簡易檢索 / 詳目顯示

研究生: 陳苗曼
Miao-Man Chen
論文名稱: 表面預鋰化改質一氧化矽用於鋰離子電池負極材料之研究
Research on Surface modification of silicon monoxide by pre-liathiation as for anode material in lithium ion batteries
指導教授: 王復民
Fu-Ming Wang
口試委員: 張仍奎
Jeng-Kuei Chang
陳柏延
Po-Yen Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 109
中文關鍵詞: 鋰離子電池負極材料一氧化矽表面預鋰化丙烯酸鋰
外文關鍵詞: lithium ion batteries, anode material, silicon monoxide, surface preliathiation, lithium acrylate
相關次數: 點閱:167下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了解決一氧化矽體積膨脹變化所形成的SEI層與不可逆相所消耗過多鋰離子的問題,本研究提出將丙烯酸鋰(LiAA)預鋰化於一氧化矽(SiO#a)表面上,丙烯酸鋰(LiAA)含有豐富羧酸基團與鋰離子,這些羧基可確保與氧化矽之間有牢固的結合力,達到穩定的結構特性以及提供額外的鋰離子能夠補足再循環過程中所消耗的鋰離子,能夠提升一氧化矽循環性能。在100圈的電容保持率,SiO#a電容保持率為17%、SiO#a LA電容保持率提升到30.4%及SiO#a LH電容保持率達到56%,提高LiAA比例進行預鋰化於表面,可有效提升的電容量保持率。
    除了探討一氧化矽表面預鋰化的效果,也針對兩種不同比例氧化矽分別為SiO#9和SiO#11皆含有碳成分存在,進行LiAA預鋰化於氧化矽表面,在100圈循環後的電容保持率:SiO#a電容保持率提升16.2%;SiO#9電容保持率提升30%以及SiO#11電容保持率提升14%,透過預鋰化於氧化矽表面的LiAA含量來計算所提供額外的鋰離子數量:SiO#a為5.76×10^20個鋰離子;SiO#9為1×10^21個鋰離子;SiO#11為2.07×10^20個鋰離子,在探討預鋰化於三種氧化矽表面的表現為SiO#9> SiO#a> SiO#11,由於SiO#11裡碳含量較高,使LiAA可能預鋰化於SiO#11的碳表面上,LiAA更益於預鋰化在氧化矽表面上,能夠讓電容保持率的提升來自於LiAA預鋰化於氧化矽表面所提供越多額外的鋰離子來補足所消耗的部分,而倍率性能方面1C電流速率下,預鋰化後的氧化矽電容量皆增加75-150mAh/g,額外的鋰離子可促進高電流速率下的快速電化學反應,因此透過預鋰化於氧化矽表面,能夠讓氧化矽能有效提高倍率性能以及改善循環穩定性。


    In order to resolve problems from the formation of SEI layer due to volume expansion of silicon monoxide and along with depletion of lithium ions from irreversible phase reactions, this research propose a casual way of synthesis to handle the issue. By using synthesizing lithium acrylate (LiAA) on the surface of silicon monoxide (SiO#a), forming a layer of lithiated polymer which acts as a preliathiation reaction. Lithium acrylate (LiAA) is chosen for the preliathiation process due to the abundant amount of carboxyl groups and lithium ions carried. These carboxyl groups enhance bonding force within silicon monoxide (SiO#a), stabilizing structure characteristics and providing extra lithium ions from depletion during cycling, which enhances cycling ability. In this research, 2 different amounts of addition, which are 15% and 30% of LiAA into SiO#a along with 100 cycles of charge-discharge procedure are conducted. SiO#a BK has a capacity retention of 17%, 15% of LiAA had increase the capacity retention to 30.4% and 30% of LiAA had reach a 56% of capacity retention. This confirms a further insight of by increasing LiAA’s amount into synthesis efficiently increases capacity retention.
    Besides of just investigating surface preliathiation effects on silicon monoxide, we further picked on 2 different ratio silicon monoxide containing carbon which are named as SiO#9 and Si#11. As using the method above, surface preliathiation LiAA on the subjected silicon monoxide, at the point of after 100 cycles, capacity retention is: SiO#a increased 16.2%; SiO#9 increased 30% and SiO#11 increased 14%. Calculations of the numbers of lithium-ions provided by LiAA preliathiation on the surface of silicon monoxide: SiO#a has 5.76×10^20 of lithium ions, SiO#9 has 1×10^21 of lithium ions;SiO#11has 2.07×10^20 of lithium ions. In this investigation, the 3 subject ‘s performance are as SiO#9> SiO#a> SiO#11, since sio#11 carbon contain is higher, it is to be suggested LiAA perhaps preliathiated on top of the carbon, as LiAA is more effective preliathiated on silicon monoxide. Increment of capacity retention comes from the LiAA surface preliathiation providing extra lithium-ions from depletion. For rate performance, under 1C current rate, preliathiation of silicon monoxide’s has an increment of 75~150 mAh/g. Extra lithium-ions could promote high current rate electrochemical performance, and due to this, by preliathiation on the surface of silicon monoxide could increase rate performance and enhance cycle stability.

    摘要 I ABSTRACT II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XIII 第1章 緒論 1 1.1研究背景 1 1.1.1 鋰離子電池發展 1 1.1.2 鋰離子電池之原理 2 1.1.3 電池材料 5 1.2研究動機與目的 17 第2章 文獻探討 18 2.1矽負極材料的發展概況 18 2.2氧化矽負極材料特性 20 2.2.1 氧化矽的反應機制 20 2.2.2 氧化矽電極的表面機制 22 2.2.3 改善氧化矽的電化學性能方法 23 2.3功能性高分子應用於氧化矽 29 2.3.1 丙烯酸鋰 (lithium acrylate) 29 第3章 實驗方法與儀器設備 30 3.1實驗藥品 30 3.2儀器設備 31 3.3實驗方法 32 3.3.1 研究流程 32 3.3.2 LiAA預鋰化於氧化矽表面 33 3.3.3 氧化矽負極極片製備 34 3.3.4 鈕扣型電池(coin cell) 35 3.4材料合成鑑定分析 36 3.4.1 傅立葉轉換紅外光光譜儀-調減全反射(FTIR-ATR) 36 3.4.2 熱重分析儀(Thermogravimetric Analyzer,TGA) 41 3.5電化學性能測試 42 3.5.1 電池性能的測試方法 42 3.5.2 交流阻抗分析(Electrochemical impedance spectroscopy,EIS) 44 3.5.3 循環伏安法(Cyclic Voltammetry, CV) 47 3.6電極表面分析 49 3.6.1 掃描電子顯微鏡(Scanning Electron Microscope , SEM) 49 3.6.2 X射線光電子能譜儀(XPS) 51 第4章 結果與討論 53 4.1材料本質與合成鑑定分析 54 4.1.1 X光繞射儀(X-ray Diffractometer) 56 4.1.2 X射線光電子能譜儀(X-ray photoelectron spectroscopy) 57 4.1.3 Fourier transform infrared spectroscopy (FTIR)-ATR分析結構特性 59 4.1.4 熱重分析儀(Thermogravimetric Analyzer,TGA) 62 4.2電化學性能分析 64 4.2.1 第一圈充放電曲線圖分析 64 4.2.2 充放電循環測試 68 4.2.3 循環伏安法(Cyclic Voltammetry, CV) 72 4.2.4 交流阻抗分析(Electrochemical impedance spectroscopy,EIS) 74 4.3在100圈充放電後的極片表面分析 77 4.3.2 X射線光電子能譜儀(XPS) 80 第5章 總結與建議 83 第6章 參考資料 85

    [1]Heng Zhang, From Solid-Solution Electrodes and the Rocking-Chair Concept to Today's Batteries, Angew. Chem. (2020),132,542-546
    [2]Stanley Whittingham, The hydrated intercalation complexes of the layered disulfides,Mater.Res. Bull. (1974) 9 1681-1689
    [3]Akira Yoshino ,The Birth of the Lithium-Ion Battery,Chem. Int. Ed. (2012) 51 5798-5800
    [4]Science (1976) 192 1126-1127
    [5]North Holland Publishers, Amsterda, (1972) 665-672
    [6]Mizushima, A new cathode material for batteries of high energy density ,Mater.Res. Bull. (1980) 15 783-789
    [7]M.M.Thackeray, Lithium insertion into manganese spinels ,Mater. Res. Bull. (1983) 18 461-472.
    [8]J. M. Tarascon ; D. Guyomard, Li Metal-Free Rechargeable Batteries Based on Li1+xMn2O4 Cathode (0 £ x £ 1) and Carbon Anodes ,J. Electrochem. Soc. (1991) 138(10) 2864-2868
    [9]A. K. Padhi1, Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries ,J, Electrochem. Soc. (1997) 144 1188-1194
    [10]Brian L. Ellis ; Kyu Tae Lee; Linda F. Nazar, Positive Electrode Materials for Li-Ion and Li-Batteries, Chem.Mater. 22 (2010) 691-714
    [11]M Armand ; S Grugeon ; H Vezin ; S Laruelle ; P Ribière ;P Poizot ;J-M Tarascon, Conjugated dicarboxylate anodes for Li-ion batteries,Nature materials 8 (2009) P.120-5
    [12]Pallavi Verma ; Pascal Maire ; Petr Novák , A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , Electrochimica Acta 55 (2010) 6332-6341
    [13]Aure lien, A comparative study of Li-ion battery, supercapacitor and nonaqueous
    asymmetric hybrid devices for automotive applications,J. Power Sources 115 (1) (2003) 171-178
    [14]J.R. Dahn, Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells ,Solid State Ionics, 69 (3-4) (1994) 265-270
    [15]S Madhavia, Li, Effect of Cr dopant on the cathodic behavior of LiCoO2 , Electrochim. Acta, 48 (3) (2002) 219-226
    [16]R. Stoyanova;E. Zhecheva;L. Zarkova, Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1−yO2 solid solutions ,Solid State Ionics, 73 (3-4) (1994) 233-240
    [17]Isaac D. Scott; Yoon Seok Jung; Andrew S. Cavanag ; Yanfa Yan; Anne C. Dillon; Steven M. George ;Se Hee Lee, Ultrathin Coatings on Nano-LiCoO2 for Li-Ion Vehicular Applications ,Nano Lett., 11 (2) (2010) 414-418
    [18]Naoki Nitta , Li-ion battery materials: present and future ,Materials Today Volume 18 (2) (2015) 252-264
    [19]Tae-Hwan Park, Enhancing the rate performance of graphite anodes through addition of natural graphite/carbon nanofibers in lithium-ion batteries , Electrochim. Acta, 93 (2013) 236-240
    [20]P. Simon, Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems ,Acc. Chem. Res. 46 (5) (2013) 1226–1238
    [21]Besen hard J O; Scholl horn R. Chromium oxides as cathodes for secondary high energy density lithium batteries ,J. Electrochem. Soc. 124 (1977) 968-971
    [22]P. M. Ajayan, Nanotubes from Carbon ,Chem. Rev., 99 (1999) 1787-1800
    [23]Yan wu Zhu, Graphene and Graphene Oxide: Synthesis, Properties, and Applications ,Adv. Mater., 22 (46) (2010), P.3906-3924
    [24]Interface magazine, 25 (2016) 79-83
    [25]Jun Lu, High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries ,Electrochemical Energy Reviews 1 (1), (2018) 35–53
    [26]Ke Fan, Two-dimensional host materials for lithium-sulfur batteries: A review and perspective ,Energy Storage Materials 46 (2022) 82–502
    [27]I. Burch, Lithium-ion Battery Fire Suppression in Submarine Battery Compartments ,Energy Storage Mater., 10 (2018) P.246-267
    [28]Kui rong Deng, Nonflammable organic electrolytes for high-safety lithium-ion batteries ,Energy Storage Materials 32 (2020) 425–447
    [29]Zhang Shi chao, Designing safer lithium-based batteries with nonflammable electrolytes: A review ,EScience 1 (2021) 163-177
    [30]Zhe Yu, Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries,J. Energy Chem., 51 (2020) 154-160
    [31] Yong Xie, Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes ,J Membr Sci, 503 (2016) 25-30
    [32] Kun Joong Kim, Solid State Batteries: Solid-State Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces ,Adv Energy Mater, 11 (2021) P. 200-268
    [33]Ram A. Sharma, Thermodynamic Properties of the Lithium‐Silicon System ,J. Electrochem. Soc.123 (1976) 1763-1768
    [34]Chan, C. K., Patel, R. N., O'Connell, M. J., Korgel, B. A., & Cui, Y., Solution-grown silicon nanowires for lithium-ion battery anodes ,ACS Nano, 4 (2010) 1443-1450
    [35]M. C. Qiu, Fabrication of Ordered NiO Coated Si Nanowire Array Films as Electrodes for a High Performance Lithium Ion Battery ,ACS Appl.Mater.Interfaces, 2 (2010), 3614-3618
    [36]Solid State Ionics, 152 (2002) 125-129
    [37]Kou ji Yasuda, Thermodynamic analysis and effect of crystallinity for silicon monoxide negative electrode for lithium ion batteries ,J. Power Sources, 329 (2016) 462-472
    [38]Tao Chen, Recent advancement of SiOx based anodes for lithium-ion batteries ,Journal of Power Sources 363 (2017) 126-144
    [39]Liu rong Shi, Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes ,Nano Lett., 17 (2017) 3681-3687
    [40]Chu Liang, Submicron silica as high−capacity lithium storage material with superior cycling performance ,Mater. Res. Bull., 96 (2017) 347-353
    [41]Xi Luo, SiOx Nanodandelion by Laser Ablation for Anode of Lithium-Ion Battery ,Small, 11 (2015) 6009-6012
    [42]Zhaolin Li, Watermelon-Like Structured SiOx–TiO2@C Nanocomposite as a High-Performance Lithium-Ion Battery Anode ,Adv. Funct. Mater., 28 (2018) 1605711
    [43]Miao lun Jiao, High-capacity SiOx (0≤x≤2) as promising anode materials for next-generation lithium-ion batteries ,Journal of Alloys and Compounds 842 (2020) 155774
    [44]Bertrand Philippe, Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy ,Chem. Mater. 24 (2012) 1107-1115
    [45]Jung In Lee ; Soo jin Park ,High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching ,Nano Energy, 2 (2013) 146-152
    [46]Lon A. Porter, Hee Cheul Choi, Alexander E. Ribbe, and Jillian M. Buriak, Controlled Electroless Deposition of Noble Metal Nanoparticle Films on Germanium Surfaces ,Nano Letters , 2 ( 2002 ) 1067-1071
    [47]C. Chartier, Metal-assisted chemical etching of silicon in HF–H2O2 , Electrochimica Acta, 53 (2008) 5509-5516
    [48]T. Zhang ;J. Gao, Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries ,Electrochem. Commun., 9 (2007) 886-890
    [49]Zhang, J.; Hou, Z.; Zhang, X.; Zhang, L.; Li, C. Delicate Construction of Si@SiOx Composite Materials by Microwave Hydrothermal for Lithium-Ion Battery Anodes. Ionics (2020), 26, 69-74
    [50]Eunjun Park , Dual-Size Silicon Nanocrystal-Embedded SiOx Nanocomposite as a High-Capacity Lithium Storage Material ,ACS Nano (2015), 9, 7690-7696
    [51]Keiichiro Homma, High throughput production of nanocomposite SiOx powders by plasma spray physical vapor deposition for negative electrode of lithium ion batteries ,Adv. Mater. 15 (2014) 025006
    [52]Reddyprakash Maddipatla, Electrochemical Performance of an Ultrathin Surface Oxide-Modulated Nano-Si Anode Confined in a Graphite Matrix for Highly Reversible Lithium-Ion Batteries ,ACS Appl. Mater. Interfaces (2020), 12, 49, 54608–54618
    [53]Joseph Nzabahimana , Top-Down Synthesis of Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries: Mechanical Milling and Etching ,Chem Sus Chem 13 (2020) 1923-1946
    [54]Joachim Maier , Thermodynamics and Kinetics of Charge Carriers in Solids ,Solid-State Lett. (2005) 100-103
    [55]J.-S. Bridel , Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries ,Chem. Mater. (2009) 1229-1241
    [56]D.Munao, Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries ,J. Power Sources, 196 (16) (2011) 6695-6702
    [57]Igor Kovalenko , A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries, Science, 334 (2011) 75-79
    [58]Birhanu Desalegn ,Assresahegn ,Daniel Bélanger , Synthesis of binder-like molecules covalently linked to silicon nanoparticles and application as anode material for lithium-ion batteries without the use of electrolyte additives , Journal of Power Sources, 345 (2017) 190-201
    [59]Jing Li ,Dinh Ba Le , Lithium polyacrylate as a binder for tin–cobalt–carbon negative electrodes in lithium-ion batteries , Electrochimica Acta 55 (2010) 2991-2995
    [60] Kevin A ; Hays , What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes ,Journal of Power Sources 384 (2018) 136–144
    [61]Brian C. Smith. In: Introduction to FTIR: Fundamentals of Fourier Transform Infrared spectroscopy 1sted New York: CRC press (1996)
    [62]Thermo Nicolet Corporation Booklet. Introduction to Fourier Transform Infrared Spectrometry (2001)
    [63]Nahum Gat , Imaging spectroscopy using tunable filters: a review , SPIE, 4056 (50) (2000)
    [64]Principles of Instrumental Analysis Seventh Edition, Cengage Learning, (2016)
    [65]Filippo Mangolini , Chemical Reactivity of Triphenyl Phosphorothionate (TPPT) with Iron: An ATR/FT-IR and XPS Investigation , J. Phys. Chem. C,115 (2011) 1339-1354
    [66]Electrochemical methods fundamentals and applications. John Wiley & Sons (2001)
    [67]Gary A. Mabbott , An Introduction to Cyclic Voltammetry , Journal of Chemical education 60 (9) (1983) 697
    [68]Jyh Myng Zen , Electrochemical impedance study and sensitive voltammetric determination of Pb(II) at electrochemically activated glassy carbon electrodes ,Analyst, 125 (2000) 1139-1146
    [69]Jyh Myng Zen , Square-Wave Voltammetric Determination and ac Impedance Study of Dopamine on Preanodized Perfluorosulfonated Ionomer-Coated Glassy Carbon Electrodes , Anal. Chem, 71 (1999) 2797-2805
    [70]Niazul I. Khan ,Edward Song , Lab-on-a-Chip Systems for Aptamer-Based Biosensing ,Micromachines ,11(2) (2020) 220
    [71]Diagnosis of Electrochemical Impedance Spectroscopy in Lithium-Ion Batteries.
    [72]Undergraduate Instrumental Analysis (6th ed.). CRC Press. p880-89
    [73]a reference book of standard spectra for identification and interpretation of XPS data.
    [74]Rui Yu , Yolk-Shell Sio2 Wrapped by Reduced Graphene Oxide for High Performance Lithium-Ion Battery Anode , Electrochimica Acta 422 (2022) 140546
    [75]Kouji Yasuda ; YusukeKashitani , Thermodynamic analysis and effect of crystallinity for silicon monoxide negative electrode for lithium ion batteries , Journal of Power Sources 329 (2016) 462-472
    [76]T. N. Taylor , The surface composition of silicon carbide powders and whiskers: An XPS study J. Mater. Res., 4 (1989) 189-203
    [77]Taeahn Kim ,Solid-State NMR and Electrochemical Dilatometry Study on Li +  Uptake/Extraction Mechanism in SiO Electrode , Journal of The Electrochemical Society, 154 (2007) 1112-1117
    [78]Jun Kyu Lee ,Kinetics of Reaction Products of Silicon Monoxide with Controlled Amount of Li-Ion Insertion at Various Current Densities for Li-Ion Batteries ,Journal of The Electrochemical Society, 161 (2014) 927-933
    [79]Lin Sun , Tingting Su , Two-dimensional ultra-thin SiOx (0 < x < 2) nanosheets with long-term cycling stability as lithium ion battery anodes ,Chem. Commun., 52 (2016) 4341- 4344
    [80]Junyi Ji ; Hengxing JiAdvanced, Graphene-Encapsulated Si on Ultrathin-Graphite Foam as Anode for High Capacity Lithium-Ion Batteries , Materials 25(33) (2013)
    4673-4677
    [81]Ji Heon Ryu ; Jae Woo Kim ;Yung-Eun Sung ; Seung M. OhFailure ,Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries, Electrochem. Solid-State Lett., 7(10) (2004) 306-309
    [82]T. D. Hatchard, In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , Electrochem. Soc., 151 (2004) A838
    [83]Sisi Jiang, Surface-Functionalized Silicon Nanoparticles as Anode Material for Lithium-Ion Battery , ACS Appl. Mater. Interfaces 10 (2018) 44924−44931
    [84]M.Tian, P. Wu, Nature Plant Polyphenol Coating Silicon Submicroparticle Conjugated with Polyacrylic Acid for Achieving a High-Performance Anode of Lithium-Ion Battery, ACS Applied Energy Materials 2(7) (2019) 5066-5073
    [85]MaoXia , Improving the electrochemical properties of SiO@C anode for high-energy lithium ion battery by adding graphite through fluidization thermal chemical vapor deposition method , Ceramics International 45 (2019) 1950-1959
    [86]Martin Winter , Jürgen O. Besenhard ,Michael E.Spahr ,Petr Novák , Insertion Electrode Materials for Rechargeable Lithium Batteries ,Adv. Mater., 10 (1998) 725-763
    [87]Rajeswari Chandrasekaran , Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode Particle at Room Temperature ,J. Electrochem. Soc., 157 (2010) A1139
    [88]Sumit K. Soni , Diffusion Mediated Lithiation Stresses in Si Thin Film Electrodes , J. Electrochem. Soc., 159 (2012) A1520-A1527
    [89]YuDing , Pathways to Widespread Applications: Development of Redox Flow Batteries Based on New Chemistries ,Inside Chem., 5 (2019) 1964-1987
    [90]Meijuan Yuan , Si-based materials derived from biomass: synthesis and applications in electrochemical energy storage , J. Mater. Chem. A, 7 (2019), 22123-22147
    [91]Sung Chul Jung , Atomic-Level Understanding toward a High-Capacity and High-Power Silicon Oxide (SiO) Material , J. Phys. Chem. C, 120 (2015) 886-892
    [92]Zhenhui Liu , Silicon oxides: a promising family of anode materials for lithium-ion batteries , Chem. Soc. Rev., 48 (2019) 285-309
    [93]FeiDou , Design of orderly carbon coatings for SiO anodes promoted by TiO2 toward high performance lithium-ion battery , Chem. Eng. J., 338 (2018) 488-495
    [94]Sujong Chae ,Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries , Joule, 1 (1) (2017) 47-60
    [95]Hajime Miyashiro,Fabrication of All-Solid-State Lithium Polymer Secondary Batteries Using Al2O3-Coated LiCoO2Chem. Mater. 17 (2005) 5603-5605
    [96]Sisi Jiang , Engineering the Si Anode Interface via Particle Surface Modification: Embedded Organic Carbonates Lead to Enhanced Performance, ACS Appl. Energy Mater, 4(8) (2021) 8193-8200
    [97]Gaojie Xu , Xiao Wang , Xiao Wang,Tracing the Impact of Hybrid Functional Additives on a High-Voltage (5 V-class) SiOx-C/LiNi0.5Mn1.5O4 Li-Ion Battery System,Chem. Mater. 30 (22) (2018) 8291-8302
    [98]LeleZhu , Effect of crosslinking binders on Li-storage behavior of silicon particles as anodes for lithium ion batteries , Journal of Electroanalytical Chemistry 845 (2019) 22-30
    [99]Renato Castro Valente , Direct Synthesis of Nanotubular Si-TiO2for Lithium-Ion Batteries Anodes By Anodizing , Energy Storage Materials 7 (2017) 203-208
    [100]Zhe Deng ,Xing Lin ,Zhenyu Huang , Recent Progress on Advanced Imaging Techniques for Lithium-Ion Batteries , Adv. Energy Mater. 11(2) (2021) 2000806
    [101]Nimrod Harpak ,Guy Davidi ,Fernando Patolsky, Breathing parylene-based nanothin artificial SEI for highly-stable long life three-dimensional silicon lithium-ion batteries ,Chemical Engineering Journal 429 (2022) 132077
    [102]G. Feuillade, Ph. Perche , Ion-conductive macromolecular gels and membranes for solid lithium cells , Journal of Applied Electrochemistry 5.1 (1975) 63-69.
    [103]Jiguo Tu ,In-Situ Synthesis of Silicon/Polyaniline Core/Shell and Its Electrochemical Performance for Lithium-Ion Batteries ,Journal of The Electrochemical Society 160 (10) (2013) 1916-1921
    [104]Dong Jin Lee , Nitrogen-doped carbon coating for a high-performance SiO anode in lithium-ion batteries , Electrochem. Commun. 34 (2013) 98-101
    [105]Jae-Hun Kim , Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries , J. Power Sources 170(2) (2007) 456-459
    [106]Jae-Hun Kim . Electrochemical behavior of SiO anode for Li secondary batteries , Journal of Electroanalytical Chemistry 661 (2011) 245–249
    [107]Insoo Choi , Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: Dynamics and component analysis by TEM , Electrochimica Acta 85 (2012) 369–376
    [108]Toru Tabuchi , Hideo Yasuda ,Masanori Yamachi , Li-doping process for LixSiO-negative active material synthesized by chemical method for lithium-ion cells ,Journal of Power Sources 146 (2005) 507–509
    [109]Nat. Commun., 5 (2014)
    [110]J Yang , SiOx-based anodes for secondary lithium batteries ,Solid State Ionics 152-153 (2002) 125-129
    [111]Tianyi Ma , Lithiation Behavior of Coaxial Hollow Nanocables of Carbon–Silicon Composite , ACS Nano, 13 (2019) 2274-2280
    [112]Md. Arafat Rahman ,Guangsheng Song ,Anand I. Bhatt ,Yat Choy Wong ,Cuie Wen , Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries , Adv. Funct. Mater., 26 (2016) 647-678
    [113]Xiaoxiao Zhang, An electrode-level prelithiation of SiO anodes with organolithium compounds for lithium-ion batteries , Journal of Power Sources 478 (2020) 229067
    [114]Pengpeng Lv , Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries , Electrochim Acta, 152 (2015) 345-351
    [115]Xuejiao Feng , Low-cost SiO-based anode using green binders for lithium ion batteries , Solid State Electr., 17 (2013) 2461-2469
    [116]Yuanchao Zhu , Prelithiated Surface Oxide Layer Enabled High-Performance Si Anode for Lithium Storage , ACS Appl. Mater. Interfaces, 11 (2019) 18305-18312
    [117]Miao Bai , Encasing Prelithiated Silicon Species in the Graphite Scaffold: An Enabling Anode Design for the Highly Reversible, Energy-Dense Cell Model ,ACS Appl. Mater. Interfaces, 12 (2020) 47490-47502
    [118]Eunjun Park, Dual-Size Silicon Nanocrystal-Embedded SiOx Nanocomposite as a High-Capacity Lithium Storage Material , Acs Nano, 9 (2015) 7690-7696
    [119]Vanchiappan Aravindan , Building Next-Generation Li-ion Capacitors with High Energy: An Approach beyond Intercalation , Adv. Energy Mater., 7 (2017) 1602607
    [120]Pan, Q.R.; Zuo, P.J.; Mu, T.S.; Du, C.Y.; Cheng, X.Q.; Ma, Y.L.; Gao, Y.Z.; Yin, G.P. Improved Electrochemical Performance of Micro-Sized SiO-Based Composite Anode by Prelithiation of Stabilized Lithium Metal Powder. J. Power Sources 347, (2017) , 170–177
    [121]Li, Y.X.; Fitch, B. Effective Enhancement of Lithium-Ion Battery Performance Using SLMP. Electrochem. Commun. 13,(2011), 664–667
    [122]Kim, H.J.; Choi, S.; Lee, S.J.; Seo, M.W.; Lee, J.G.; Deniz, E.; Lee, Y.J.; Kim, E.K.; Choi, J.W. Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells. Nano Lett. 2016, 16, 282–288
    [123]Juyoung Jang, Molecularly Tailored Lithium–Arene Complex Enables Chemical Prelithiation of High-Capacity Lithium-Ion Battery Anodes Angew.Chem.Int.Ed. 59,(2020) 14473–14480

    無法下載圖示 全文公開日期 2025/09/12 (校內網路)
    全文公開日期 2027/09/12 (校外網路)
    全文公開日期 2027/09/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE