簡易檢索 / 詳目顯示

研究生: 劉益榮
Yi-Jung Liu
論文名稱: 以裴氏圖為基礎之網宇實體系統於工廠自主移動機器人控制應用
Petri Net Based Cyber-physical System for Factory Autonomous Mobile Robot Control Applications
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 周瑞仁
Jui-Jen Chou
陽毅平
Yee-Pien Yang
鍾聖倫
Sheng-Luen Chung
郭重顯
Chung-Hsien Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 74
中文關鍵詞: 網宇實體系統裴氏圖無人搬運車控制系統
外文關鍵詞: Cyber-Physical System, Petri net, Automated guided vehicle
相關次數: 點閱:573下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一基於裴氏圖網路建構一網宇實體系統(Cyber-Physical System;CPS),其能用於模擬工場內之機台加工與料件搬運過程,而此模擬搬運過程能透過實際之無人搬運車(Automated Guided Vehicle;AGV)來執行任務。在此系統中,是透過裴氏圖網路進行訂單的處理以及搬運任務的指派,其中在任務資訊處理模型上可分為(1)虛擬工廠之運作、(2)訂單任務的處理(3)虛擬搬運路徑模擬。而裴氏圖網路可以處理同時發生以及非同步事件之系統。在整合上,會透過雲端網頁平台即時監控場內AGV之位置與狀態,而裴氏圖網路模型接收到訂單資訊之後,會透過網路通訊的方式與實際之AGV 進行溝通並進行搬運作業,再虛擬工廠執行時,會將虛擬機台的機台運作資訊即時回至平板電腦上進行顯示。

    而系統應用上,使用者可以選擇模擬搬運模式或實體運作模式之兩種執行方式來使用此系統。在模擬搬運模式中,透過裴氏圖網路進行AGV搬運流程之分析與時間計算,並模擬實際搬運之過程。此部分使用者能在模擬此任務流程後,能夠切換至實體運作模式與實際AGV進行任務資訊溝通,所以可以根據模擬之結果進一步驗證此AGV搬運任務是否符合預期。另外,在系統驗證上,本論文在實驗場域設置了4個工作站,而每一個工作站點上會利用平板電腦當作虛擬機台,並顯示目前機台運作狀態與加工資訊,以及透過雲端監控平台即時掌握AGV之位置。


    This thesis presents a colored Petri net (CPN) based cyber-physical system (CPS) study for modeling and simulating the machining and material handling processes in an automated factory. An automated guided vehicle (AGV) was introduced to be a physical part of the CPS system for executing material transport task commands generated from the CPN cyber part.
    Hence, the CPN production model is responsible for dealing with the operation of a virtual factory (VF), production order handling and dispatching, and AGV movement command generation because of the CPN’s capabilities on dealing with concurrent and asynchronous events in systems.
    Moreover, a cloud-based web system was produced to perform the monitoring of the system operation, including production order, production status and AGV status. All the proposed subsystems were integrated via network and database. A production order is delivered to CPN VF model, and the CPN VF model is used for production and AGV dispatching. The AGV dispatching command is delivered to the physical AGV via Wi-Fi. The AGV will communicated with virtual machine model that was done with a tablet for exchange production information. In this manner, all the cyber CPN VF model, tablet virtual machines and a physical AGV were all properly integrated.
    The proposed system was worked with either simulation or physical operation mode for the AGV. No physical AGV was required for the simulation mode, and the simulation mode can evaluate the system performance in advance. The physical operation mode can be used to evaluate the physical AGV performance according to the VF operations.
    Finally, a VF with 4 tablet virtual machining stations and an AGV was set in our laboratory for experiments. The experiment results showed that the proposed CPN-based cyber-physical system is feasible for evaluating the AGV performance without the needs of real machines.

    指導教授推薦書..............................I 口試委員會審定書............................II 誌謝.......................................III 摘要.......................................IV ABSTRACT...................................V 目錄.......................................VI 圖目錄.....................................VIII 表目錄.....................................X 第一章 緒論...............................1 1.1 研究背景動機........................1 1.2 研究目的............................3 1.3 論文架構............................4 1.4 文獻回顧............................5 1.4.1 CPS結合於工業之相關應用..............5 1.4.2 無人搬運車之派車與搬運任務相關應用....7 1.4.3 裴氏圖網路之應用....................8 第二章 以裴氏圖為基礎之網宇實體系統.........10 2.1 系統介紹與架構......................10 2.2 系統硬體平台........................13 2.3 人機介面設計........................15 第三章 網宇實體系統之裴氏圖架構.............17 3.1 COLORED PETRI NET簡介..............17 3.2 COLORED PETRI NET基礎模型.........21 3.3 網宇實體系統之裴氏圖網路模型.........23 第四章 系統實作...........................32 4.1 車體控制...........................32 4.2 路徑規劃與避障......................35 4.2.1 A*路徑規劃........................35 4.2.2 避障控制...........................38 4.3 裴氏圖模擬與無人搬運車控制應用實現...41 第五章 實驗結果...........................44 5.1 無人搬運車系統路徑規劃與避障.........44 5.2 裴氏圖網路模擬與分析................48 5.3 系統整合實現.......................54 第六章 結論與未來研究方向..................59 6.1結論....................................59 6.2 未來研究方向.......................59 參考文獻...................................60

    [1] A. Galletta, L. Carnevale, A. Celesti, M. Fazio, and M. Villari, “A Cloud-based system for improving retention marketing loyalty programs in industry 4.0: a study on big data storage implications,” IEEE Access, vol. 6, pp. 5485–5492, 2018.
    [2] H. Zhao, D. Sun, H. Yue, M. Zhao, and S. Cheng, “Using CSTPNs to model traffic control CPS,” IET Software, vol. 11, no. 3, pp. 116–125, 2017.
    [3] J.R. Jiang, “An improved cyber-physical systems architecture for industry 4.0 smart factories,” International Conference on Applied System Innovation , pp. 918–920, 2017.
    [4] A. Marrella, M. Mecella, P. Halapuu, and S. Sardina, “Automated process adaptation in cyber-physical domains with the SmartPM system (short paper),” International Conference on Service-Oriented Computing and Applications , pp. 59–64, 2015.
    [5] R. Harrison, D. Vera, and B. Ahmad, “Engineering methods and tools for cyber–physical automation systems,” Proceedings of the IEEE, vol. 104, no. 5, pp. 973–985, 2016.
    [6] H. Zhang, D. Ge, J. Liu, and Y. Zhang, “Multifunctional cyber-physical system testbed based on a source-grid combined scheduling control simulation system,” IET Generation, Transmission & Distribution, vol. 11, no. 12, pp. 3144–3151, 2017.
    [7] Z. Ning, W. Hou, X. Hu, and X. Gong, “A cloud-supported cps approach to control decision of process manufacturing: 3D ONoC,” IEEE Conference on Automation Science and Engineering, pp. 458–463, 2017.
    [8] B. R. Ferrer and J. L. M. Lastra, “An architecture for implementing private local automation clouds built by CPS,” IECON Annual Conference of the IEEE Industrial Electronics Society, pp. 5406–5413, 2017.
    [9] T. Kaihara and Y. Yao, “A new approach on CPS-based scheduling and WIP control in process industries,” Proceedings Title: Proceedings of the 2012 Winter Simulation, pp. 1–11, 2012.
    [10] S. Dhib, M. Elleuch, and A. Frikha, “Evaluation of AGV system in flexible production system: A simulation study,” IEEE International Conference on Advanced Logistics and Transport, pp. 494–499, 2013.
    [11] T. Silva, L. S. Dias, M. L. Nunes, G. Pereira, P. Sampaio, J. A. Oliveira, and P. Martins, “Simulation and economic analysis of an AGV system as a mean of transport of warehouse waste in an automotive OEM,” International Conference on Intelligent Transportation Systems , pp. 241–246, 2016.
    [12] Z. Han and D. Wang, “Research of multi-AGV scheduling system based on a new mixed regional control model,” Chinese Automation Congress, pp. 2641–2645, 2017.
    [13] L. Sabattini, V. Digani, C. Secchi, and C. Fantuzzi, “Optimized simultaneous conflict-free task assignment and path planning for multi-AGV systems,” IEEE International Conference on Intelligent Robots and Systems, pp. 1083–1088, 2017.
    [14] S. Akiyama, T. Nishi, T. Higashi, K. Kumagai, and M. Hashizume, “A multi-commodity flow model for guide path layout design of AGV systems,” IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1251–1255, 2017.
    [15] V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi, “Ensemble coordination approach in multi-AGV systems applied to industrial warehouses,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 3, pp. 922–934, 2015.
    [16] H. Hon, Y.S. Ro, H.J. Kang, and Y. Suh, “A simulator for AGV system modeling,” Russian-Korean International Symposium on Science and Technology, vol. 1, no. 3, pp. 223–227, 2004.
    [17] D. Giglio, “A Petri net model for an open path multi-AGV system,” Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics, vol. 2, pp. 734–745, 2014.
    [18] T. Nishi, Y. Tanaka, and Y. Isoya, “Petri net decomposition for deadlock avoidance routing for bi-directional AGV systems,” IEEE International Conference on Systems, pp. 2453–2458, 2010.
    [19] T. Nishi and R. Maeno, “Petri Net decomposition approach to optimization of route planning problems for AGV systems,” IEEE Transactions on Automation Science and Engineering, vol. 7, no. 3, pp. 523–537, 2010.
    [20] R. H. Kubo, O. L. Asato, G. A. dos Santos, and F. Y. Nakamoto, “Modeling of allocation control system of multifunctional resources for manufacturing systems,” IEEE International Conference on Industry Application, pp. 1–8, 2016.
    [21] H. Hu, Y. Yang and Y. Liu, “Critical stages and their application in large scale automated manufacturing systems via Petri nets,” IEEE Conference on Intelligent Transportation Systems, pp. 2337–2344, 2016.
    [22] T. Nishi and Y. Tanaka, “Petri net decomposition approach for dispatching and conflict-free routing of bidirectional automated guided vehicle systems,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 42, no. 5, pp. 1230–1243, 2012.
    [23] M. H. Lin and L. C. Fu, “Modeling, analysis, simulation and control of semiconductor manufacturing systems: a generalized stochastic colored timed Petri net approach,” IEEE International Conference on Systems, vol. 3, pp. 769–774, 1999.
    [24] C.H. Kuo, “Modelling and performance evaluation of an overhead hoist transport system in a 300 mm fabrication Plant,” The International Journal of Advanced Manufacturing Technology, vol. 20, no. 2, pp. 153–161, Jul. 2002.
    [25] H.P. Huang and Y.H. Tseng, "Modeling and graphic simulator for integrated manufacturing systems," Proc. Intelligent Automation and Soft Computing, Vol. 1, pp. 183-186, 1994.
    [26] C.H. Kuo and H.P. Huang, "Dispatching and simulation for highly model-mixed automotive plants," Proc. Int. Conference on Automation Technology, Taiwan, Vol. 1, pp. 423-430, 1996.

    無法下載圖示 全文公開日期 2023/07/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE