簡易檢索 / 詳目顯示

研究生: Le Duc Hanh
Le - Duc Hanh
論文名稱: Combining Stereo Vision and Fuzzy Image Based Visual Servoing for Autonomous Object Grasping Using a 6-DOF Manipulator
Combining Stereo Vision and Fuzzy Image Based Visual Servoing for Autonomous Object Grasping Using a 6-DOF Manipulator
指導教授: 林其禹
Chyi-Yeu Lin
林紀穎
Chi-Ying Lin
口試委員: Ching-Chih Tsai
Ching-Chih Tsai
Kai-Tai Song
Kai-Tai Song
邱士軒
Shih-Hsuan Chiu
郭重顯
Chung-Hsien Kuo
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 65
外文關鍵詞: arm robot
相關次數: 點閱:242下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出了一種使用結合立體視覺和結合模糊控制器的視覺伺服方式(IBVSFC),讓具7個自由度的工業型機械手臂可全自主式地抓取隨機位置擺放的靜止矩形物件。首先使用OpenCV軟體和顏色濾波程式過濾出特定目標物的顏色特徵,然後再以立體視覺計算目標物的三維坐標。接著透過該空間座標,反運動學公式將引導機械手臂的夾爪抵達物件的約略位置。最後再以IBVSFC調整手臂末端上抓取裝置的朝向讓它跟矩形物件的朝向一致,以便做出成功的抓取。透過7個自由度工業機器手臂在真實環境中測試可證明系統演算法之精確度和強健性都是有效的。雖然本研究的應用目前只展示抓取簡單矩形物件,但同樣的方法可以很容易地套用到抓取具其他幾何形狀的立體物體


    This dissertation presents a new grasping method in which a 6-DOF industrial robot can autonomously grasp a stationary, randomly positioned rectangular object using a combination of stereo vision and image-based visual servoing with a fuzzy controller (IBVSFC). First, an openCV software and a color filter algorithm are used to extract the specific color features of the object. Then, the 3D coordinates of the object to be grasped are derived by the stereo vision algorithm, and the coordinates are used to guide the robotic arm to the approximate location of the object using inverse kinematicss. Finally, IBVSFC precisely adjusts the pose of the end-effector to coincide with that of the object to make a successful grasp. The accuracy and robustness of the system and the algorithm were tested and proven to be effective in real scenarios involving a 6-DOF industrial robot. Although the application of this dissertation is limited in grasping a simple cubic object, the same methodology can be easily applied to objects with other geometric shapes.

    Abstract I 摘要 II Acknowledgements III Table of contents IV List of FiguresV List of TablesVII Chapter 1INTRODUCTION 1 1.1Overview 1 1.2Motivation 4 1.3Contribution 5 1.4Dissertation structure 7 Chapter 2SYSTEM CONFIGURATION 8 2.1Denso Robot 8 2.2Vision system 10 Chapter 3IMAGE PROCESSING 13 3.1Color filter 13 3.2Stereo vision 16 Chapter 4FORWARD AND INVERSE KINEMATICS 21 4.1Direct kinematics 21 4.2Inverse Kinematics 25 Chapter 5CONTROL ALGORITHM 29 5.1Position based control 29 5.2Image based visual servoing 31 5.2.1 Classical image based visual control 33 5.2.2 PID control 35 5.2.3 Fuzzy image based visual control 35 Chapter 6EXPERIMENT AND CONCLUSION 41 6.1 Experiments 41 6.2Stacking Cubics 51 Chapter 7CONCLUSION AND FUTTURE WORK 57 7.1 Conclusion 57 7.1 Contributions 57 7.2 Future works 58 References 59 Appendix A 63 Appendix B 64

    [1] Tarca, R., Pasc, I., Tarca, N., and Popentiu-Vladicescu, F. “Remote robot control Via Internet Using Augmented Reality” The 18th DAAAM International symposium on Intelligent Manufacturing Automation, pp. 739-740, 2007.
    [2] Prem, K. P. and Behera, L., “Visual servoing of redundant manipulator with Jacobian matrix estimation using self-organizing map,” Robotic and Autonomous Systems, Vol. 58(11), pp. 978-990, 2010.
    [3] Nasrabadi, N.M., “A stereo vision technique using curve-segments and relaxation matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14(5), pp. 566-572, 1992.
    [4] Bohg, J. and Kragic, D., “Grasping familiar objects using shape context,” International Conference on Advanced Robotics, pp. 1-6, 2009.
    [5] Huchinson, S., Hager, G.D, and Corke, P.I., “A tutorial on visual servo control,” IEEE Transactions on Robotics and Automation, Vol. 12(5), pp. 651-670, 1996.
    [6] Kragic, D., and Christensen, H.I., “Survey on visual servoing for manipulation,” Technical Report. ISRN KTH/NA/P—02/01—SE, Computational Vision and Active Perception Laboratory (CVAP), CVAP259, 2002. http://www.nada.kth.se/ cvap/cvaplop/lop-cvap.html.
    [7] Shirai, Y. and Inoue, H., “Guiding a robot by visual feedback in assembling tasks,” Pattern Recognition, Vol. 5(2), pp. 99-108, 1973.
    [8] Peter, I.C. and Malcolm, C.G., “Dynamic effects in visual closed-loop systems,” IEEE Transactions on Robotics and Automation, Vol. 12(5), pp. 671-683, 1996.
    [9] Willian, J. Hulls, C.C.W., and Bell, G.S., “Relative end-effector control using Cartesian position based visual servoing,” IEEE Transaction Robotic and Automation, Vol. 12(5), pp. 684-696, 1996.
    [10] Kosmopoulos, D.I., “Robust Jacobian matrix estimation for image-based visual servoing,” Robotic and Computer-Integrated Manufacturing, Vol. 27(1), pp. 82-87, 2011.
    [11] Chesi, G., Hashimoto, K., Prattichizzo, D. and Vicino, A., “A switching control law for keeping features in the field of view in eye-in-hand visual servoing, “ IEEE International Conference on Robotics and Automation, pp. 3929-3934, 2003.
    [12] Sebastian, J.M., Pari, L., Angle, L. and Traslosheros, A., “Uncalibrated visual servoing using the fundamental matrix,” Robotics and Autonomous Systems, Vol. 57(1), pp. 1-10, 2009.
    [13]VS Series Data Sheet http://www.densorobotics.com/ content/ salessheets/ DENSORobotcs_datasheet_VS_650-850.pdf
    [14] Iraji, S.M., Yavari, A., “Skin color segmentation in fuzzy YCBCR color space with the Mamdani inference,” American Journal of Scientific Research,, pp. 131-137, 2011.
    [15] Camera calibration toolbox for MATLAB, http://www.vision.caltech.edu/.
    [16] Enescu, V., Cubber, D.G., Cauwerts, K., Sahli, H., Demeester, E., Vanhooydonck, D. and Nuttin, M., “Active stereo vision-based mobile robot navigation for person tracking,” Integrated Computer-Aided Engineering, Vol. 13(3), pp. 203-222, 2006.
    [17] Mustafa, N., Ugur, Y., Murat, S. B. C., “Fuzzy neural network based intelligent controller for 3-DOF robot manipulators,” The 5th International Symposium on intelligent Manufacturing System, pp. 884-895, 2006.
    [18] K. Y. Tsai, “Admissible motions in manipulator’s work space,” Ph.D. thesis, University of Wisconsin-Milwaukee, 1990.
    [19] Siradjiddin, I., Behera, L., McGinnity, T.M and Coleman, S., “Image based visual servoing of a 7 DOF robot manipulator using a distributed fuzzy proportional controller,” 2010 IEEE International Conference on Fuzzy Systems, pp. 1-8, 2010.
    [20] Chaumette, F. and HutChinson, S., “Visual servo control Part 1: Basic approaches,” IEEE Robotics & Automation Magazine, Vol. 13(4), pp. 82-90, 2006.
    [21]Kandel, A., Luo, Y. and Zhang, Y.Q., “Stability analysis of fuzzy control systems,” Fuzzy Sets and Systems, Vol. 105(1), pp. 33-48, 1999.
    [22] Hans, B. and Silvio, H., “A fuzzy approach to stability of fuzzy controllers,” Fuzzy Sets and Systems, Vol. 96(2), pp. 161-172, 1998.
    [23] Lo. J. C. and Lin. M. L., “Fuzzy stability analysis using interlacing condition,” The 10th IEEE International Conference on Fuzzy Systems, pp. 634-637, 2001.

    QR CODE