簡易檢索 / 詳目顯示

研究生: 陳怡岫
Yi-Hsiu Chen
論文名稱: 高分散性矽碳複合結構及原子層修飾應用於鋰離子電池矽負極之研究
Application of highly dispersed Si/C composite structure and atomic layer modification in Si negative electrodes for lithium ion batteries
指導教授: 黃炳照
Bing Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
陳景翔
Ching-Hsiang Chen
鄭銘堯
Ming-Yao Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 135
中文關鍵詞: 鋰離子電池奈米碳管陽極Si/graphene複合材料表面修飾法原子層沉積
外文關鍵詞: Lithium ion batteries, Carbon nanotube, Anode material, Si/graphene compounds, Surface modification, Atomic Layer Deposition
相關次數: 點閱:275下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將使用原子層沉積法來改善Si/graphene/CNT複合材料,並應用於鋰離子電池之陽極。經表面修飾之Si奈米粒子可與氧化石墨烯形成均勻分散結構,為簡單、符合成本效益的製備方式。另外,加入奈米碳管以增加電子的傳輸路徑,而為了提升電化學的表現,本文主要探討在Si/graphene/CNT複合材料的極片上沈積不同原子層圈數的Al2O3層,和添加VC對其電化學特性的影響,藉由提供一種人工固體電解質界面,來減少電解液在電極的反應,結果顯示,塗層太厚會導致阻力增加,電容量呈現較低的現象。但只利用ALD表面改質,無法對其循環壽命特性做有效的改善。
    為了更進一步提高其循環充放電穩定性,本文,嘗試著加入了2 wt.% VC至電解液中。塗佈20層的Al2O3之複合電極第一圈可逆電容量為1450 mAh/g,到了第50圈電容量仍有第一圈的88 %,與其它層數修飾電極相比,呈現較佳的循環電容量與穩定性,且有較高的庫倫效率。表示結合ALD修飾和VC的方法,可生成較穩定SEI層,進一步提高了電池充放電穩定性。


    This study used the atomic layer deposition (ALD) method to improve the Si / graphene / CNT composite anode materials for application in lithium-ion battery. Surface-modified Si nanoparticles can form a uniform dispersive structure with graphene oxide proven as a simple and cost-effective preparation method. In addition, by adding carbon nanotubes, further improvement of the composite was observed. The deposition of different ALD cycles of Al2O3 layers was applied directly on the Si / graphene / CNT composite anode materials. The effect of the addition of 2 wt% vinylene carbonate (VC) with ALD coating was also explored. The results show that only using ALD coating does not improve the electrochemical performance of the composite material. When ALD and VC are simultaneously utilized the cycle stability showed dramatic improvements where increased ALD cycles showed increased stability but lower capacity.
    The first cycle reversible capacity of the composite anode coated with 20 layers Al2O3 showed a capacity of 1450 mAh / g after the 50th cycle that is 88% of the first cycle. Furthermore, compared to other ALD cycle variations, 20 ALD cycles showed higher coulombic efficiency. With the results provided in this work, the very mild and simple combination of ALD coating and VC proves to be a superior method in stabilizing the silicon anode containing lithium ion batteries.

    摘要 I 致謝 III 目錄 V 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 二次鋰離子電池之組成與機制 4 1.3 二次鋰離子電池之各元件介紹 6 1.3.1 正極 (陰極) 6 1.3.2 負極 (陽極) 8 1.3.3 電解液 10 1.3.4 電解液對固態電解質介面(SEI)的影響 13 1.3.5 隔離膜 15 1.4 研究動機 16 第二章 文獻回顧 17 2.1 碳材 18 2.1.1 石墨(Graphite) 19 2.1.2 石墨烯(Graphene) 21 2.1.3 奈米碳管 25 2.2 矽化物 27 2.2.1 矽奈米結構 30 2.2.2 矽碳複合材料 34 2.2.3 矽表面改質複合材料 41 2.3 黏著劑(binder) 45 2.4 原子層沉積(Atomic layer deposition ) 47 2.5 矽負極材料發展與展望 50 第三章 實驗 54 3.1 儀器設備 54 3.2 實驗藥品 56 3.3 材料合成 58 3.3.1 氧化石墨烯合成 58 3.3.2 矽粒子表面改質 60 3.3.3 酸化奈米碳管 62 3.3.4 Si/graphene複合材料合成 64 3.3.5 Si/graphene/CNT複合材料合成 66 3.3.6 Si/graphene/CNT之ALD表面修飾 67 3.4 材料鑑定與分析 68 3.4.1 XRD粉末繞射分析 68 3.4.2 SEM表面形態分析 68 3.4.3 TGA分析 69 3.5 陽極極片製備 70 3.6 鈕扣型電池組裝 72 3.7 鈕扣型電池充放電測試 74 3.8 交流阻抗分析 74 第四章 結果與討論 75 4.1 表面修飾法 75 4.2 氧化石墨烯之添加 77 4.2.1 不同乾燥程序 78 4.2.2 不同矽碳比例之複合材料 82 4.2.3 比較不同的黏著劑塗佈成電極 83 4.3 添加奈米碳管 86 4.3.1 討論奈米碳管酸化之Si/rGO/CNT複合材料 87 4.3.2 討論Si/rGO/CNT複合材料之不同比例 90 4.4 原子層沉積(Atomic Layer Deposition) 93 4.5 探討ALD和添加劑影響 97 4.5.1 探討ALD和添加劑在充放電後之複合材料鑑定 98 4.5.2 探討ALD和添加劑影響之電化學表現 101 第五章 結論 109 未來展望 111 參考文獻 112 附錄一 119 附錄二 121

    1. Diagram for LIB used in different kinds of electronic Products.
    2. Different types of design lithium ion battery.
    3. Yoshino, A., A Mechanism of Lithium Storage in Disordered Carbons 2003: p. 110.
    4. 楊模樺, 鋰電池材料技術發展. 工業材料雜誌. 237: p. 137.
    5. Chung, S.Y., J.T. Bloking, and Y.M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater, 2002. 1(2): p. 123-8.
    6. Fey, G.T.-K., P. Muralidharan, C.-Z. Lu, and Y.-D. Cho, Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2. Electrochimica Acta, 2006. 51(23): p. 4850-4858.
    7. Liu, X.-M., Z.-D. Huang, S. Oh, P.-C. Ma, P.C.H. Chan, G.K. Vedam, K. Kang, and J.-K. Kim, Sol–gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. Journal of Power Sources, 2010. 195(13): p. 4290-4296.
    8. Mechanisms for Lithium Insertion in Carbonaceous Materials.
    9. 産業技術総合開発機構, リチウム二次電池構成材料開発の状態と課題. 2007.
    10. 林素琴., 鋰電池材料發展分析. 工研院電子報, 2009.
    11. Yoshino, A., These ten years and feature of rechargeable battery materials. 2003: p. 110.
    12. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
    13. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries†. Chemistry of Materials, 2010. 22(3): p. 587-603.
    14. Abraham, K.M., Recent developments in secondary lithium battery technology. Journal ofPower Sources, 14 1985: p. 14 (1985) 179 - 191.
    15. Paled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model. J. Electrochem. Soc., vol. 126, p. 2047, 1979.
    16. Etacheri, V., R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243.
    17. E. Peled, C.M., D. Bar-Tow, and A. Melman, improved graphite anode for lithium-ion batteries:Chemically bonded solid electrolyte interface and nanochannel formation. 1996.
    18. C. Menachem a, E. Peled ", L. Burstein b, y. Rosenberg b, Characterization of modified NG7 graphite as an improved anode for. 1996.
    19. Emanuel Peled, D.G.a.P., The Anode/Electrolyte Interface. 1998: p. 410-457.
    20. 陳金銘, 高容量碳粉材料. 工業材料雜誌, 1997. 100: p. 57.
    21. Shi, H., J. Barker, M.Y. Saidi, R. Koksbang, and L. Morris, Graphite structure and lithium intercalation. Journal of Power Sources, 1997. 68(2): p. 291-295.
    22. 黃裕豪, 鋰離子電池錫碳複合陽極材料的電化學行為. 國立台灣科技大學化學工程學系研究所碩士學位論文, 93學年度.
    23. Zheng Yan, A.R.B., Characterization of Graphene by Raman Spectroscopy.
    24. J. D. William S. Hummers, M., pat2798878-hummers methode. U.S Patent, 1954.
    25. Daniela C. Marcano, D.V.K., Jacob M. Berlin, Alexander Sinitskii, Zhengzong Sun, Alexander Slesarev, Lawrence B. Alemany, Wei Lu, and James M. Tour, Improved Synthesis of Graphene Oxide. ACS Nano, 2010. 4: p. 4806–4814.
    26. Zhao, B., P. Liu, Y. Jiang, D. Pan, H. Tao, J. Song, T. Fang, and W. Xu, Supercapacitor performances of thermally reduced graphene oxide. Journal of Power Sources, 2012. 198(0): p. 423-427.
    27. Park, S., J. An, J.R. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon, 2011. 49(9): p. 3019-3023.
    28. Kucinskis, G., G. Bajars, and J. Kleperis, Graphene in lithium ion battery cathode materials: A review. Journal of Power Sources, 2013. 240(0): p. 66-79.
    29. Wang, G., X. Shen, J. Yao, and J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 2009. 47(8): p. 2049-2053.
    30. Guo, P., H. Song, and X. Chen, Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications, 2009. 11(6): p. 1320-1324.
    31. Wang, G., B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, and K. Kim, Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. Journal of Materials Chemistry, 2009. 19(44): p. 8378-8384.
    32. Chen, S., P. Chen, M. Wu, D. Pan, and Y. Wang, Graphene supported Sn–Sb@carbon core-shell particles as a superior anode for lithium ion batteries. Electrochemistry Communications, 2010. 12(10): p. 1302-1306.
    33. Chou, S.-L., J.-Z. Wang, M. Choucair, H.-K. Liu, J.A. Stride, and S.-X. Dou, Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochemistry Communications, 2010. 12(2): p. 303-306.
    34. Xiang, H., K. Zhang, G. Ji, J.Y. Lee, C. Zou, X. Chen, and J. Wu, Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon, 2011. 49(5): p. 1787-1796.
    35. Yang, S., G. Cui, S. Pang, Q. Cao, U. Kolb, X. Feng, J. Maier, and K. Mullen, Fabrication of Cobalt and Cobalt Oxide/Graphene Composites: Towards High-Performance Anode Materials for Lithium Ion Batteries. ChemSusChem, 2010. 3(2): p. 236-239.
    36. Wang, D., D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, I.A. Aksay, and J. Liu, Self-Assembled TiO2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion. ACS Nano, 2009. 3(4): p. 907-914.
    37. Zhang, M., D. Lei, X. Yin, L. Chen, Q. Li, Y. Wang, and T. Wang, Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. Journal of Materials Chemistry, 2010. 20(26): p. 5538-5543.
    38. Yao, J., X. Shen, B. Wang, H. Liu, and G. Wang, In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochemistry Communications, 2009. 11(10): p. 1849-1852.
    39. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354: p. 56-58.
    40. Dillon, A.C., Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chemical Reviews, 2010. 110(11): p. 6856-6872.
    41. Mi, C.H., G.S. Cao, and X.B. Zhao, A non-GIC mechanism of lithium storage in chemical etched MWNTs. Journal of Electroanalytical Chemistry, 2004. 562(2): p. 217-221.
    42. Eom, J., D. Kim, and H. Kwon, Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition. Journal of Power Sources, 2006. 157(1): p. 507-514.
    43. Grobert, N., Carbon nanotubes – becoming clean. Materials Today, 2007. 10(1–2): p. 28-35.
    44. Wu, H. and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012. 7(5): p. 414-429.
    45. Kwon, Y., G.-S. Park, and J. Cho, Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots. Electrochimica Acta, 2007. 52(14): p. 4663-4668.
    46. Li, H., X. Huang, L. Chen, Z. Wu, and Y. Liang, High capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochemical and Solid-State Letters, 1999. 2(11): p. 547-549.
    47. Liu, W.R., Z.Z. Guo, W.S. Young, D.T. Shieh, H.C. Wu, M.H. Yang, and N.L. Wu, Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. Journal of Power Sources, 2005. 140(1): p. 139-144.
    48. Li, H., X. Huang, L. Chen, G. Zhou, Z. Zhang, D. Yu, Y. Jun Mo, and N. Pei, Crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics, 2000. 135(1-4): p. 181-191.
    49. Obrovac, M.N. and L.J. Krause, Reversible cycling of crystalline silicon powder. Journal of the Electrochemical Society, 2007. 154(2): p. A103-A108.
    50. Liu, X.H., L. Zhong, S. Huang, S.X. Mao, T. Zhu, and J.Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 2012. 6(2): p. 1522-1531.
    51. Yu, Y., L. Gu, C. Zhu, S. Tsukimoto, P.A. Van Aken, and J. Maier, Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Advanced Materials, 2010. 22(20): p. 2247-2250.
    52. Chan, C.K., H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008. 3(1): p. 31-35.
    53. Yang, X., Z. Wen, X. Zhu, and S. Huang, Preparation and electrochemical properties of silicon/carbon composite electrodes. Electrochemical and Solid-State Letters, 2005. 8(9): p. A481-A483.
    54. Wang, G.X., J.H. Ahn, J. Yao, S. Bewlay, and H.K. Liu, Nanostructured Si-C composite anodes for lithium-ion batteries. Electrochemistry Communications, 2004. 6(7): p. 689-692.
    55. Hu, Y.S., R. Demir-Cakan, M.M. Titirici, J.O. Muller, R. Schlogl, M. Antonietti, and J. Maier, Superior storage performance of a Si@SiO x/C nanocomposite as anode material for lithium-ion batteries. Angewandte Chemie - International Edition, 2008. 47(9): p. 1645-1649.
    56. Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200.
    57. Chou, S.L., J.Z. Wang, M. Choucair, H.K. Liu, J.A. Stride, and S.X. Dou, Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochemistry Communications, 2010. 12(2): p. 303-306.
    58. Lee, J.K., K.B. Smith, C.M. Hayner, and H.H. Kung, Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chemical Communications, 2010. 46(12): p. 2025-2027.
    59. Cho, J., Porous Si anode materials for lithium rechargeable batteries. Journal of Materials Chemistry, 2010. 20(20): p. 4009-4014.
    60. Martin, C., O. Crosnier, R. Retoux, D. Belanger, D.M. Schleich, and T. Brousse, Chemical Coupling of Carbon Nanotubes and Silicon Nanoparticles for Improved Negative Electrode Performance in Lithium-Ion Batteries. Advanced Functional Materials, 2011. 21(18): p. 3524-3530.
    61. Wang, B., X. Li, B. Luo, X. Zhang, Y. Shang, A. Cao, and L. Zhi, Intertwined network of Si/C nanocables and carbon nanotubes as lithium-ion battery anodes. ACS Appl Mater Interfaces, 2013. 5(14): p. 6467-72.
    62. Zhou, X., Y.-X. Yin, L.-J. Wan, and Y.-G. Guo, Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chemical Communications, 2012. 48(16): p. 2198-2200.
    63. Zhou, X., Y.-X. Yin, L.-J. Wan, and Y.-G. Guo, Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries. Advanced Energy Materials, 2012: p. n/a-n/a.
    64. Yang, S., G. Li, Q. Zhu, and Q. Pan, Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode. Journal of Materials Chemistry, 2012. 22(8): p. 3420-3425.
    65. Ye, Y.-S., X.-L. Xie, J. Rick, F.-C. Chang, and B.-J. Hwang, Improved anode materials for lithium-ion batteries comprise non-covalently bonded graphene and silicon nanoparticles. Journal of Power Sources, 2014. 247: p. 991-998.
    66. Ye, Y.-S., C.-Y. Tseng, W.-C. Shen, J.-S. Wang, K.-J. Chen, M.-Y. Cheng, J. Rick, Y.-J. Huang, F.-C. Chang, and B.-J. Hwang, A new graphene-modified protic ionic liquid-based composite membrane for solid polymer electrolytes. Journal of Materials Chemistry, 2011. 21(28): p. 10448-10453.
    67. Wei-Ren Liu, Mo-Hua Yang, Hung-Chun Wu, S. M. Chiao, and Nae-Lih Wua, Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder. Electrochemical and Solid-State Letters, 2005. 8(2): p. A100-A103.
    68. Jing Li, R. B. Lewis, and J.R. Dahna, Sodium Carboxymethyl Cellulose-A Potential Binder for Si Negative Electrodes for Li-Ion Batteries. Electrochemical and Solid-State Letters, 2007. 10(2): p. A17-A20.
    69. Magasinski, A., B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, and G. Yushin, Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces, 2010. 2(11): p. 3004-10.
    70. BENEQ, Schematic of the cyclic process of Atomic layer deposition process. 2010.
    71. Li, J., X. Xiao, Y.-T. Cheng, and M.W. Verbrugge, Atomic Layered Coating Enabling Ultrafast Surface Kinetics at Silicon Electrodes in Lithium Ion Batteries. The Journal of Physical Chemistry Letters, 2013. 4(20): p. 3387-3391.
    72. Han, X., Y. Liu, Z. Jia, Y.C. Chen, J. Wan, N. Weadock, K.J. Gaskell, T. Li, and L. Hu, Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett, 2014. 14(1): p. 139-47.
    73. Lee, H.-Y. and S.-M. Lee, Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochemistry Communications, 2004. 6(5): p. 465-469.
    74. Ma, H., F. Cheng, J.Y. Chen, J.Z. Zhao, C.S. Li, Z.L. Tao, and J. Liang, Nest-like Silicon Nanospheres for High-Capacity Lithium Storage. Advanced Materials, 2007. 19(22): p. 4067-4070.
    75. Hu, Y.S., R. Demir-Cakan, M.M. Titirici, J.O. Muller, R. Schlogl, M. Antonietti, and J. Maier, Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew Chem Int Ed Engl, 2008. 47(9): p. 1645-9.
    76. Wu, H., G. Zheng, N. Liu, T.J. Carney, Y. Yang, and Y. Cui, Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett, 2012. 12(2): p. 904-9.
    77. Liu, N., H. Wu, M.T. McDowell, Y. Yao, C. Wang, and Y. Cui, A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Letters, 2012. 12(6): p. 3315-3321.
    78. Wu, H., G. Yu, L. Pan, N. Liu, M.T. McDowell, Z. Bao, and Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun, 2013. 4: p. 1943.
    79. Liu, N., Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee, W. Zhao, and Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nano, 2014. 9(3): p. 187-192.
    80. Zhang, X., A.C. Coleman, N. Katsonis, W.R. Browne, B.J. Van Wees, and B.L. Feringa, Dispersion of graphene in ethanol using a simple solvent exchange method. Chemical Communications, 2010. 46(40): p. 7539-7541.
    81. Yang, P. and J.M. Tarascon, Towards systems materials engineering. Nat Mater, 2012. 11(7): p. 560-3.
    82. Xia, Y., T. Sakai, T. Fujieda, M. Wada, and H. Yoshinaga, Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 2001. 148(5): p. A471.
    83. Chen, L., K. Wang, X. Xie, and J. Xie, Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. Journal of Power Sources, 2007. 174(2): p. 538-543.

    QR CODE