調整匹配網路中的集總元件值維持其效能。為了證實其可行性,我們將切換式匹配網路與數位電視接收IC整合於USB尺寸的接收機上,並以射頻與系統測試驗證接收效能。
    本論文第二部分提出一款單饋入雙分支之雙頻CCE天線,可涵蓋LTE全頻帶,包含690 ~ 960 MHz及1710 ~2690 MHz。該天線設計特色是其高低頻段可分開調整,並利用三維耦合結構縮小系統接地板上的淨空區大小,且能夠在不同尺寸的行動設備上使用,該天線與另一IFA形式的LTE全頻帶天線共同建置一個可支援MIMO的雙天線系統。由於行動裝置內天線擺放相當緊湊,具較高的耦合量,我們用接地面上的電流分布分析,在雙天線系統下選擇一合適的擺放位置,以減少天線間的耦合。實驗結果顯示此雙天線系統具有良好的輻射效率與天線分集,適用於LTE的MIMO系統。


    An operation band reconfigurable antenna scheme is proposed for handheld devices to cover extensive digital TV broadcasting bands, which include both VHF and UHF bands. A matching network bank with RF switches is employed to divide the broad operation band into four narrower sub-bands with improved matching conditions. When a new antenna or a new platform is adopted, lump elements in the matching network bank can be modified to restore desired performances. To demonstrate the feasibility of the proposed reconfigurable antenna scheme, this work is completed with the control firmware implemented on a single-chip digital TV receiver IC. Both RF and system level tests were conducted to validate the enhanced reception performance.
    A single feed and dual branch CCE antenna is also proposed in this work. It provides a coverage on 690 to 960 MHz and 1710 to 2690 MHz LTE bands for uses on mobile devices of different sizes. The antenna adopts the capacitive coupling element technique to minimize the antenna footprint and reduce its clearance distance to the ground. Since the platform is rather compact, two antennas of dissimilar configurations are employed to reduce coupling. Its superior diversity performance is validated with measured effective diversity gain, which confirms that the proposed design is suitable for LTE MIMO uses.

    摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1. 研究背景與動機 1.2. 文獻探討 1.3. 論文組織 第二章 電控式切換之數位電視接收天線設計 2.1. 前言 2.2. 系統架構與原理 2.3. 匹配網路設計 2.4. 切換器電路設計 2.5. 最終天線系統之效能驗證 2.6. 小結 第三章 應用於各式尺寸平板之LTE天線設計 3.1. 前言 3.2. 天線設計 3.2.1 天線結構之演進 3.3. 匹配網路設計 3.4. 天線參數分析 3.5. 天線效能驗證 3.6. 接地面大小及天線擺放位置分析 3.7. 雙天線系統之分集效能驗證 3.8. 小結 第四章 結論 4.1 總結 4.2 未來發展 參考文獻 附錄I 電感規格 附錄II 電容規格 附錄III 射頻切換器規格

    [1] J.-T. Yeh, W.-J. Liao, S.-H. Chang, “Compact internal antenna for handheld devices with comprehensive DTV band coverage,” IEEE Trans. Antennas Propag., vol. 62, no. 8, pp. 3998-4007, Aug. 2014.

    [2] N. Behdad and K. Sarabandi, “Dual-band reconfigurable antenna with a very wide tunability range,” IEEE Trans. Antennas Propag., vol. 54, no. 2, pp. 409–416, Feb. 2006.

    [3] J.-H. Lu and Y.-S. Wang, “Planar small-size eight-band LTE/WWAN monopole antenna for tablet computers,” IEEE Trans. Antennas Propag., vol. 62, no. 8, pp. 4372–4377, Aug. 2014.

    [4] Y.-L. Ban, Z. X. Chen, Z. Chen, K. Kang, and J. L.-W. Li, “Reconfigurable narrow-frame antenna for hepta band WWAN/LTE smartphone applications,” IEEE Antennas Wireless Propag. Lett., vol. 13,pp. 1365–1368, 2014.

    [5] R. Valkonen, A. Lehtovuori, and C. Icheln, “Dual-feed, single-CCE antenna facilitating inter-band carrier aggregation in LTE-A handsets,” in Proc. 7th Eur. Conf. Antennas and Propagation (EUCAP 2013), Gothenburg, Sweden, Apr. 8–12, 2013, pp. 3784–3788.

    [6] DVB-H implemented Guidelines: ETSI: TR 102 337 V1.1.1 (2005-02), European Telecommunications Standards Institute.

    [7] S.-L. Zuo, Z.-Y. Zhang, and J.-W. Yang, “Planar meander monopole antenna with parasitic strips and sleeve feed for DVB-H/LTE/GSM850/900 operation in the mobile phone,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 27–30, 2013.

    [8] J. Holopainen, O. Kivekäs, C. Icheln, and P. Vainikainen, “Internal broadband antennas for digital television receiver in mobile terminals,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3363–3374, Oct. 2010.

    [9] DVB Worldwide , [Online]. DVB https://www.dvb.org/
    [10] A. Petosa, "An overview of tuning techniques for frequency-agile antennas," IEEE Antennas Propag. Mag., vol. 54, no. 5, pp. 271-296, Oct. 2012.

    [11] R. L. Haupt and M. Lanagan, "Reconfigurable antennas," IEEE Antennas Propag. Mag., vol. 55, no. 1, pp. 49-61, Jan. 2013.

    [12] D. Peroulis, K. Sarabandi, and L. P. B. Katehi, “An implementation of frequency reconfigurable slot antenna using PIN diodes,” IEEE Trans. Antennas Propag., vol. 53, no. 2, pp. 645–654, Feb. 2005.

    [13] A. C. K. Mak, C. R. Rowell, R. D. Murch, and C.-L. Mak, “Reconfigurable multiband antenna designs for wireless communication devices,” IEEE Trans. Antennas Propag., vol. 55, no. 7, pp. 1919–1928, Jul. 2007.

    [14] K. R. Boyle and P. G. Steeneken, “A five-band reconfigurable PIFA for mobile phones,” IEEE Trans. Antennas Propag., vol. 55, no. 11, pp. 3300–3309, Nov. 2007.

    [15] J. R. De Luis, A. Morris, III, Q. Gu, and F. de Flaviis, “Tunable duplexing antenna system for wireless transceivers,” IEEE Trans. Antennas Propag., vol. 60, no. 11, pp. 5484–5487, Nov. 2012.

    [16] Y. Li, Z. Zhang, J. Zheng, and Z. Feng, “Compact heptaband reconfigurable loop antenna for mobile handset,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1162–1165, 2011.

    [17] L. Liu, J. Rigelsford, and R. Langley, “Tunable multiband handset antenna operating at VHF and UHF bands,” IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3790–3796, Nov. 2013.

    [18] C. Sánchez-Pérez, J. de Mingo, P. García-Dúcar, P. L. Carro, “Performance improvement of mobile DVB-H terminals using a reconfigurable impedance tuning network,” IEEE Trans. on Consum. Electron., vol. 55, no. 4, pp. 1875–1882, Nov. 2009.
    [19] C. Sánchez-Pérez, J. de Mingo, P. L. Carro, and P. García-Dúcar, “Design and applications of a 300–800 MHz tunable matching network,” IEEE Trans. Emerg. Sel. Topics Circuits Syst., vol. 3, no. 4, pp. 531–540, Nov. 2009.

    [20] W. L, Stuzman and G. A. Thiele. 1997. Antenna Theory and Design. 2nd ed., 66-68. Wiley

    [21] Datasheet of muRata RF Inductor LQG15H, [Online]. Available: http://psearch.en.murata.com/inductor/result/

    [22] 智慧機普及率, 財團法人資訊工業策進會, [Online]. Available http://www.iii.org.tw/

    [23] K. L. Wong and T.-W. Weng, “Small-size triple-wideband LTE/WWAN tablet device antenna,” IEEE Antennas Wireless Propag. Lett., vol. 12,pp. 1516–1519, 2013.

    [24] Y. L. Ban, S. C. Sun, J. L. W. Li, and W. Hu, “Compact coupled-fed wideband antenna for internal eight-band LTE/WWAN tablet computer applications,” Journal of Electromagentic Waves and Applications, vol. 26, pp. 2222-2233, 2012.

    [25] F. H. Chu and K. L. Wong, “Internal coupled-fed dual-loop antennaintegrated with a USB connector for WWAN/LTE mobile handset,” IEEE Trans. Antennas Propag., vol. 59, no. 11, pp. 4215–4221, Nov. 2011.

    [26] Y.-L. Ban, J.-H. Chen, S. Yang, J. L.-W. Li, and Y.-J. Wu, “Low-profile printed octa-band LTE/WWAN mobile phone antenna a using embedded parallel resonant structure,” IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3889–3894, Jul. 2013.

    [27] Y. L. Ban, C.-L. Liu, J. L.-W. Li, K. Guo, and Y. Kang, “Small-size coupled-fed antenna with two printed distributed inductors for seven-band WWAN/LTE mobile handset,” IEEE Trans. Antennas Propag., vol. 61, no. 11, pp. 5780–5784, Nov. 2013.

    [28] K. L.Wong and F. H. Chu, “Mobile communication device and antenna thereof,” T.W. Patent No.I411167, 2013.

    [29] J. H. Lu and W. Z. Lin, “A multiband monopole antenna for WWANLTE operation,” T.W. Patent No.201417404 A, 2014

    [30] Y.-L. Ban, S.-C. Sun, P.-P. Li, J. L.-W. Li, and K. Kang, “Compact eight-band frequency reconfigurable antenna for LTE/WWAN tablet computer applications,” IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 451–475, Jan. 2014.

    [31] K. M. Jiang and J. C. Jhang, “Multiband antenna for wireless communication,” U.S. Patent No. 2014/0085160, 2014.

    [32] J. Lee, Y. Liu, and H. Kim, “Mobile antenna using multi-resonance feed structure for wideband operation,” IEEE Trans. Antennas Propag., vol. 62, pp. 1–6, Aug. 2014.

    [33] R. Valkonen, M. Kaltiokallio, and C. Icheln, “Capacitive coupling element antennas for multi-standard mobile handsets,” IEEE Trans. Antennas Propag., vol. 61, no. 5, pp. 2783–2791,May. 2013.

    [34] S. Ozden, B. K. Nielsen, C. H. Jorgensen, J. Villanen, C. Icheln, and P. Vainikainen, “Quad-band coupling element antenna structure,” U.S. Patent No. 7274340, 2007.

    [35] R. Valkonen and J. llvonen, “Antennas with coupling network or impedance in the leadin impedance matching network ,” U.S. Patent No. 2014/0085160, 2014.

    [36] K. L. Wong and L.-Y. Chen, “Small-size LTE/WWAN tablet device antenna with two hybrid feeds,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2926–2934, Jun. 2014.

    [37] K. L. Wong and C.-Y. Tsai, “Small-size stacked inverted-F antenna with two hybrid shorting strips for the LTE/WWAN tablet device,” IEEE Trans. Antennas Propag., vol. 62, no. 8, pp. 3962–3969, Aug. 2014.

    [38] P.-W. Lin and K.-L. Wong, “Low-profile multi branch monopole antenna with integrated matching circuit for LTE/WWAN/WLAN operation in the tablet computer”, Microw. Opt. Technol. Lett., vol. 56, pp. 1662-1666, 2014.

    [39] Y.-L. Ban, C.-L. Liu, Z. Chen, J. L.-W. Li, and K. Kang, “Small-size multiresonant Octaband Antenna for LTE/WWAN Smartphone Applications,” IEEE Antennas Wireless Propag.Lett., vol. 13, pp. 619–622, 2014.

    [40] K. L. Wong and M. T. Chen, “Small-size LTE/WWAN printed loop antenna with an inductively coupled branch strip for bandwidth enhancement in the tablet computer,” IEEE Trans. Antennas Propag., vol. 61, no. 12, pp. 6144–6151, Dec. 2012.
    [41] W.-J. Liao, S.-H. Chang, J.-T. Yeh, B.-R. Hsiao, “Compact dual-band WLAN diversity antennas on USB dongle platform,” IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 109-118, Jan. 2014.

    [42] J. Holopainen, R. Valkonen, O. Kivekaぴs, J. Ilvonen, and P. Vainikainen, “Broadband equivalent circuit model for capacitive coupling element–Based mobile terminal antenna,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 716–719, 2010.

    [43] R. Valkonen, M. Kaltiokallio, and C. Icheln, “Capacitive coupling element antennas for multi-standard mobile handsets,” IEEE Trans. Antennas Propag., vol. 61, no. 5, pp. 2783–2791, May 2013.

    [44] J. Holopainen, O. Kivekäs, C. Icheln, and P. Vainikainen, “Internal broadband antennas for digital television receiver in mobile terminals,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3363–3374, Oct. 2010

    [45] J. Villanen, J. Ollikainen, O. Kivekäs, and P. Vainikainen, “Coupling element based mobile terminal antenna structures,” IEEE Trans. Antennas Propag., vol. 54, no. 7, pp. 2142–2153, Jul. 2006.

    [46] S. D. Assimonis, T. V. Yioultsis, and C.S. Antonopoulos, “Computational investigationand design of planar EBG structures for coupling reductionin antenna applications,” IEEE Trans. Magn., vol. 48, no. 2, pp. 771–774, Feb. 2012.

    [47] C. C. Hsu, K. H. Lin, and H. L. Su, “Implementation of broadband isolator using metamaterial-inspired resonators and a T-shaped branchfor MIMO antennas,” IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3936–3939, Oct. 2011.

    [48] P. Feresidis and Q. Li, “Miniaturised slits for decoupling PIFA array elements on handheld devices,” Electron. Lett.,vol. 48, no. 6, pp. 310–312, Mar. 2012.

    [49] L. Guo, Y. Wang, Z. Du, Y. Gao, and D. Shi, “A compact uniplanar printed dual antenna operating at the 2.4/5.2/5.8 GHz WLAN bands for laptop computers,” IEEE Antennas Wireless Propag.Lett., vol. 13, pp. 229–232, 2014.

    [50] T. Y. Wu, S. T. Fang, and K. L. Wong, “Printed diversity monople antenna for WLAN operation,” Electron. Lett., vol. 38, no. 25, pp. 1625-1626, Dec. 2002.

    [51] C. H. Lee, S. Y. Chen, and P. W. Hsu, “Integrated dual planar Inverted-F antenna with enhanced isolation,” IEEE Antennas Wireless Propag.Lett., vol. 8, pp. 963-965, 2009.

    [52] 蕭博仁,通用於手持裝置之全頻段行動通訊及雙頻無線區域網路天線設計, 國立臺灣科技大學電機工程研究所, 碩士論文, 民國104年

    [53] R. G. Vaughan and J. B. Andersen, “Antenna diversity in mobile communications,” IEEE Trans. Veh. Technol., vol. VT-36, pp. 149–172, Nov. 1987.

    [54] Datasheet of muRata Monolithic Ceramic Capacitor, GSM0222 [Online]. Available: http://psearch.en.murata.com/capacitor/result/smd/

    [55] A. Boldaji and M. A. Antoniades, “Method of isolating and tuning the two dominant modes of a printed inverted-F antenna,” IEEE Trans. Ant. Propag., vol. 61, no. 7, pp. 3420–3426, Jul. 2013.

    無法下載圖示 全文公開日期 2020/07/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE