簡易檢索 / 詳目顯示

研究生: 張仕勳
Shih-hsun Chang
論文名稱: 內藏式行動裝置天線研究
Development of Internal Mobile Device Antennas
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 楊成發
Chang-Fa Yang
馬自莊
Tzyh-Ghuang Ma
吳瑞北
Ruey-Beei Wu
周錫增
Hsi-Tseng Chou
劉文忠
Wen Chung Liu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 139
中文關鍵詞: 內藏式天線金屬保護框晶片天線分集天線圓極化多天線系統
外文關鍵詞: metal frame, diversity antenna, GNSS
相關次數: 點閱:243下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 平板電腦、智慧型手機與無線USB- Dongle等行動裝置平台上,一般需整合多種行動通訊協定,用以提供各式通訊應用。本篇論文中,提出三種適用於不同應用情境行動平台的內藏式天線設計。其設計目標除需滿足平台上的應用規格外,並希望能系統化的分析其設計原理。
    新近之消費性電子產品,基於使用便利性與設計美學上等考量,多需要內藏式的天線設計。本論文第一款天線為內藏於平板電腦裝置並可支援LTE/WWAN頻帶的寬頻天線設計,該天線使用曲折型單極天線結構當做主輻射體,並輔以多分支架構、可貼附式的集總電路元件負载與加在主輻射體旁的寄生元件等技術,以達成所需的寬頻帶操作。利用上述設計,我們進ㄧ步設計出適用於具金屬保護框之大尺寸智慧型手機上的LTE 天線。該設計利用嵌入一個空氣間隙於天線的金屬保護框架上,達到減輕金屬遮蔽物在天線近場區域對天線阻抗匹配的影響,使該天線能支援WWAN與LTE頻段操作。
    第二款為可應用於行動手持裝置內的新型可雙頻操作圓極化晶片天線設計,該天線可支援現有各式全球衛星定位系統的L1 與L2 頻帶應用。天線採用單極架構,需一足夠大的淨空區以確保其天線匹配,輻射效率與往天頂方向的右圓極化輻射場型。此外,我們亦改變晶片天線架構為平面式倒F型,可設計出一款不需任何淨空區,於L1頻帶操作的右圓極化天線。
    第三款為一建置在USB Dongle平台上,可支援WLAN的雙頻帶解耦合雙天線系統。由於天線間距小而具有強耦合,因此,本論文開發出ㄧ個建置在天線結構上的解耦合機制。該機制包含一成對的微帶殘枝、一短槽線與一貼附於該槽線間的集總電容負載。並提出天線相關度與天線分集增益的評估方法。


    Devices such as tablet PCs, smart phones, and wireless USB-dongle devices, play indispensable roles in mobile computing. Portable platforms, which integrate several wireless communication protocols, are required to provide broadband wireless connections to support various emerging applications. In this dissertation, three antenna designs applicable to portable platforms are presented. The goals are not limited to provide required performance, but also to devise a systematic way in designing compact antennas with tight spatial constraints.
    Internal antennas have been widely adopted in consumer electronic products. An LTE/WWAN antenna design applicable to tablets is developed using parasitic elements, meandered structures, branched structures and a lump component. Above antenna geometry is also implemented on a smart phone with a metal frame. An air gap is embedded in the frame to mitigate performance deterioration.
    Two novel compact circular polarization chip antenna designs are proposed. They can be installed on handsets. One is a monopole that covers both L1 and L2 bands of the global navigation satellite systems. The other, which requires no clearance region, is based on the PIFA structure and operates in the L1 band.
    The third design provides a co-band two-antenna implementation in a compact USB-dongle platform. Novel decoupling techniques are proposed to enhance isolation among closely spaced antennas. They include a pair of stub on the antenna structure and a capacitive loading across a shorted slit on the ground plane. Operation in both WLAN bands is achieved. The envelope correlation coefficient and effective diversity gain observed are exceptional.

    摘要 I Abstract III 誌謝 V Contents VII List of Figures XI List of Tables XIX Chapter 1 Introduction 1 1.1 Antenna Needs in Portable Devices 1 1.2 Needs for Miniaturized Broadband/Multiband Antennas 2 1.3 Compact Antennas with Enhanced Polarization and Directivity Performance 2 1.4 Multiple-antenna Systems on Mobile Platforms 3 1.5 Dissertation Organization 4 Chapter 2 Miniature Broadband Antenna Design 5 2.1 Miniature Broadband LTE/WWAN Antenna Design for Tablet PC 5 2.1.1 Motivation 5 2.1.2 Antenna Design 7 2.1.3 Parametric Studies of Antenna Configuration 15 2.1.4 Summary 20 2.2 Novel Broadband LTE/WWAN Antenna with Metal Ring Frame Design for Smart Phone 22 2.2.1 Motivation 22 2.2.2 Antenna Design 23 2.2.3 Parametric Studies of Antenna Configuration 30 2.2.4 Summary 35 Chapter 3 Circularly Polarized Antenna Design for Handheld Devices 37 3.1 Dual Band Circularly Polarized GNSS Antenna for Handheld Devices 37 3.1.1 Motivation 37 3.1.2 Antenna Design 39 3.1.3 Antenna Performance Verification 59 3.1.4 Summary 63 3.2 L1 Band Circularly Polarized Antenna with a Coupling Feed 65 3.2.1 Motivation 65 3.2.2 Antenna Design 65 3.2.3 Comparisons of Simulated and Measured Results 76 3.2.4 Summary 80 Chapter 4 A Compact Two-element Antenna System for Dualband WLAN Operation on a USB Dongle Plateform 81 4.1 Compact Multi-Antenna System Needs on Portable Devices 81 4.2 Isolation Improving Techniques for Closely Spaced Antennas 82 4.3 Antenna Design 84 4.3.1 The Two-Element Antenna System Design 84 4.3.2 Single Antenna Design Optimization 86 4.3.3 Parametric Studies of Critical Geometric Parameter 90 4.4 Decoupling Techniques Applicable to Closely Spaced Antennas 96 4.4.1 Antenna Decoupling in 5 GHz Hyper LAN Band 97 4.4.2 Antenna Decoupling in 2.4 GHz WLAN Band 101 4.5 Antenna Radiation Characteristics 103 4.6 Diversity Performances of the Two Antenna System 107 4.7 Antenna Performance Validation 113 4.8 Summary 124 Chapter 5 Conclusion 126 References 129

    [1] The 3rd Generation Partnership Project, “LTE Advanced,” Internet: http://www.3gpp.org/LTE-Advanced, [Jun. 30, 2013].
    [2] R. A. Bhatti, Y. S. Shin, N. A. Nguyen, and S. O. Park, “Design of a novel multiband planar inverted-F antenna for mobile terminals,” in Proc. IEEE IWAT, pp. 226-229, 2008.
    [3] D. M. Nashaat, H. A. Elsadek, and H. Ghali, “Single feed compact quad band PIFA antenna for wireless communication applications,” IEEE Trans. Antennas Propag., vol. 53, no. 8, pp. 2631-2635, Aug. 2005.
    [4] M. A. Antoniades and G. V. Eleftheriades, “A broadband dual-mode monopole antenna using NRI-TL metamaterial loading,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 258–261, Feb. 2009.
    [5] J.-T. Huang, J.-H. Shiao, and J.-M. Wu, “A miniaturized Hilbert inverted-F antenna for wireless sensor network applications,” IEEE Trans. Antennas Propag., vol. 58, no. 9, pp. 3100–3103, 2010.
    [6] L. J. Chu, “Physical limitations in omnidirectional antennas,” J. Appl. Phys., vol. 19, pp. 1163–1175, 1948.
    [7] H. A. Wheeler, “Small antenna,” IEEE Trans. Antennas Propag., vol. 23, no. 4, pp. 462-469, Jul. 1975.
    [8] S. Maci, G. Biffi Gentili, P. Piazzesi, and C. Salvador, “Dual-band slot-loaded patch antenna,” Proc. Inst. Elect. Eng. Microw. Antennas Propag., vol. 142, no. 3, pp. 225–232, Jun. 1995.
    [9] P. P. Hammoud and F. Colomel, “Matching the input impedance of a broadband disc monopole,” Electron. Lett., vol. 29, pp. 406–407, Feb. 1993.
    [10] C. W. Chiu, C. H. Chang, and Y. J. Chi, “A compact folded loop antenna for LTE/GSM band mobile phone applications,” in Proc. Int. Electromagn. In Advan. Appl. (ICEAA), pp. 382–385, Sep. 2010.
    [11] K. L. Wong and P. J. Ma, “Small-size internal antenna for LTE/WWAN operation in the laptop computer,” in Proc. Int. Electromagn. Appl. and Student Innovation Competition Award. Conf. (AEM2C), pp. 152–156, Aug. 2010.
    [12] S. C. Chen and K. L. Wong, “Study of a hearing aid-compatible internal LTE/WWAN bar-type mobile phone antenna,” in Proc. Asia Pacific Microw. Conf., pp. 1793–1796, Dec. 2010.
    [13] T. W. Kang and K. L. Wong, “Coupled-fed PIFA with a loop feed for 8- band internal LTE/WWAN laptop computer antenna,” in Proc. IEEE Ant. Propag. Soc. Int. Symp., pp. 1–4, Jul. 2010.
    [14] Y. G. Xia, J. Luo, and H. Ye, “A standard shielded loop antenna with load resistor,” in proc. IEEE 3rd Int. Symp. on Micro. Ant., Propag. And EMC Tech. for Wirel. Commun. , pp. 405–407, Oct. 2009.
    [15] M. C. Scardelletti, G. E. Ponchak, S. Merritt, J. S. Minor, and C. A. Zorman, “Electrically small folded slot antenna utilizing capacitive loaded slot lines,” IEEE Radio and Wirel. Symp. , pp.731–734, Jan. 2008.
    [16] C. H. Wu and K. L. Wong, "Ultrawideband PIFA with a capacitive feed for penta-band folder-type mobile phone antenna," IEEE Trans. Antennas Propag., vol. 57, no. 8, pp. 2461-2464, Aug. 2009.
    [17] P. Ciais, R. Staraj, G. Kossiavas, and C. Luxey, “Compact internal multiband antenna for mobile phone and WLAN standards,” Electron. Lett., vol. 40, no.15, Jul. 2004.
    [18] A. Cabedo, J. Anguera, C. Picher, M. Ribo, and C. Puente, “Multiband handset antenna combining a PIFA, slots, and ground plane modes,” IEEE Trans. Antennas Propag., vol. 57, no. 9, pp. 2526-2533, Sep. 2009.
    [19] D. B. Lin, I. T. Tang, M. Z. Hong, and H. P. Lin, “A compact quad-band PIFA by using defected ground structure,” in Proc. IEEE Ant. Propag. Society Int. Symp., pp. 4677-4680, Jun. 2007.
    [20] M.-S Han and H.-T Kim, “Compact five band internal antenna for mobile phone ,” in Proc.IEEE Ant. Propag. Soc. Int. Symp., pp. 4381-4384, Jul. 2006.
    [21] J. Anguera, A. Cabedo, C. Picher, I. Sanz, M. Ribo, and C. Puente, “Multiband handset antennas by means of groundplane modification ,” Proc. IEEE Antennas Propag. Society Int. Symp., pp. 1253-1256, Jun. 2007.
    [22] Y. X. Guo, I. Ang, and M. Y. W. Chia, “Compact internal multiband antennas for mobile handsets,” IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 143-146, 2003.
    [23] C. L. Hu, W. F. Lee, Y. E. Wu, C. F. Yang, and S. T. Lin, “A compact multiband inverted-F antenna for LTE/WWAN/GPS/WiMAX/WLAN operations in the laptop computer,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 1169-1173, 2010.
    [24] ANSYS, “ANSYS HFSS,” Internet: http://www.ansoft.com/, [Jun. 30, 2013].
    [25] Q. Guo, R. Mittra, F. Lei, Z. Li, J. Ju and J. Byun, “Interaction between internal antenna and external antenna of mobile phone and hand effect” IEEE Trans. Antennas Propag., vol. 61, no. 2, pp. 862-870, Feb. 2013.
    [26] BeiDou (Compass) Navigation Satellite System, “BeiDou navigation satellite system,” Internet: http://www.beidou.gov.cn/index.html, [Jun. 30, 2013].
    [27] European Space Agency, “Galileo positioning system,” Internet: http://www.esa.int/esana/galileo.html, [Jun. 30, 2013].
    [28] International GPS Service, “Global navigation satellite systems (GNSS),” Internet: http://igscb.jpl.nasa.gov/, [Jun. 30, 2013].
    [29] H. Nakano, S. Okuzawa, K. Ohishi, H. Mimaki, and J. Yamauchi “A curl antenna,” IEEE Trans. Antennas Propag., vol. 41, no.11, pp. 1570–1575, Nov. 1993.
    [30] Y. S. Wang and S. J. Chung, “A miniature quadrifilar helix antenna for global positioning satellite reception,” IEEE Trans. Antennas Propag., vol. 57, no.12, pp. 3746-3751, Dec. 2009.
    [31] J. S. Row and S. W. Wu, “Circularly-polarized wide slot antenna loaded with a parasitic patch,” IEEE Trans. Antennas Propag., vol. 56, no.9, pp. 2826–2832, Sep. 2008.
    [32] K. L. Lau and K. M. Luk, “A novel wide-band circularly polarized patch antenna based on L-probe and aperture-coupling techniques,” IEEE Trans. Antennas Propag., vol. 53, no.1, pp. 577–580, Jan. 2005.
    [33] K. L. Lau and K. M. Luk, “A wide-band circularly-polarized L-probe coupled patch antenna for dual-band operation,” IEEE Trans. Antennas Propag., vol. 53, no.8, pp. 2636–2644, Aug. 2005.
    [34] R. L. Li, B. Pan, A. N. Traille, J. Papapolymerou, J. Laskar, and M. M. Tentzeris, “Development of a cavity-backed broadband circularly polarized slot/strip loop antenna with a simple feeding structure,” IEEE Trans. Antennas Propag., vol. 56, no.2, pp. 312–318, Feb. 2008.
    [35] S. H. Yeung, K. F. Man, and W. S. Chan, “A bandwidth improved circular polarized slot antenna using a slot composed of multiple circular sectors,” IEEE Trans. Antennas Propag., vol. 59, no.8, pp. 3065–3070, Aug. 2011.
    [36] S. L. S. Yang, A. A. Kishk, and K. F. Lee, “Wideband circularly polarized antenna with L-shaped slot,” IEEE Trans. Antennas Propag., vol. 56, no. 6, pp. 1780–1783, 2008.
    [37] Y. Sung, “Dual-band circularly polarized pentagonal slot antenna,” IEEE Ant. Wirel. Propag. Lett., vol. 10, pp. 259–261, Apr. 2011.
    [38] J. T. Rowley and R. B. Waterhouse, “Performance of shorted microstrip patch antennas for mobile communications handsets at 1800 MHz,” IEEE Trans. Antennas Propag., vol. 47, no. 5, pp. 815–822, 1999.
    [39] K. L. Chung, “A wideband circularly polarized H-shaped patch antenna,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3379–3383, Oct. 2010.
    [40] F. S. Chang, K. L. Wong, and T. W. Chiou, “Low-cost broadband circularly polarized patch antenna,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 3006–3009, Oct. 2003.
    [41] X. Tang, H. Wong, Y. Long, Q. Xue, and K. L. Lau, “Circularly polarized shorted patch antenna on high permittivity substrate with wideband,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp.1588–1592, Mar. 2012.
    [42] P. H. Rao, M. R. Ranjith, and N. Lenin, “Offset fed broadband suspended plate antenna,” IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3839–3842, Nov. 2005.
    [43] J. W. Baik, T. H. Lee, S. Pyo, S. M. Han, J. Jeong, and Y. S. Kim, “Broadband circularly polarized crossed dipole with parasitic loop resonators and its arrays,” IEEE Trans. Antennas Propag., vol. 59, no. 1, pp. 80–88, Jan. 2011.
    [44] Y. F. Lin, Y. K. Wang, H. M. Chen, and Z. Z. Yang, “Circularly polarized crossed dipole antenna with phase delay lines for RFID handheld reader,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1221–1227, Mar. 2012.
    [45] CST Computer Simulation Technology AG, “CST STUDIO SUITE,” Internet: http://www.cst.com/Content/Products/CST_S2/Overview.aspx, [Jun. 30, 2013].
    [46] J. Winters, “On the capacity of radio communication systems with diversity in a Rayleigh fading environment,” IEEE J. Select. Areas Commun., vol. JSAC-5, pp. 871–878, Jun. 1987.
    [47] D. Chizhik, F. R. Farrokhi, J. Ling, and A. Lozano, “Effect of antenna separation on the capacity of BLAST in correlated channels,” IEEE Commun. Lett., vol. 4, no. 11, pp. 337–339, Nov. 2000.
    [48] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Commun., vol. 6, pp. 311–335, Mar. 1998.
    [49] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas. Commun., vol. 21, no. 5, pp. 684–702, Jun. 2003.
    [50] The IEEE Standard Association, “Wireless LAN specification to provide significantly improved data throughput and range,” Internet: http://standards.ieee.org/announcements/ieee802.11n, [Jun. 30, 2013].
    [51] S. W. Su, C. T. Lee, and F. S. Chang, “Printed MIMO-Antenna system using neutralization-Line technique for wireless USB-Dongle applications,” IEEE Trans. Antennas Propag., vol. 60, no. 9, pp. 456-463, Feb. 2012.
    [52] Z. Li, M. S. Han, X. Zhao, and J. Choi, “MIMO antenna with isolation enhancement for wireless USB dongle application at WLAN band,” in Proc. Asia-Pacific Microw. Conf. (APMC), pp. 758-761, Dec. 2010.
    [53] S. D. Assimonis, T. V. Yioultsis, and C. S. Antonopoulos, “Computational investigation and design of planar EBG Structures for coupling reduction in antenna applications,” IEEE Trans. Magn., vol. 48, no. 2, pp. 771-774, Feb. 2012.
    [54] L. Yang, M. Fan, F. Chen, J. She, and Z. Feng, “A novel compact electromagnetic-bandgap (EBG) structre and its applications for microwave circuits,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 183–190, Jan. 2005.
    [55] C. C. Hsu, K. H. Lin, and H. L. Su, “Implementation of broadband isolator using metamaterial-inspired resonators and a T-Shaped branch for MIMO antennas,” IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3936-3939, Oct. 2011.
    [56] T. Y. Wu, S. T. Fang, and K. L. Wong, “Printed diversity monopole antenna for WLAN operation,” Electron. Lett., vol. 38, no. 25, pp. 1625–1626, Dec. 2002.
    [57] C. H. Lee, S. Y. Chen, and P. W. Hsu, “Integrated dual planar Inverted-F antenna with enhanced isolation,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 963-965, 2009.
    [58] S. C. Chen, Y. S. Wang, and S. J. Chung, “A decoupling technique for increasing the port isolation between two strongly coupled antennas, ” IEEE Trans. Antennas Propag., vol. 56, no. 12, pp. 3650-3658, Dec. 2008.
    [59] C. Y. Chiu, C. H. Cheng, R. D. Murchz, and C. R. Rowell, “Reduction of mutual coupling between closely-packed antenna elements,” IEEE Trans. Antennas Propag., vol. 55, no. 6, pp. 1732-1738, Jun. 2007.
    [60] T. Kokkinos, E. Liakou, and A. P. Feresidis, “Decoupling antenna elements of PIFA arrays on handheld devices,” Electron. Lett., vol. 44, no. 25, pp. 1442-1444, Dec. 2008.
    [61] H. Li, J. Xiong, and S. He, “A compact planar MIMO antenna system of four elements with similar radiation characteristics and isolation structure,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1107-1110, 2009.
    [62] J. Xiong, M. Zhao, H. Li, Z. Ying, and B. Wang, “Collocated electric and magnetic dipoles with extremely low correlation as a reference antenna for polarization diversity MIMO applications,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 423-426, 2012.
    [63] C. Volmer, J. Weber, R. Stephan, K. Blau, and M. A. Hein, “An eigen-analysis of compact antenna arrays and its application to port decoupling, ” IEEE Trans. Antennas Propag., vol. 56, no. 2, pp. 360-370, Feb. 2008.
    [64] X. Wang, Z. Feng, and K. M. Luk, “Pattern and polarization diversity antenna with high isolation for portable wireless devices,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 209-211, 2009.
    [65] X. Tang, K. Mouthaan, Y. L. Wu, and Jacob C. Coetzee, “Tunable decoupling and matching network decoupling network for diversity enhancement of closely spaced antennas,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 268-271, 2012.
    [66] C. H. Wu, G.. T. Zhou, Y. L. Wu, and T. G. Ma, “Stub-loaded reactive decoupling network for two-element array using even-odd analysis,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 452-455, 2013.
    [67] Y. Ding, Z. Du, K. Gong, and Z. Feng, “A four-element antenna system for mobile phones,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 655-658, 2007.
    [68] C. Y. Lui, Y. S. Wang, and S. J. Chung, “Two nearby dual-band antennas with high port isolation, ” in Proc. IEEE Trans. Ant. Propag. Soc. Int. Symp., pp. 1-4, Jul. 2008.
    [69] Y. Li, Z. Zhang, Z. Feng, and M. F. Iskander, “Dual-mode loop antenna with compact feed for polarization diversity,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 95-98, 2011.
    [70] S. Zhang, Z. Ying, J. Xiong, and S. He, “Ultrawideband MIMO/Diversity antennas with a tree-like structure to enhance wideband isolation,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1279-1282, 2009.
    [71] Y. Ding, Z. Du, K. Gong, and Z. Feng, “A novel dual-band printed diversity antenna for mobile terminals,” IEEE Trans. Antennas Propag., vol. 55, no. 7, pp. 2088-2096, Jul. 2007.
    [72] S. Zhang, B. K. Lau, A. Sunesson, and S. He, “Closely-Packed UWB MIMO/Diversity antenna with different patterns and polarizations for USB dongle applications, IEEE Trans. Antennas Propag., vol. 60, no. 9, pp. 4372-4380, Sep. 2012.
    [73] X. M. Ling and R. L. Li, “A novel dual-band MIMO antenna array with low mutual coupling for portable wireless devices,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1039-1042, 2011.
    [74] D. L. Huang, S. H. Chang, and W. J. Liao, “A dual-band antenna with pattern diversity designed for handset device application,” in Proc. Asia-Pacific Conf. on Ant. and Propag. (APCAP), pp. 235-236, Aug. 2012.
    [75] Y. Yao, X. Wang, X. Chen, J. Yu, and S. Liu, “Novel Diversity/MIMO PIFA antenna with broadband circular polarization for multimode satellite navigation,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 65-68, 2012.
    [76] J. F. Li, Q. X. Chu, and T. G. Huang, “A compact wideband MIMO antenna with two novel bent slits,” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 482-489, Feb. 2012.
    [77] K. C. Lin, C. H. Wu, C. H. Lai and T. G. Ma, “Novel dual-band decoupling network for two-element closely spaced array using synthesized microstrip lines,” IEEE Trans. Antennas Propag., vol. 60, no. 11, pp. 5118-5128, Nov. 2012.
    [78] S. H. Chang and W. J. Liao, “A novel dual band circularly polarized GNSS antenna for handheld devices,” IEEE Trans. Antennas Propag., vol. 61, no. 2, pp. 555-562, Feb. 2013.
    [79] Y. F. Lin, C. H. Lin, H. M. Chen, J. Y. Jan, and W. S. Chen, “Design of ceramic chip antenna for 2.4/5 GHz WLAN applications, ” in Proc. IEEE Trans. Ant. Propag. Soc. Int. Symp., pp. 985-988, Jul. 2006.
    [80] Y. S. Shin and S. O. Park, “A novel PIFA for 2.4 and 5 GHz WLAN application,” in Proc. IEEE Trans. Ant. Propag. Soc. Int. Symp., pp. 645-648, Jul. 2006.
    [81] L. K. Li, W. J. Liao, and S. E. Hsu, “A miniaturized WLAN/Wimax chip antenna for mobile phone applications,” in Proc. Progress In Electromagnetics Research Symp., pp. 345-349, Mar. 2010.
    [82] J. Y. Jan and L. C. Tseng, “Small planar monopole antenna with a shorted parasitic inverted-L wire for wireless communications in the 2.4-, 5.2-, and 5.8 GHz bands,” IEEE Trans. Antennas Propag., vol. 52, no. 9, pp.1903–1905, Jul. 2004.
    [83] Agilent technologies, “Advanced Design System,” Internet: http://www.home.agilent.com/agilent/product.jspx, [2013].
    [84] D. M. Pozar, Microwave Engineering, 3rd ed., New York: Wiley, 2005.
    [85] D. K. Cheng, Field and Wave Electromagnetics, 3rd ed., Addison Wesley, 1989.
    [86] H. Paul, “The significance of radiation efficiencies when using S-parameterss to calculate the received signal correlation from two antennas,” IEEE Antennas Wireless Propag. Lett., vol. 4, no. 1, pp. 97–99, 2005.
    [87] M. A. Jensen, and Y. Rahmat-Samii, “Performance analysis of antennas for hand-held transceivers using FDTD,” IEEE Trans. Antennas Propag., vol.42, no. 8, pp. 1106–1113, Aug. 1994.
    [88] R. G. Vaughan and J. B. Andersen, “Antenna diversity in mobile communications,” IEEE Trans. Veh. Technol., VT-36, pp. 149-172, Nov. 1987.
    [89] V. C. Papamichael, “Selection-combining diversity performance of actual multielement antenna systems using the covariance matrix method,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 705-707, 2010.

    QR CODE