簡易檢索 / 詳目顯示

研究生: 翁崇訓
Chung-Hsun Weng
論文名稱: 應用於2.4GHz射頻辨識讀取器之近場天線研製
A Study of Near-field Antennas for 2.4GHz RFID Reader
指導教授: 楊成發
Chang-Fa Yang
口試委員: 陳士元
Shih-Yuan Chen
李學智
Hsueh-Jyh Li
廖文照
Wen-Jiao Liao
曾昭雄
Chao-Hsiung Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 77
中文關鍵詞: 射頻辨識系統近場集中微帶陣列天線圓極化天線平面型倒F天線
外文關鍵詞: circular patch array antenna
相關次數: 點閱:270下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係針對2.4GHz射頻辨識系統之近場天線來進行研究與設計,其中包含一款陣列天線與兩款手持式讀取器天線。首先,本論文提出一款近場能量集中之平面圓形微帶陣列天線,其乃由六個圓形微帶天線元素及一組具備適當相位輸出之饋入網路所組成,此設計方法與介質透鏡原理相似,使得近場區域的電場分佈能夠大幅提升,並且藉由電容性耦合方式來加以偵測陣列天線正上方的偶極天線標籤。另外,本論文亦分析多個標籤及陣列天線之間的耦合影響,由實驗結果顯示,所提出之陣列天線可於近場區域10公分以內,有效讀取12個均勻排列的電子標籤。
    在手持式讀取器天線方面,第一款設計為近場應用之圓極化天線,有別於以往的圓極化天線設計,本論文觀察出方形截角微帶天線之近場電場強度會伴隨頻率變化而改變,並運用此特性來搭配後端模組之跳頻機制,以增加可讀取範圍。跟一般設計比較起來,本款圓極化近場天線不僅具備較強之電場強度,而且體積適中,故適合內建於手持式讀取器來辨識不同方位之標籤。其次,針對線性極化之應用,亦提出小型化讀取器平面型倒F天線(PIFA),其設計架構係以傳統PIFA作為基礎,利用開槽式電容性耦合負載來大幅縮減天線體積。除此之外,為有效獲取標籤資訊,亦透過此款天線所具備之耦合特性來增加近場電場強度,進而提高整體辨識效率。


    In this thesis, three kinds of near-field antennas for application in RFID 2.4GHz reader systems, which includes a microstrip array antenna and two patch antennas. To well focus the electrical field intensity in the near-zone, a patch array antenna based on the dielectric lens has been presented, which is implemented by using six circular patches and a feeding network. By properly designing the input phases of the feeding network for each element, the electrical field surrounding the near-field can be significantly enhanced for the array antenna, so that the dipole-like tags right above the array can be better detected by the capacitive coupling. The effects due to mutual coupling among the tags and the array antenna are thoroughly analyzed as well. Experimental results demonstrate that the proposed array antenna features fairly good performance for reading 12 tags within a range of 10cm at near-zone.
    As to increase the read area for a handheld reader, on the other side, a rectangular patch antenna having circular polarization characteristic is therefore designed as an internal antenna. Here note that the electrical field intensity in the near-zone of the antenna varies against the frequency. Compared to other studies, the proposed design behaves stronger electrical fields to read the tags by using hopping frequency technology. Besides, a compact planar inverted-F antenna (PIFA) to possess linear polarization is also developed in this thesis, whose volume is well miniaturized using a slotted capacitive coupling loading. With such coupling property, the proposed PIFA can realize a stronger electrical field in the near-zone to enhance the identification performance of the RFID system.

    摘要 I ABSTRACT II 致謝 III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究動機 1 1.2 章節概述 2 第二章 射頻辨識概述 3 2.1 前言 3 2.2 射頻辨識系統簡介 5 2.2.1 頻段 6 2.2.2 規範 7 2.3 天線理論 10 2.3.1 天線輻射場的區別 10 2.3.2 天線耦合之探討 11 2.3.3 近場效應分析 12 第三章 UHF近場能量集中微帶陣列天線 14 3.1 前言 14 3.2 近場通訊簡介 15 3.3 陣列天線架構與設計概念 17 3.4 實驗結果與效能分析 23 3.4.1 天線架構特性分析 23 3.4.2 近場特性分析 34 3.4.3 標籤彼此間相互耦合分析 37 3.4.4 讀取距離測試 39 3.5 商業應用實例 41 3.6 結論 44 第四章 近場具圓極化效果之手持式天線設計 45 4.1 前言 45 4.2 圓極化微帶天線簡介 47 4.3 近場應用圓極化微帶天線之設計架構 48 4.4圓極化天線模擬與量測分析 51 4.4.1天線架構特性分析 51 4.4.2 圓極化天線近場特性分佈 56 4.5 圓極化微帶天線近場應用 59 4.6結論 61 第五章 線性極化近場手持式讀取器天線設計 62 5.1 前言 62 5.2內建手持式近場讀取器平面型倒F天線設計 63 5.3近場PIFA設計 64 5.4近場天線模擬結果與量測分析 66 5.4.1天線特性分析 66 5.4.2近場特性分析 70 5.5結論 73 第六章 結論 74 參考文獻 75

    [1] K. Finkenzeller, RFID Handbook, 2nd edition, John Wiley & Son, England, 2003.
    [2] A Basic Introduction to RFID Technology and Its Use in the Supply Chain, LARAN white paper, January 2004.
    [3] P. V. Nikitin, K. V. S. Rao, and S. Lazar, “An overview of near field UHF RFID,” in Proc. IEEE Int. Conf. RFID, Mar. 2007, pp. 167–174.
    [4] K. V. S. Rao, P. V. Nikitin and S. Lam, “Impedance matching concepts in RFID transponder design”, Proceedings of IEEE Workshop on Automatic Identification technologies, Oct. 2005, pp. 39-42
    [5] Y.-S. Chen, and S.-Y. Chen, “Analysis of antenna coupling in near-field RFID systems,” in IEEE AP-S Int. Symp. Dig., Jun. 2009.
    [6] D. Rostan, E. Heidrich, W. Wiesbeck, “Design of aperture-coupled patch antenna array with multiple dielectric layers,” European Microwave Conference, PP. 917-919, October 1993.
    [7] M. Bogosanovic, and A. G. Williamson, “Microstrip antenna array with a beam focused in the near-field zone for application in noncontact microwave industrial inspection,” IEEE Trans. Instrum Meas., vol. 56, no. 6, pp. 2186-2195, Dec. 2007.
    [8] X.-S. Chen, F. Lu, and T.-T. Ye, “Mutual coupling of stacked UHF RFID antennas in NFC applications,” in IEEE AP-S Int. Symp. Dig., Jun. 2009.
    [9] X. Qing, C. K. Goh, and Z.-N. Chen, “Segmented loop antenna for UHF near-field RFID applications,” Electron. Lett., vol. 45, no. 17, pp. 872-873, Aug. 2009.
    [10] H.-W. Liu, C.-F. Yang, C.-H. Weng, H.-L. Kuo, K.-H. Wu, and Y.-S. Lin, “An UHF reader antenna design for near-field RFID applications,” in Asia Pacific Microwave Conf., Dec. 2009, pp. 2394-2397.
    [11] S. K. Sharma, and L. Shafai, “Beam focusing properties of circular monopole array antenna on a finite ground plane,” IEEE Trans. Antenna Propag., vol. 53, no. 10, pp. 3406-3409, Oct. 2005.
    [12] R. Siragusa, P. Lemaitre-Auger, and S. Tedjini, “Near field focusing circular microstrip antenna array for RFID applications,” in IEEE AP-S Int. Symp. Dig., Jun. 2009.
    [13] W.-K. Choi, J.-S. Kim, J.-H. Bae, G.-Y. Choi, and J.-S. Chae, “Near-field antenna for RFID smart shelf in UHF,” in IEEE AP-S Int. Symp. Dig., Jun. 2009.
    [14] R.-C. Hua and T.-G. Ma, “A printed dipole antenna for ultra high frequency (UHF) radio frequency identification (RFID) handheld reader,” IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3742-3745, Dec. 2007.
    [15] Z. N. Chen, X. Qing, and H. L. Chung, “A universal UHF RFID reader antenna,” IEEE Trans. Micro. Theory Tech., vol. 57, no. 5, pp. 1275-1282, May 2009.
    [16] H. L. Chung, X. Qing, and Z. N. Chen, “Broadband circularly polarized stacked patch antenna for UHF RFID Applications,” in IEEE AP-S Int. Symp. Dig., Jun. 2007.
    [17] W.-S. Chen, C.-K Wu and K.-L. Wong, “Novel compact circularly polarized square microstrip antenna,” IEEE Trans. Antennas Propag., vol. 49, no. 3, pp. 340-342, Mar. 2001.
    [18] Nasimuddin, X. Qing, and Z. N. Chen, “Compact circularly polarized microstrip antenna for RFID handheld reader applications,” in Asia Pacific Microwave Conf., Dec. 2009, pp. 1950-1953.
    [19] R. B. Waterhouse, S. D. Targonski, and D. M. Kokotoff, “Design and performance of small printed antennas,” IEEE Trans. Antennas Propagat., vol. 46, pp. 1629–1633, Nov. 1998.
    [20] Y. J. Wang, C. K. Lee, W. J. Koh, and Y. B. Gan, “Design of small and broad-band internal antennas for IMT-2000 mobile handsets,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1398–1403, Aug.
    [21] T. W. Chiou and K. L. Wong, “Design of compact microstrip antennas with a slotted ground plane,” in IEEE APS. Int. Symp. Dig., 2001, pp.732–735.
    [22] K. M. MAK, H. Wong, and K. M. Luk, “A shorted bowtie patch antenna with a cross dipole for dual polarization,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 126–129, 2007.
    [23] C. Y. Chiu, K. M. Shum, and C. H. Chan, “A tunable via-patch loaded PIFA with size reduction,” IEEE Trans. Antennas Propagat., vol. 55, pp. 65–71, Jan. 2007.
    [24] R. L. Li, G. Dejean, M. M. Tentzeris, and J. Laskar, “Development andanalysis of a folded shorted-patch antenna with reduced size,” IEEE Trans. Antennas Propagat., vol. 52, no. 2, pp. 555–562, Feb. 2004.
    [25] A. Badawi, A. Sebak, and L. Shafai, “Array near field focusing,” in Conf.1997 Proc. on Communications, Power and Computing, Wescanex 97, Winnipeg, May 22, 1997, pp. 242–245.
    [26] M. Bogosanovic and A. G. Williamson, “Antenna array with beam focusedin near-field zone,” Electron. Lett., vol. 39, no. 9, pp. 704–705,May 1, 2003.

    QR CODE