簡易檢索 / 詳目顯示

研究生: GIYANTO
GIYANTO
論文名稱: 利用電負性官能基團影響馬來酰亞胺電解液添加劑應用於鋰離子電池之研究
The investigation of electronegativity functional group effects on maleimide electrolyte additive in lithium ion battery
指導教授: 王 復 民
Fu-Ming Wang
口試委員: 許榮木
Jung-Mu Hsu
陳崇賢
Chorng-Shyang Chern
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 124
中文關鍵詞: 固體電解質界面電負性官能基團馬來酰亞胺添加劑鋰離子電池
外文關鍵詞: solid electrolyte interface, electronegativity functional group, maleimide-based additive
相關次數: 點閱:272下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於用帶電負性官能基團之馬來酰亞胺電解液添加劑其對於石墨負極的固體電解質界面(SEI)生成影響作探討。兩種馬來酰亞胺生成物有著電負性官能基團之取代物成功地被合成出來,分別為:4-flouro-o-phenylenedimaleimide(F-MI)以及4-cyano-o-phenylenedimaleimide(CN-MI)。一體積莫爾濃度之LiPF6在體積比為3:2:5的碳酸乙烯酯(EC):碳酸丙烯酯(PC):碳酸二乙烯(DEC)下添加0.1 wt%的F-MI跟CN-MI添加劑,可以提供更高的電化學穩定性以及更佳的可逆性能力。電負性官能基團(F以及CN)被發現其SEI層的生成可以被用來抑制在較高的還原電位2.35到2.33伏特(相對於Li/Li+)所造成的電解質分解問題。和商業的電池(O-MI)以及空白對照組的電池做比較,利用F-MI跟CN-MI添加劑所組成的電池提供了較低的電荷轉移之電阻和較高的離子擴散速率。除此之外,也透過掃描型電子顯微鏡(SEM)和能量色散X射線光譜儀(EDX)分析來研究兩種添加劑對於MCMB電極表面形態所造成的影響。我們的結果發現,本實驗之添加劑其良好的SEI生成以及與商業的電池(O-MI)跟空白對照組相比之電池性能的提高,此兩種添加劑為最適當的添加劑。


    This research studies the electronegativity functional group effects on maleimide-based electrolyte additives to the solid electrolyte interface (SEI) formation on the graphite anode. Two maleimide compounds with the electronegativity functional groups as substituent, 4-flouro-o-phenylenedimaleimide (F-MI) and 4-cyano-o-phenylenedimaleimide (CN-MI) have been successfully synthesized. 1M LiPF6 in ethylene carbonate (EC): propylene carbonate (PC): di-ethylene carbonate (DEC) (3:2:5 in volume) containing 0.1 wt % of F-MI and CN-MI additives can provide higher electrochemical stability and higher reversibility capability. The presence of the electronegativity functional group (F and CN) was found that the SEI layer formation is used to suppress the decomposition electrolyte within higher reduction potential at 2.35 to 2.33 V vs. Li/Li+. The cells with F-MI and CN-MI additives provide lower charge-transfer resistance and higher ionic diffusivity in comparison with commercial product (O-MI) and blank electrolyte. In addition, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis were also conducted in order to understand the effects of additive on the morphology of the MCMB electrode surface. Our results show that F-MI and CN-MI additives are the most suitable additives due to its excellent SEI formation and battery performance enhancement compares with blank electrolyte and commercial product (O-MI).

    Abstract i 摘 要 iii Acknowledgement v Table of Contents vii List of Figures ix List of Tables xi CHAPTER I Introduction 1 1.1 Background 1 1.2 Problems Formulation 5 1.3 Research Purposes 6 CHAPTER II Literature Review 9 2.1 Lithium Ion Battery Components 9 2.1.1 Cathode 9 2.1.2 Anode 12 2.1.3 Electrolyte 15 2.2 Solid Electrolyte Interface (SEI) 21 2.2.1 SEI Formation Mechanism 22 2.2.2 Solvent Reduction Mechanism 23 2.2.3 Salt Decomposition 26 2.2.4 SEI Features, Morphology, and Chemical Composition 29 2.2.5 The Growth of SEI Layer 31 2.2.6 Characterization of SEI Layer 34 2.3 SEI Modification 35 2.3.1 Surface Modification of the Anode Materials 35 2.3.2 Surface Modification of the Cathode Materials 39 2.3.3 Modification on the Electrolyte System 41 2.4 Electrolyte Additives 46 2.5 Maleimide-based Additive 53 2.6 The Electronegativity Functional Group Effect on Electrolyte Additive 56 CHAPTER III Research Methodology 59 3.1 Research Design 59 3.2 Materials 61 3.3 Equipments 62 3.4 Experimental Procedure 63 3.4.1 Synthesis of F-MI and CN-MI additive 63 3.4.2 Electrochemical Measurement 63 3.4.3 SEI Evaluation Measurement 65 CHAPTER IV Synthesis of New Additives 67 4.1 Synthesis 67 4.1.1 Synthesis Procedure of F-MI 68 4.1.2 Synthesis Procedure of CN-MI 71 4.2 Characterization 72 4.2.1 4-fluoro-phenylenediamaleimide (F-MI) 72 4.2.2 4-cyano-phenylenediamaleimide (CN-MI) 74 4.3 Electrolyte Preparation 76 CHAPTER V Result and Discussion 79 5.1 Electrochemical Analysis 79 5.1.1 Cyclic Voltammetry (CV) Test 79 5.1.2 Charge Discharge Test 82 5.1.3 Electrochemical Impedance Spectroscopy (EIS) test 90 5.2 SEI Evaluation 95 5.2.1 SEM Result 95 5.2.2 EDX Result 97 CHAPTER VI Conclusion 101 Reference 103

    [1] N. S. Choi, et al., Challenges Facing Lithium Batteries and Electrical Double‐Layer Capacitors, Angewandte Chemie International Edition 51 (2012) 9994.
    [2] G. Jeong, Y.-U. Kim, H. Kim, Y.-J. Kim, and H.-J. Sohn, Prospective materials and applications for Li secondary batteries, Energy & Environmental Science 4, (2011) 1986.
    [3] M. Park, X. Zhang, M. Chung, G. B. Less, and A. M. Sastry, A review of conduction phenomena in Li-ion batteries, Journal of Power Sources 195 (2010) 7904.
    [4] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. P. Zaccaria, and C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, Journal of Power Sources 257 (2014) 421.
    [5] J. W. Fergus, Recent developments in cathode materials for lithium ion batteries, Journal of Power Sources 195 (2010) 939.
    [6] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy & Environmental Science 7 (2014) 3857.
    [7] M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, L. Niedzicki, M. Kalita, et al., Electrolytes for Li-ion transport–Review, Solid State Ionics 276 (2015) 107.
    [8] K. Ghandi, A review of ionic liquids, their limits and applications, Green and Sustainable Chemistry 2014 (2014).
    [9] J. Song, Y. Wang, and C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries, Journal of Power Sources 77 (1999) 183.
    [10] A. M. Stephan, Review on gel polymer electrolytes for lithium batteries, European Polymer Journal 42 (2006) 21.
    [11] S. S. Zhang, A review on electrolyte additives for lithium-ion batteries, Journal of Power Sources 162 (2006) 1379.
    [12] L. Zhang, J. Huang, K. Youssef, P. C. Redfern, L. A. Curtiss, K. Amine, et al., Molecular Engineering toward Stabilized Interface: An Electrolyte Additive for High-Performance Li-Ion Battery, Journal of The Electrochemical Society 161 (2014) A2262.
    [13] F.-M. Wang, H.-M. Cheng, H.-C. Wu, S.-Y. Chu, C.-S. Cheng, and C.-R. Yang, Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries, Electrochimica Acta 54 (2009) 3344.
    [14] C.-S. Cheng, F.-M. Wang, and J. Rick, Aqueous Additive for Lithium Ion Batteries: Promotes Novel Solid Electrolyte Interface (SEI) Layer with Overall Cost Reduction, Int. J. Electrochemical Science 7 (2012) 8676.
    [15] F.-M. Wang, M.-H. Yu, C.-S. Cheng, S. A. Pradanawati, S.-C. Lo, and J. Rick, Phenylenedimaleimide positional isomers used as lithium ion battery electrolyte additives: Relating physical and electrochemical characterization to battery performance, Journal of Power Sources 231 (2013) 18.
    [16] M. S. Whittingham, Lithium batteries and cathode materials, Chemical reviews 104 (2004) 4271.
    [17] C. M. Julien, A. Mauger, K. Zaghib, and H. Groult, Comparative issues of cathode materials for Li-ion batteries, Inorganics 2 (2014) 132.
    [18] J. Xu, S. Dou, H. Liu, and L. Dai, Cathode materials for next generation lithium ion batteries, Nano Energy 2 (2013) 439.
    [19] M. M. Doeff, Battery Cathodes, Batteries for Sustainability, Springer New York (2013) 5-49.
    [20] Y.-P. Wu, E. Rahm, and R. Holze, Carbon anode materials for lithium ion batteries, Journal of Power Sources 114 (2003) 228.
    [21] K. Xu, Electrolytes and interphasial chemistry in Li ion devices, Energies 3 (2010) 135.
    [22] V. A. Agubra and J. W. Fergus, The formation and stability of the solid electrolyte interface on the graphite anode, Journal of Power Sources 268 (2014) 153.
    [23] S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon 105 (2016) 52.
    [24] P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta 55 (2010) 6332.
    [25] S. Zhang, M. S. Ding, K. Xu, J. Allen, and T. R. Jow, Understanding solid electrolyte interface film formation on graphite electrodes, Electrochemical and Solid-State Letters 4 (2001) A206.
    [26] F. A. Soto, Y. Ma, J. M. Martinez de la Hoz, J. M. Seminario, and P. B. Balbuena, Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries, Chemistry of Materials 27 (2015) 7990.
    [27] I. A. Shkrob, Y. Zhu, T. W. Marin, and D. Abraham, Reduction of carbonate electrolytes and the formation of solid-electrolyte interface (SEI) in Lithium-ion batteries. 1. spectroscopic observations of radical intermediates generated in one-electron reduction of carbonates, The Journal of Physical Chemistry C 117 (2013) 19255.
    [28] M. Nie and B. L. Lucht, Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries, Journal of The Electrochemical Society 161 (2014) A1001.
    [29] W. Torres, L. Cantoni, A. Tesio, M. Del Pozo, and E. Calvo, EQCM study of oxygen cathodes in DMSO LiPF6 electrolyte, Journal of Electroanalytical Chemistry 765 (2016) 45.
    [30] S. Zhang, K. Xu, and T. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery, Electrochimica acta, 51 (2006) 1636.
    [31] S. S. Zhang, Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte, Journal of Power Sources 163 (2007) 713.
    [32] F.-M. Wang and J. Rick, Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to commercial type lithium ion batteries, Solid State Ionics 268 (2014) 31.
    [33] W.-Y. Tsai, P.-L. Taberna, and P. Simon, Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons, Journal of the American Chemical Society 136 (2014) 8722.
    [34] E. Radvanyi, K. Van Havenbergh, W. Porcher, S. Jouanneau, J.-S. Bridel, S. Put, et al., Study and modeling of the Solid Electrolyte Interphase behavior on nano-silicon anodes by Electrochemical Impedance Spectroscopy, Electrochimica Acta 137 (2014) 751.
    [35] S. Chattopadhyay, A. L. Lipson, H. J. Karmel, J. D. Emery, T. T. Fister, P. A. Fenter, et al., In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode, Chemistry of Materials 24 (2012) 3038.
    [36] S. Malmgren, K. Ciosek, M. Hahlin, T. Gustafsson, M. Gorgoi, H. Rensmo, et al., Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy, Electrochimica Acta 97 (2013) 23.
    [37] Y. Park, S. H. Shin, H. Hwang, S. M. Lee, S. P. Kim, H. C. Choi, et al., Investigation of solid electrolyte interface (SEI) film on LiCoO2 cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS), Journal of Molecular Structure 1069 (2014) 157.
    [38] A. v. Cresce, S. M. Russell, D. R. Baker, K. J. Gaskell, and K. Xu, In situ and quantitative characterization of solid electrolyte interphases, Nano letters 14 (2014) 1405.
    [39] F. Shi, P. N. Ross, H. Zhao, G. Liu, G. A. Somorjai, and K. Komvopoulos, A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy, Journal of the American Chemical Society 137 (2015) 3181.
    [40] F. Shi, H. Zhao, G. Liu, P. N. Ross, G. A. Somorjai, and K. Komvopoulos, Identification of Diethyl 2,5-Dioxahexane Dicarboxylate and Polyethylene Carbonate as Decomposition Products of Ethylene Carbonate Based Electrolytes by Fourier Transform Infrared Spectroscopy, The Journal of Physical Chemistry C 118 (2014) 14732.
    [41] L. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, et al., Surface modifications of electrode materials for lithium ion batteries, Solid State Sciences 8 (2006) 113.
    [42] S.-D. Xu, Q.-C. Zhuang, J. Wang, Y.-Q. Xu, and Y.-B. Zhu, New Insight into Vinylethylene Carbonate as a Film Forming Additive to Ethylene Carbonate-Based Electrolytes for Lithium-Ion Batteries, Int. J. Electrochemichal Science 8 (2013) 8058.
    [43] A. M. Haregewoin, E. G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, and S. D. Lin, Comparative study on the solid electrolyte interface formation by the reduction of alkyl carbonates in lithium ion battery, Electrochimica Acta 136 (2014) 274.
    [44] C. Wang, A. J. Appleby, and F. E. Little, Electrochemical impedance study of initial lithium ion intercalation into graphite powders, Electrochimica acta 46 (2001) 1793.
    [45] A. M. Haregewoin, A. S. Wotango, and B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy & Environmental Science 9 (2016) 1955.
    [46] Chai, Shuo, Shu-Hao Wen, and Ke-Li Han. Understanding electron-withdrawing substituent effect on structural, electronic and charge transport properties of perylene bisimide derivatives. Organic electronics 12 (2011) 1806.
    [47] H. J. Santner, et al. Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups. Journal of power sources 119 (2003) 368.
    [48] C. Korepp, et al., 2-Cyanofuran—A novel vinylene electrolyte additive for PC-based electrolytes in lithium-ion batteries, Journal of power sources 158 (2006) 578.
    [49] H. M. Jung, et al. Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate, Journal of Materials Chemistry A 38 (2013) 11975.
    [50] Y. Hu, et al., Tetrachloroethylene as new film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries with graphitic anode. Solid State Ionics 176 (2005) 53.
    [51] S. A. Pradanawati, F.-M. Wang, J. Rick, In Situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion batteries. Electrochimica Acta 135 (2014) 388.
    [52] L. El. Ouatani, et al., The effect of vinylene carbonate additive on surface film formation on both electrodes in Li-ion batteries, Journal of The Electrochemical Society 156 (2009) A103.
    [53] S.P. Ong, and G. Ceder. Investigation of the effect of functional group substitutions on the gas-phase electron affinities and ionization energies of room-temperature ionic liquids ions using density functional theory, Electrochimica Acta 55 (2010) 3804.
    [54] M. Kaipio, et al., Effect of Fluorine Substitution on the Aromaticity of Polycyclic Hydrocarbons, The Journal of Physical Chemistry A 116 (2012) 10257.
    [55] A.M Haregewoin, et al., A combined experimental and theoretical study of surface film formation: Effect of oxygen on the reduction mechanism of propylene carbonate, Journal of Power Sources 244 (2013) 318.
    [56] J. Xia, L. Ma, and J. R. Dahn, Improving the long-term cycling performance of lithium-ion batteries at elevated temperature with electrolyte additives, Journal of Power Sources 287 (2015) 377.
    [56] G. Jeong, et al. Prospective materials and applications for Li secondary batteries, Energy & Environmental Science 4 (2011) 1986.

    QR CODE