簡易檢索 / 詳目顯示

研究生: Yosef Nikodimos Asgedom
Yosef Nikodimos Asgedom
論文名稱: NASICON和硫化物基固態電解質離子電導率的計算和實驗綜合研究
Computational and Experimental Integrated Study on Ionic Conductivity of NASICON and Sulfide based Solid Electrolytes
指導教授: 黃炳照
BING JOE HWANG
楊純誠
Chun-Chen Yang
蘇威年
WEI-NIEN SU
口試委員: 黃炳照
BING JOE HWANG
蘇威年
WEI-NIEN SU
吳溪煌
SHE-HUANG WU
楊純誠
Chun-Chen Yang
張仍奎
Jeng-Kuei Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 211
中文關鍵詞: 鋰離子電池固態電解質NASICON型固態電解質LiGe2(PO4)3硫化物固態電解質AIMD模擬離子傳導率活化能障雙重摻雜水分敏感性
外文關鍵詞: Li-ion battery, solid-state electrolyte, NASICON-type solid electrolyte, LiGe2(PO4)3, sulfide solid electrolyte, AIMD simulations, ionic conductivity, activation barrier, dual doping, moisture sensitivity
相關次數: 點閱:375下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • LiGe2(PO4)3(LGP)是一種NASICON型氧化物固態電解質,是下一代二次儲能固態鋰電池最有希望的固態電解質候選人之一。 在所有固態鋰電池中使用均具有許多優勢,例如出色的電化學和熱穩定性。 然而,其具有較大的晶界阻抗致使低的離子電導率是阻礙其在商業上實際應用的主要挑戰之一。 因此,由於離子電導率是主要的限制之一,因此是實際應用時須率先克服的問題。
    本論文中,第一種方法中通過實驗和理論計算添加不同數量的Al和Sc對LGP的鋰離子電導率的影響。以Li1 + x + yAlxScyGe2-x-y(PO4)3形式的Sc3 +和/或Al3 +離子代替LGP結構中25%的Ge4 +離子,其中x + y = 0.5,此可在M2空位中得到更多的鋰離子位(36f位)並提升電解質的離子電導率。在兩種計算結果中,Li1.5Al0.33Sc0.17Ge1.5(PO4)3所得到的鋰離子電導率最高,實驗值為5.826 mS cm-1,理論值為6.836 mS cm-1。此外,使用Nudged Elastic Band進一步闡述了活化能和其最低值,該組成提供了最低之活化能0.279 eV。 Li1 + x + yAlxScyGe2-x-y(PO4)3材料是使用熔融淬火方法製造的,並分別通過電化學阻抗譜、X光繞射和循環伏安法表徵了鋰離子電導率、晶體結構和電化學勢窗。其離子電導率,活化能和電化學勢窗的實驗測量與計算結果具有一致性。最後,組裝固態電池以測試循環性能。
    在第二種方法中,使用Mg元素摻雜於LAGP形成新型化合物Li1 + x + 2yAlxMgyGe2-x-y(PO4)3(LAMGP)。根據計算結果,合成了最佳的離子導電組合物(Li1.6Al0.4Mg0.1Ge1.5(PO4)3並應用於實驗工作。 相對於原始材料LAGP(2.989 mS cm-1),它提供了超高的整體離子電導率(7.435 mS cm-1)與更好的緻密性,具有較低的晶界阻抗。 與使用LAGP做為電解質組裝的固態電池相比, LAMGP的固態電池具有出色的循環性能。 另外,分析LAMGP經過電池循環後的界面證實了於負極/電解質介面形成了一層新型的SEI且其會被鋰金屬還原,這有助於LAMGP體系的固態電池的長圈電化學循環性。
    此外,同樣為熱門固態電解質材料的的硫化物基固態電解質同樣是下一世代極具潛力的固態電解質之一。與氧化物固態電解質相比,具有更高的導離度,非常接近液態電解質,然而,仍有許多問題待解決。因此,於本論文中我們藉由第一性原理計算進行了一系列篩選摻雜元素,以研究幾種選定的摻雜劑對Li3PS4固態電解質的離子電導率和水分穩定性的影響。由結果表明,使用電負度較接近S2-的等價陽離子取代P5 +,對離子電導率性能有極好的影響,其中W5 +和Sb5 +實現了很高的離子電導率改善。同樣地,具有補償鋰離子濃度變化的異價陽離子取代,特別是具有較低氧化態和較高電負性的那些,例如Cu 2+,也對該結構中的鋰離子電導率具有正面的影響。對於陽離子摻雜劑,我們發現Li3PS4的離子電導率提高是摻雜劑的電負度、氧化數以及材料晶格參數變化的協同效應。另外,使用陽離子的氧化物作為摻雜劑也能夠改善材料的離子電導率,但是具有比其對應的陽離子摻雜劑低的鋰離子電導率。另一方面,金屬氧化物摻雜劑在Li 3 PS 4電解質的水分穩定性方面也顯示出少量改善。我們還研究了鹵化物和金屬鹵化物摻雜劑對Li3PS4電解質的鋰離子電導率和水分穩定性的影響。從結果中發現金屬鹵化物在改善Li 3 PS 4的離子電導率方面具有比任何其他摻雜劑大得多的作用。基於這些結果,我們得出結論,金屬鹵化物是提高離子電導率的理想選擇,而陽離子的金屬氧化物對於穩定Li3PS4硫化物固態電解質的水分敏感性則更為有效。


    LiGe2(PO4)3 (LGP), a NASICON type solid electrolyte and is among the most promising solid electrolytes for the next-generation lithium battery. It has many advantages like superior electrochemical and thermal stability to use in all-solid-state lithium batteries. However, its low ionic conductivity (both bulk and grain boundary) is one of the major challenges which hinder its practical application commercially. As a result, since ionic conductivity is among the major restrictions, it must be resolved first for its practical utilizations.
    In the first approach, the effect of adding various amounts of Al and Sc on the lithium-ion conductivity of LGP was studied experimentally and theoretically. replacing 25% of Ge4+ ions in the LGP structure by Sc3+ and/or Al3+ ions in the form of Li1 +x + yAlxScyGe2 − x − y (PO4) 3, where x + y = 0.5, derived more lithium-ion in the M2 vacant sites (36f site) and led to improved ionic conductivity of the electrolyte. The highest bulk lithium-ion conductivity was obtained for Li1.5Al0.33Sc0.17Ge1.5(PO4)3 in both approaches, 5.826 mS cm-1 experimentally and 6.836 mS cm-1 theoretically. Furthermore, the nudged elastic band method was used further to elaborate the activation energy and its lowest value and this composition provide the lowest value, 0.279 eV. The Li1+x+yAlxScyGe2-x-y(PO4)3 materials were manufactured using a melt-quenching method. Lithium ionic conductivity, crystal structure and electrochemical window were characterized by electrochemical Impedance spectroscopy, X-ray diffraction and cyclic voltammetry respectively. There was a close agreement between the experimentally measured and computationally calculated values of ionic conductivity, activation energy and electrochemical window. Finally, solid-state battery cells were assembled to test its applicability and showed promising performance.
    In the second approach, LAGP was doped using Mg in the form of Li1+x+2yAlxMgyGe2-x-y(PO4)3 (LAMGP) for computational analysis. The best ionic conductive composition (Li1.6Al0.4Mg0.1Ge1.5(PO4)3) was synthesized for experimental work based on the computational results. Mg doping of LAGP showed like one stone for two birds on the LAGP-based electrolyte. It provides super high bulk ionic conductivity (7.435 mS cm-1¬) relative to LAGP (2.989 mS cm-1) and lower grain boundary impedance due to its better densification. The decreasing of grain boundary impedance and densification improvement are connected with selecting the right precursor for Mg. A solid-state battery based on LAMGP offered outstanding cycling performance compared to the LAGP-based one. Post cycling interfacial analysis confirmed the formation of an interface that protected LAMGP from reduction by lithium metal, which helps for long-term cyclability of LAMGP.
    Sulfide-based solid electrolytes are among the most auspicious solid electrolytes for the next all solid-state batter generation. The Li3PS4 sulfide solid electrolyte has the highest chemical and electrochemical stability reported to date but lower ionic conductivity. We performed a series screening first-principles calculation to investigate the effect of several selected dopants on ionic conductivity and moisture stability of the Li3PS4 solid electrolyte. Our results show that substitution P5+ using isovalent cation in which their electronegativity is closer to the value of S2-, have an excellent effect on the ionic conductivity property, with W5+ and Sb5+ achieved high ionic conductivity improvement. Similarly, aliovalent cation substitutions with compensating changes in the lithium-ion concentration, particularly those which have a lower oxidation state and higher electronegativity, such as Cu2+, also have a promising effect on the lithium-ion conductivity in this structure. For cation dopants, it was found that ionic conductivity improvement of Li3PS4 is the synergetic effect of electronegativity and oxidation number of the dopant as well as the material’s lattice parameter change. Soft acid dopants are promising also in improving the stability of Li3PS4 against moisture. Using oxides of the considered cations as dopants are also able to improve the ionic conductivity of the material but have much lower lithium-ion conductivity than their counterpart cation dopants. However, the metal oxide dopants on the other hand, show a marginal improvement in moisture stability of the Li3PS4 electrolyte. We also studied the effect of halides and metal halide dopants on the lithium-ion conductivity and moisture stability of Li3PS4 electrolyte. It is found that metal halides have a much larger effect than any other dopants on improving ionic conductivity of Li3PS4. Based on these results, we conclude that metal halides are the perfect choice to improve ionic conductivity while metal oxides of soft cations are preferable to stabilize moisture sensitivity of the Li3PS4 sulfide solid electrolyte.

    中文摘要 i Abstract v Acknowledgment ix Table of Contents xi Index of Figures xvii Index of Tables xxiii List of Abbreviations and Symbols xxvii Chapter 1 1 Introduction 1 1.1. Background of the study 1 1.2. Rechargeable Batteries 4 1.3. Lithium-ion Battery 7 1.4. Computational modeling for Materials Designing 10 1.4.1. Recent Developments in Computational Techniques 11 1.4.2. Nudged elastic band (NEB) method 11 1.4.3. Ab Initio Molecular Dynamics (AIMD) Simulations 12 1.4.3.1. Fundamentals of Molecular Dynamics 12 1.4.3.2. Application of AIMD Simulations in modeling superionic conductors 13 1.4.3.3. Advantages of AIMD simulations 15 1.4.3.4. Disadvantages of AIMD simulations 16 Chapter 2 19 Importance and Challenges of Solid-State Electrolytes 19 2.1. Electrolytes 19 2.2. Solid-state electrolytes 20 2.2.1. Advantage of solid-state electrolytes 21 2.2.2. Challenges of solid-state electrolytes 22 2.2.3. Types of inorganic Solid Electrolytes 23 2.3. Lithium germanium phosphate-based NASICON-type Solid Electrolytes 28 2.3.1. Crystal structure 28 2.3.2. Chemical composition 30 2.3.3. Synthesis Methods 32 2.3.4. Ionic conductivity 32 2.3.5. Electrochemical property 36 2.4. Sulfide solid Electrolytes 36 2.5. Motivation and Objective of this study 39 2.5.1. Motivation 39 2.5.2. Objective 40 Chapter 3 43 Experimental method 43 3.1. Computational approaches 43 3.1.1. Defect formation energy 44 3.1.2. Lithium ion diffusivity and conductivity 44 3.1.3. Nudged Elastic band (NEB) analysis 46 3.1.4. Density of state (DOS) 46 3.1.5. Transference number calculation 46 3.1.6. Lithium ion hopping analysis 47 3.2. Experimental approaches 47 3.2.1. Chemicals and reagents 47 3.2.2. Li1+x+yAlxScyGe2-x-y(PO4)3 and Li1.6A0.4Mg0.1Ge1.5(PO4)3 glass-ceramics Synthesis 48 3.2.3. Characterization of the Glass-ceramics 49 3.2.3.1. Crystal structure analysis 49 3.2.3.2. Microstructure analysis 50 3.2.3.3. Ionic conductivity analysis 51 3.2.3.4. Element concentration analysis 52 3.2.3.5. Interface composition analysis 52 3.2.3.6. Electrochemical stability determination 53 3.2.3.7. Electronic conductivity measurement: 53 3.3. Full cell electrochemical performance analysis 54 Chapter 4 55 Al-Sc Dual Doped LiGe2(PO4)3 - a NASICON-Type Solid Electrolyte with Improved Ionic Conductivity 55 4.1. Introduction 55 4.2. Results and Discussion 57 4.2.1. Computational part 57 4.2.1.1. Crystal structure 57 4.2.1.2. Lithium-ion diffusivity and conductivity from AIMD simulations 60 4.2.1.3. Nudged Elastic Band (NEB) method 65 4.2.1.4. Radial distribution function 66 4.2.1.5. Density of state of Li1.5Al0.33Sc0.17Ge1.5(PO4)3 69 4.2.2. Experimental part 70 4.2.2.1. Crystal structure and surface analysis 70 4.2.2.2. Electrochemical impedance spectroscopy (EIS) measurement 76 4.2.2.3. Lithium ion transference number and electrical conductivity 78 4.2.2.4. Electrochemical stability measurement 80 4.2.2.5. Electrochemical performance of LASGP1 solid electrolyte 81 4.3. Summary 83 Chapter 5 85 A New High-Li+-Conductivity Mg-doped Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte with Enhanced Electrochemical Performance for Solid-State Lithium Metal Batteries 85 5.1. Introduction 85 5.2. Results and Discussions 86 5.2.1. Computational ionic conductivity and activation energy 86 5.2.2. Crystallization of LAGP and LAMGP samples 89 5.2.3. Electrochemical Study 97 5.2.4. Electrochemical Cell Assembly 107 5.3. Summary 117 Chapter 6 119 Conductivity and Moisture Stability Effect of Selected Dopants on Li3PS4 Sulfide Solid Electrolyte: An Overview of Computational Screening 119 6.1. Introduction 119 6.2. Results and Discussions 122 6.2.1. Lithium-ion diffusivity and conductivity 124 6.2.2. Moisture Stability 134 6.3. Summary 139 Chapter 7 141 Conclusions and Future Perspectives 141 7.1. Conclusions 141 7.2. Future perspectives 144 Reference 147 Appendix 167 Appendix-I: Figures 167 Appendix-II: Tables 168 List of Papers 171

    1. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials today 2015, 18 (5), 252-264.
    2. Zhao, Y.; Ding, Y.; Li, Y.; Peng, L.; Byon, H. R.; Goodenough, J. B.; Yu, G., A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem. Soc. Rev. 2015, 44 (22), 7968-7996.
    3. Scrosati, B.; Garche, J., Lithium batteries: Status, prospects and future. J. power sources 2010, 195 (9), 2419-2430.
    4. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D., Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5 (7), 7854-7863.
    5. Curry, C., Lithium-ion battery costs and market. Bloomberg New Energy Finance 2017, 5, 4-6.
    6. Palacin, M. R., Recent advances in rechargeable battery materials: a chemist’s perspective. Chem. Soc. Rev. 2009, 38 (9), 2565-2575.
    7. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. In Issues and challenges facing rechargeable lithium batteries, Nature: 2001; pp 171-179.
    8. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 2016, 116 (1), 140-162.
    9. Jeong, G.; Kim, Y.-U.; Kim, H.; Kim, Y.-J.; Sohn, H.-J., Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 2011, 4 (6), 1986-2002.
    10. Fergus, J. W., Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 2010, 195 (15), 4554-4569.
    11. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113 (22), 9901-9904.
    12. Xiao, P.; Henkelman, G., Kinetic Monte Carlo Study of Li Intercalation in LiFePO4. ACS nano 2018, 12 (1), 844-851.
    13. Henkelman, G.; Jónsson, H., Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J. Chem. Phys. 2001, 115 (21), 9657-9666.
    14. Yao, Z.; Kim, S.; Michel, K.; Zhang, Y.; Aykol, M.; Wolverton, C., Stability and conductivity of cation-and anion-substituted LiBH 4-based solid-state electrolytes. Phys. Rev. Mater. 2018, 2 (6), 065402.
    15. Michel, K. J.; Ozoliņš, V., Vacancy diffusion in NaAlH4 and Na3AlH6. J. Phys. Chem. C 2011, 115 (43), 21465-21472.
    16. He, X.; Mo, Y., Accelerated materials design of Na 0.5 Bi 0.5 TiO 3 oxygen ionic conductors based on first principles calculations. Phys. Chem. Chem. Phys. 2015, 17 (27), 18035-18044.
    17. Brock, A.; Chang, H.; Huang, S., Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nat. Commun. 2009, 10 (5), 336-342.
    18. Bai, Q.; He, X.; Zhu, Y.; Mo, Y., First-principles study of oxyhydride H–ion conductors: toward facile anion conduction in oxide-based materials. ACS Appl. Energy Mater. 2018, 1 (4), 1626-1634.
    19. Richards, W. D.; Wang, Y.; Miara, L. J.; Kim, J. C.; Ceder, G., Design of Li 1+ 2x Zn 1− x PS 4, a new lithium ion conductor. Energy Environ. Sci. 2016, 9 (10), 3272-3278.
    20. Jalem, R.; Yamamoto, Y.; Shiiba, H.; Nakayama, M.; Munakata, H.; Kasuga, T.; Kanamura, K., Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem. Mater. 2013, 25 (3), 425-430.
    21. He, X.; Zhu, Y.; Mo, Y., Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 2017, 8 (1), 1-7.
    22. Kraft, M. A.; Culver, S. P.; Calderon, M.; Böcher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J. r.; Zeier, W. G., Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X= Cl, Br, I). J. Am. Chem. Soc. 2017, 139 (31), 10909-10918.
    23. Culver, S. P.; Koerver, R.; Krauskopf, T.; Zeier, W. G., Designing ionic conductors: the interplay between structural phenomena and interfaces in thiophosphate-based solid-state batteries. Chem. Mater. 2018, 30 (13), 4179-4192.
    24. Krauskopf, T.; Pompe, C.; Kraft, M. A.; Zeier, W. G., Influence of Lattice Dynamics on Na+ Transport in the Solid Electrolyte Na3PS4–x Se x. Chem. Mater. 2017, 29 (20), 8859-8869.
    25. Muy, S.; Bachman, J. C.; Giordano, L.; Chang, H.-H.; Abernathy, D. L.; Bansal, D.; Delaire, O.; Hori, S.; Kanno, R.; Maglia, F., Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 2018, 11 (4), 850-859.
    26. He, X.; Zhu, Y.; Epstein, A.; Mo, Y., Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput. Mater. 2018, 4 (1), 1-9.
    27. Thangadurai, V.; Pinzaru, D.; Narayanan, S.; Baral, A. K., Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage. J. Phys. Chem. Lett. 2015, 6 (2), 292-299.
    28. Bernstein, N.; Johannes, M.; Hoang, K., Origin of the structural phase transition in Li 7 La 3 Zr 2 O 12. Phys. Rev. Lett. 2012, 109 (20), 205702.
    29. Chen, Y.; Rangasamy, E.; Liang, C.; An, K., Origin of high Li+ conduction in doped Li7La3Zr2O12 garnets. Chem. Mater. 2015, 27 (16), 5491-5494.
    30. Santosh, K.; Longo, R. C.; Xiong, K.; Cho, K., Electrode-electrolyte interface for solid state Li-ion batteries: point defects and mechanical strain. J. Electrochem. Soc. 2014, 161 (11), F3104.
    31. Santosh, K.; Longo, R. C.; Xiong, K.; Cho, K., Point defects in garnet-type solid electrolyte (c-Li7La3Zr2O12) for Li-ion batteries. Solid State Ion 2014, 261, 100-105.
    32. Al-Qawasmeh, A.; Holzwarth, N., Li14P2O3N6 and Li7PN4: Computational study of two nitrogen rich crystalline LiPON electrolyte materials. J. Power Sources 2017, 364, 410-419.
    33. Stegmaier, S.; Voss, J.; Reuter, K.; Luntz, A. C., Li+ defects in a solid-state Li ion battery: theoretical insights with a Li3OCl electrolyte. Chem. Mater. 2017, 29 (10), 4330-4340.
    34. Rush Jr, L. E.; Holzwarth, N., First principles investigation of the structural and electrochemical properties of Na4P2S6 and Li4P2S6. Solid State Ion 2016, 286, 45-50.
    35. Park, M.; Zhang, X.; Chung, M.; Less, G. B.; Sastry, A. M., A review of conduction phenomena in Li-ion batteries. J. Power Sources 2010, 195 (24), 7904-7929.
    36. Knauth, P., Inorganic solid Li ion conductors: An overview. Solid State Ion 2009, 180 (14-16), 911-916.
    37. Cao, C.; Li, Z.-B.; Wang, X.-L.; Zhao, X.-B.; Han, W.-Q., Recent advances in inorganic solid electrolytes for lithium batteries. Front. Energy Res. 2014, 2, 25.
    38. Takada, K., Progress and prospective of solid-state lithium batteries. Acta Mater. 2013, 61 (3), 759-770.
    39. Tatsumisago, M.; Hayashi, A., Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries. Solid State Ion 2012, 225, 342-345.
    40. Adachi, G.; Imanaka, N.; Aono, H., Fast Li {sup+} conducting ceramic electrolytes. Adv. Mater. 1996, 8, 127-135.
    41. Sun, Y., Lithium ion conducting membranes for lithium-air batteries. Nano Energy 2013, 2 (5), 801-816.
    42. Thangadurai, V.; Weppner, W., Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics 2006, 12 (1), 81-92.
    43. Teng, S.; Tan, J.; Tiwari, A., Recent developments in garnet based solid state electrolytes for thin film batteries. Curr. Opin. Solid State Mater. Sci. 2014, 18 (1), 29-38.
    44. Anantharamulu, N.; Rao, K. K.; Rambabu, G.; Kumar, B. V.; Radha, V.; Vithal, M., A wide-ranging review on Nasicon type materials. J. Mater. Sci. 2011, 46 (9), 2821-2837.
    45. Dauter, Z.; Jaskolski, M., How to read (and understand) Volume A of International Tables for Crystallography: an introduction for nonspecialists. J. Appl. Cryst. 2010, 43 (5), 1150-1171.
    46. Kang, J.; Chung, H.; Doh, C.; Kang, B.; Han, B., Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2 (PO4) 3 electrolyte. J. Power Sources 2015, 293, 11-16.
    47. Feng, J.; Lu, L.; Lai, M., Lithium storage capability of lithium ion conductor Li1. 5Al0. 5Ge1. 5 (PO4) 3. J. Alloys Compd. 2010, 501 (2), 255-258.
    48. Leo, C.; Chowdari, B.; Rao, G. S.; Souquet, J.-L., Lithium conducting glass ceramic with Nasicon structure. Mater. Res. Bull. 2002, 37 (8), 1419-1430.
    49. Xu, X.; Wen, Z.; Wu, X.; Yang, X.; Gu, Z., Lithium ion‐conducting glass–ceramics of Li1. 5Al0. 5Ge1. 5 (PO4) 3–xLi2O (x= 0.0–0.20) with good electrical and electrochemical properties. J. Am. Ceram. Soc. 2007, 90 (9), 2802-2806.
    50. Feng, J.; Yan, B.; Liu, J.; Lai, M.; Li, L., All solid state lithium ion rechargeable batteries using NASICON structured electrolyte. Mater. Technol. 2013, 28 (5), 276-279.
    51. Marcinek, M.; Syzdek, J.; Marczewski, M.; Piszcz, M.; Niedzicki, L.; Kalita, M.; Plewa-Marczewska, A.; Bitner, A.; Wieczorek, P.; Trzeciak, T., Electrolytes for Li-ion transport–Review. Solid State Ion 2015, 276, 107-126.
    52. Wang, S.; Ben, L.; Li, H.; Chen, L., Identifying Li+ ion transport properties of aluminum doped lithium titanium phosphate solid electrolyte at wide temperature range. Solid State Ionics 2014, 268, 110-116.
    53. Kothari, D. H.; Kanchan, D., Study of Li+ conduction in Li1. 3Al0. 3− xScxTi1. 7 (PO4) 3 (x= 0.01, 0.03, 0.05 and 0.07) NASICON ceramic compound. Physica B 2016, 494, 20-25.
    54. Kothari, D. H.; Kanchan, D., Effect of doping of trivalent cations Ga3+, Sc3+, Y3+ in Li1. 3Al0. 3Ti1. 7 (PO4) 3 (LATP) system on Li+ ion conductivity. Physica B 2016, 501, 90-94.
    55. Thokchom, J. S.; Kumar, B., Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic. J. Power Sources 2008, 185 (1), 480-485.
    56. Chung, H.; Kang, B., Increase in grain boundary ionic conductivity of Li1. 5Al0. 5Ge1. 5 (PO4) 3 by adding excess lithium. Solid State Ion 2014, 263, 125-130.
    57. Jadhav, H. S.; Cho, M.-S.; Kalubarme, R. S.; Lee, J.-S.; Jung, K.-N.; Shin, K.-H.; Park, C.-J., Influence of B2O3 addition on the ionic conductivity of Li1. 5Al0. 5Ge1. 5 (PO4) 3 glass ceramics. J. power sources 2013, 241, 502-508.
    58. Leo, C.; Rao, G. S.; Chowdari, B., Effect of MgO addition on the ionic conductivity of LiGe2 (PO4) 3 ceramics. Solid State Ion 2003, 159 (3-4), 357-367.
    59. Yu, S.; Mertens, A.; Gao, X.; Gunduz, D. C.; Schierholz, R.; Benning, S.; Hausen, F.; Mertens, J.; Kungl, H.; Tempel, H., Influence of microstructure and AlPO4 secondary-phase on the ionic conductivity of Li 1. 3 Al 0. 3 Ti 1. 7 (PO 4) 3 solid-state electrolyte. Funct. Mater. Lett. 2016, 9 (05), 1650066.
    60. Xu, X.; Wen, Z.; Wu, X.; Yang, X.; Gu, Z., Lithium ion‐conducting glass–ceramics of Li1. 5Al0. 5Ge1. 5 (PO4) 3–xLi2O (x= 0.0–0.20) with good electrical and electrochemical properties. J AM CERAM SOC 2007, 90 (9), 2802-2806.
    61. Thokchom, J. S.; Kumar, B., The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic. J. Power Sources 2010, 195 (9), 2870-2876.
    62. Illbeigi, M.; Fazlali, A.; Kazazi, M.; Mohammadi, A. H., Effect of simultaneous addition of aluminum and chromium on the lithium ionic conductivity of LiGe2 (PO4) 3 NASICON-type glass–ceramics. Solid State Ion. 2016, 289, 180-187.
    63. Kotobuki, M.; Hanc, E.; Yan, B.; Molenda, J.; Lu, L., Preparation and characterization of Ba-substituted Li1+ xAlxGe2− x (PO4) 3 (x= 0.5) solid electrolyte. Ceram. Int. 2017, 43 (15), 12616-12622.
    64. Yan, B.; Kang, L.; Kotobuki, M.; Wang, F.; Huang, X.; Song, X.; Jiang, K., NASICON-structured solid-state electrolyte Li1. 5Al0. 5-xGaxGe1. 5 (PO4) 3 prepared by microwave sintering. Materials Technology 2019, 34 (6), 356-360.
    65. Meesala, Y.; Chen, C.-Y.; Jena, A.; Liao, Y.-K.; Hu, S.-F.; Chang, H.; Liu, R.-S., All-solid-state Li-ion battery Using Li1. 5Al0. 5Ge1. 5 (PO4) 3 as electrolyte without polymer interfacial adhesion. J. Phys. Chem. C 2018, 122 (26), 14383-14389.
    66. Nikodimos, Y.; Tsai, M.-C.; Abrha, L. H.; Weldeyohannis, H. H.; Chiu, S.-F.; Bezabh, H. K.; Shitaw, K. N.; Fenta, F. W.; Wu, S.-H.; Su, W.-N.; Yang, C.-C.; Hwang, B. J., Al-Sc Dual Doped LiGe2 (PO4) 3-a NASICON-Type Solid Electrolyte with Improved Ionic Conductivity. J. mater. chem. A 2020, 8, 11302-11313.
    67. Nikodimos, Y.; Abrha, L. H.; Weldeyohannis, H. H.; Shitaw, K. N.; Temesgen, N. T.; Olbasa, B. W.; Huang, C.-J.; Jiang, S.-K.; Wang, C.-H.; Sheu, H.-S.; Wu, S.-H.; Su, W.-N.; Yang, C.-C.; Hwang, B. J., A new high-Li+-conductivity Mg-doped Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with enhanced electrochemical performance for solid-state lithium metal batteries. J. Mater. Chem. A 2020, 8, 26055-26065.
    68. He, K.; Xie, P.; Zu, C.; Wang, Y.; Li, B.; Han, B.; Rong, M. Z.; Zhang, M. Q., A facile and scalable process to synthesize flexible lithium ion conductive glass-ceramic fibers. RSC Adv. 2019, 9 (8), 4157-4161.
    69. Kitaura, H.; Zhou, H., Electrochemical performance and reaction mechanism of all-solid-state lithium–air batteries composed of lithium, Li 1+ x Al y Ge 2− y (PO 4) 3 solid electrolyte and carbon nanotube air electrode. Energy Environ. Sci. 2012, 5 (10), 9077-9084.
    70. Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M., Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 2012, 3 (1), 1-5.
    71. Hayashi, A.; Sakuda, A.; Tatsumisago, M., Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries. Front. Energy Res. 2016, 4, 25.
    72. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1 (4), 1-7.
    73. Seino, Y.; Nakagawa, M.; Senga, M.; Higuchi, H.; Takada, K.; Sasaki, T., Analysis of the structure and degree of crystallisation of 70Li 2 S–30P 2 S 5 glass ceramic. J. Mater. Chem. A 2015, 3 (6), 2756-2761.
    74. Hayashi, A.; Tatsumisago, M., Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes. Electron. Mater. Lett. 2012, 8 (2), 199-207.
    75. Kanno, R.; Murayama, M., Lithium ionic conductor thio-LISICON: the Li2 S GeS2 P 2 S 5 system. J. Electrochem. Soc. 2001, 148 (7), A742.
    76. Haruyama, J.; Sodeyama, K.; Tateyama, Y., Cation mixing properties toward Co diffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery. ACS Appl. Mater. Interfaces 2017, 9 (1), 286-292.
    77. Malugani, J.; Mercier, R.; Tachez, M., Correlation between structural and electrical properties in (1-x) AgPO3· xMX2 glasses (M= Pb2+, Hg2+; X= I-, Br-, Cl-) from Raman spectroscopy and ionic conductivity measurements. Solid State Ion 1986, 21 (2), 131-138.
    78. Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M., Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion 2011, 182 (1), 116-119.
    79. Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R., Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ion 2011, 182 (1), 53-58.
    80. Hayashi, A.; Hama, S.; Minami, T.; Tatsumisago, M., Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses. Electrochem. Commun. 2003, 5 (2), 111-114.
    81. Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C., Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 2013, 135 (3), 975-978.
    82. Phuc, N. H. H.; Morikawa, K.; Mitsuhiro, T.; Muto, H.; Matsuda, A., Synthesis of plate-like Li 3 PS 4 solid electrolyte via liquid-phase shaking for all-solid-state lithium batteries. Ionics 2017, 23 (8), 2061-2067.
    83. Zhang, Z.; Li, H.; Kaup, K.; Zhou, L.; Roy, P.-N.; Nazar, L. F., Targeting Superionic Conductivity by Turning on Anion Rotation at Room Temperature in Fast Ion Conductors. Matter 2020, 2 (6), 1667-1684.
    84. Liu, G.; Xie, D.; Wang, X.; Yao, X.; Chen, S.; Xiao, R.; Li, H.; Xu, X., High air-stability and superior lithium ion conduction of Li3+ 3xP1-xZnxS4-xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Storage Mater. 2019, 17, 266-274.
    85. Xie, D.; Chen, S.; Zhang, Z.; Ren, J.; Yao, L.; Wu, L.; Yao, X.; Xu, X., High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries. J. Power Sources 2018, 389, 140-147.
    86. de Klerk, N. J.; van der Maas, E.; Wagemaker, M., Analysis of diffusion in solid-state electrolytes through MD simulations, improvement of the Li-ion conductivity in β-Li3PS4 as an example. ACS Appl. Energy Mater. 2018, 1 (7), 3230-3242.
    87. Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1 (1), 011002.
    88. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Physical Review B 1993, 47 (1), 558.
    89. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B 1996, 54 (16), 11169.
    90. Blöchl, P. E., Projector augmented-wave method. Phys. Rev. B 1994, 50 (24), 17953.
    91. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. PHYS REV LETT 1996, 77 (18), 3865.
    92. Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces. PHYS REV LETT 2008, 100 (13), 136406.
    93. Miara, L. J.; Richards, W. D.; Wang, Y. E.; Ceder, G., First-principles studies on cation dopants and electrolyte| cathode interphases for lithium garnets. Chem. Mater. 2015, 27 (11), 4040-4047.
    94. Henkelman, G.; Jónsson, H., Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of chemical physics 2000, 113 (22), 9978-9985.
    95. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of chemical physics 2000, 113 (22), 9901-9904.
    96. Heyd, J.; Scuseria, G. E.; Ernzerhof, M., Hybrid functionals based on a screened Coulomb potential. The Journal of chemical physics 2003, 118 (18), 8207-8215.
    97. Hou, T.; Yang, G.; Rajput, N. N.; Self, J.; Park, S.-W.; Nanda, J.; Persson, K. A., The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy 2019, 64, 103881.
    98. Abrha, L. H.; Zegeye, T. A.; Hagos, T. T.; Sutiono, H.; Hagos, T. M.; Berhe, G. B.; Huang, C.-J.; Jiang, S.-K.; Su, W.-N.; Yang, Y.-W., Li7La2. 75Ca0. 25Zr1. 75Nb0. 25O12@ LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery. Electrochimica Acta 2019, 134825.
    99. Chen, R.; Qu, W.; Guo, X.; Li, L.; Wu, F., The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons 2016, 3 (6), 487-516.
    100. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K., A lithium superionic conductor. Nature materials 2011, 10 (9), 682.
    101. Adachi, G.; Imanaka, N.; Aono, H., Fast Li {sup+} conducting ceramic electrolytes. Adv. Mater. 1996, 8 (2), 127-135.
    102. Miara, L. J.; Ong, S. P.; Mo, Y.; Richards, W. D.; Park, Y.; Lee, J.-M.; Lee, H. S.; Ceder, G., Effect of Rb and Ta Doping on the Ionic Conductivity and Stability of the Garnet Li7+ 2 x–y (La3–x Rb x)(Zr2–y Ta y) O12 (0≤ x≤ 0.375, 0≤ y≤ 1) Superionic Conductor: A First Principles Investigation. Chemistry of Materials 2013, 25 (15), 3048-3055.
    103. Xu, X.; Wen, Z.; Wu, X.; Yang, X.; Gu, Z., Lithium Ion‐Conducting Glass–Ceramics of Li1. 5Al0. 5Ge1. 5 (PO4) 3–xLi2O (x= 0.0–0.20) with Good Electrical and Electrochemical Properties. Journal of the American Ceramic Society 2007, 90 (9), 2802-2806.
    104. Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. y., Ionic conductivity of solid electrolytes based on lithium titanium phosphate. Journal of the electrochemical society 1990, 137 (4), 1023-1027.
    105. Birke, P.; Salam, F.; Döring, S.; Weppner, W., A first approach to a monolithic all solid state inorganic lithium battery. Solid State Ion. 1999, 118 (1-2), 149-157.
    106. Maldonado-Manso, P.; Losilla, E. R.; Martínez-Lara, M.; Aranda, M. A.; Bruque, S.; Mouahid, F. E.; Zahir, M., High Lithium Ionic Conductivity in the Li1+ x Al x Ge y Ti2-x-y (PO4) 3 NASICON Series. Chemistry of materials 2003, 15 (9), 1879-1885.
    107. Kunshina, G.; Bocharova, I.; Ivanenko, V., Preparation of the Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 solid electrolyte with high ionic conductivity. Inorganic Materials: Applied Research 2017, 8 (2), 238-244.
    108. Kun, H.; Yanhang, W.; Chengkui, Z.; Huifeng, Z.; Yonghua, L.; Jiang, C.; Bin, H.; Juanrong, M., Influence of Al2O3 additions on crystallization mechanism and conductivity of Li2O–Ge2O–P2O5 glass–ceramics. Physica B: Condensed Matter 2011, 406 (20), 3947-3950.
    109. Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G.-y., Electrical Properties and Sinterability for Lithium Germanium Phosphate Li1+ x M x Ge2− x (PO4) 3, M= Al, Cr, Ga, Fe, Sc, and In Systems. Bulletin of the Chemical Society of Japan 1992, 65 (8), 2200-2204.
    110. Lang, B.; Ziebarth, B.; Elsässer, C., Lithium ion conduction in LiTi2 (PO4) 3 and related compounds based on the NASICON structure: a first-principles study. Chemistry of Materials 2015, 27 (14), 5040-5048.
    111. Richards, W. D.; Tsujimura, T.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ong, S. P.; Uechi, I.; Suzuki, N.; Ceder, G., Design and synthesis of the superionic conductor Na 10 SnP 2 S 12. Nat. Commun 2016, 7, 11009.
    112. Noda, Y.; Nakano, K.; Takeda, H.; Kotobuki, M.; Lu, L.; Nakayama, M., Computational and experimental investigation of the electrochemical stability and Li-ion conduction mechanism of LiZr2 (PO4) 3. Chem. Mater. 2017, 29 (21), 8983-8991.
    113. Martínez-Juárez, A.; Pecharromán, C.; Iglesias, J. E.; Rojo, J. M., Relationship between activation energy and bottleneck size for Li+ ion conduction in NASICON materials of composition LiMM ‘(PO4) 3; M, M ‘= Ge, Ti, Sn, Hf. The Journal of Physical Chemistry B 1998, 102 (2), 372-375.
    114. Ong, S. P.; Andreussi, O.; Wu, Y.; Marzari, N.; Ceder, G., Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculations. Chemistry of Materials 2011, 23 (11), 2979-2986.
    115. Toby, B. H.; Von Dreele, R. B., GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46 (2), 544-549.
    116. Fu, J., Fast Li+ ion conduction in Li2O–(Al2O3 Ga22O3)–TiO2–P2O5 glass–ceramics. Journal of materials science 1998, 33 (6), 1549-1553.
    117. Nuernberg, R. B.; Rodrigues, A. C. M., A new NASICON lithium ion-conducting glass-ceramic of the Li1+ xCrx (GeyTi1− y) 2− x (PO4) 3 system. Solid State Ion. 2017, 301, 1-9.
    118. Ma, F.; Zhao, E.; Zhu, S.; Yan, W.; Sun, D.; Jin, Y.; Nan, C., Preparation and evaluation of high lithium ion conductivity Li1. 3Al0. 3Ti1. 7 (PO4) 3 solid electrolyte obtained using a new solution method. Solid State Ion. 2016, 295, 7-12.
    119. Zhou, D.; He, Y.-B.; Cai, Q.; Qin, X.; Li, B.; Du, H.; Yang, Q.-H.; Kang, F., Investigation of cyano resin-based gel polymer electrolyte: In situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery. J. mater. chem. A 2014, 2 (47), 20059-20066.
    120. Appetecchi, G.; Dautzenberg, G.; Scrosati, B., A New Class of Advanced Polymer Electrolytes and Their Relevance in Plastic‐like, Rechargeable Lithium Batteries. J. Electrochem. Soc. 1996, 143 (1), 6.
    121. Liu, Y.; Sun, Q.; Zhao, Y.; Wang, B.; Kaghazchi, P.; Adair, K. R.; Li, R.; Zhang, C.; Liu, J.; Kuo, L.-Y., Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS applied materials & interfaces 2018, 10 (37), 31240-31248.
    122. He, L.; Sun, Q.; Chen, C.; Oh, J. A. S.; Sun, J.; Li, M.; Tu, W.; Zhou, H.-H.; Zeng, K.; Lu, L., Failure Mechanism and Interface Engineering for NASICON Structure All-solid-state Lithium Metal Batteries. ACS applied materials & interfaces 2019.
    123. Xie, H.; Li, C.; Kan, W. H.; Avdeev, M.; Zhu, C.; Zhao, Z.; Chu, X.; Mu, D.; Wu, F. J. J. o. M. C. A., Consolidating the grain boundary of the garnet electrolyte LLZTO with Li3BO3 for high-performance LiNi0. 8Co0. 1Mn0. 1O2/LiFePO4 hybrid solid batteries. 2019, 7 (36), 20633-20639.
    124. Xu, B.; Duan, H.; Liu, H.; Wang, C. A.; Zhong, S. J. A. a. m.; interfaces, Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries. 2017, 9 (25), 21077-21082.
    125. Wang, C.; Sun, Q.; Liu, Y.; Zhao, Y.; Li, X.; Lin, X.; Banis, M. N.; Li, M.; Li, W.; Adair, K. R. J. N. E., Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. 2018, 48, 35-43.
    126. Aguesse, F.; Manalastas, W.; Buannic, L.; Lopez del Amo, J. M.; Singh, G.; Llordés, A.; Kilner, J. J. A. a. m.; interfaces, Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. 2017, 9 (4), 3808-3816.
    127. Song, Y.; Yang, L.; Zhao, W.; Wang, Z.; Zhao, Y.; Wang, Z.; Zhao, Q.; Liu, H.; Pan, F. J. A. E. M., Revealing the Short‐Circuiting Mechanism of Garnet‐Based Solid‐State Electrolyte. 2019, 1900671.
    128. Shannon, R. D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallogr. sec. A 1976, 32 (5), 751-767.
    129. Kuo, P. H.; Du, J., Lithium Ion Diffusion Mechanism and Associated Defect Behaviors in Crystalline Li1+ x Al x Ge2–x (PO4) 3 Solid-State Electrolytes. J. Phys. Chem. C 2019, 123 (45), 27385-27398.
    130. Safanama, D.; Sharma, N.; Rao, R. P.; Brand, H. E.; Adams, S., Structural evolution of NASICON-type Li 1+ x Al x Ge 2− x (PO 4) 3 using in situ synchrotron X-ray powder diffraction. J. mater. chem. A 2016, 4 (20), 7718-7726.
    131. Weiss, M.; Weber, D. A.; Senyshyn, A.; Janek, J. r.; Zeier, W. G., Correlating Transport and Structural Properties in Li1+ x Al x Ge2–x (PO4) 3 (LAGP) Prepared from Aqueous Solution. ACS Appl. Mater. Interfaces 2018, 10 (13), 10935-10944.
    132. Wu, J.-F.; Guo, X., Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li 3x La 0.67− x TiO 3. Phys.Chem.Chem.Phys. 2017, 19 (8), 5880-5887.
    133. Zhu, Y.; Wu, S.; Pan, Y.; Zhang, X.; Yan, Z.; Xiang, Y., Reduced Energy Barrier for Li+ Transport Across Grain Boundaries with Amorphous Domains in LLZO Thin Films. Nanoscale Res. Lett. 2020, 15 (1), 1-8.
    134. Breuer, S.; Prutsch, D.; Ma, Q.; Epp, V.; Preishuber-Pflügl, F.; Tietzbc, F.; Wilkening, M., Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid. J. Mater. Chem. A 2015, 3, 21343–21350.
    135. Nikodimos, Y.; Tsai, M.-C.; Abrha, L. H.; Weldeyohannis, H. H.; Chiu, S.-F.; Bezabh, H. K.; Shitaw, K. N.; Fenta, F. W.; Wu, S.-H.; Su, W.-N.; Yang, C.-C.; Hwang, B. J., Al–Sc dual-doped LiGe 2 (PO 4) 3–a NASICON-type solid electrolyte with improved ionic conductivity. J. mater. chem. A 2020, 8 (22), 11302-11313.
    136. Yu, S.; Siegel, D. J., Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. mater. 2017, 29 (22), 9639-9647.
    137. Wang, M.; Sakamoto, J., Dramatic reduction in the densification temperature of garnet-type solid electrolytes. Ionics 2018, 24 (7), 1861-1868.
    138. Zhang, X.; Oh, T.-S.; Fergus, J. W., Densification of Ta-Doped Garnet-Type Li6. 75La3Zr1. 75Ta0. 25O12 Solid Electrolyte Materials by Sintering in a Lithium-Rich Air Atmosphere. J. Electrochem. Soc. 2019, 166 (15), A3753.
    139. Kingery, W., Densification during sintering in the presence of a liquid phase. I. Theory. J Appl Phys 1959, 30 (3), 301-306.
    140. Jiang, Y.; Zhu, X.; Qin, S.; Zhu, J., Investigation of Mg2+, Sc3+ and Zn2+ doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets. Solid State Ion. 2017, 300, 73-77.
    141. Wang, C.; Sun, Q.; Liu, Y.; Zhao, Y.; Li, X.; Lin, X.; Banis, M. N.; Li, M.; Li, W.; Adair, K. R., Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. Nano Energy 2018, 48, 35-43.
    142. Xie, H.; Li, C.; Kan, W. H.; Avdeev, M.; Zhu, C.; Zhao, Z.; Chu, X.; Mu, D.; Wu, F., Consolidating the grain boundary of the garnet electrolyte LLZTO with Li3BO3 for high-performance LiNi0. 8Co0. 1Mn0. 1O2/LiFePO4 hybrid solid batteries. J. mater. chem. A 2019, 7 (36), 20633-20639.
    143. Aguesse, F.; Manalastas, W.; Buannic, L.; Lopez del Amo, J. M.; Singh, G.; Llordés, A.; Kilner, J., Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl. Mater. Interfaces 2017, 9 (4), 3808-3816.
    144. Busche, M. R.; Drossel, T.; Leichtweiss, T.; Weber, D. A.; Falk, M.; Schneider, M.; Reich, M.-L.; Sommer, H.; Adelhelm, P.; Janek, J., Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. chem. 2016, 8 (5), 426.
    145. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J., Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ. Sci. 2016, 9 (6), 1955-1988.
    146. Arbi, K.; Mandal, S.; Rojo, J.; Sanz, J., Dependence of Ionic Conductivity on Composition of Fast Ionic Conductors Li1+ x Ti2-x Al x (PO4) 3, 0≤ x≤ 0.7. A Parallel NMR and Electric Impedance Study. Chem. mater. 2002, 14 (3), 1091-1097.
    147. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 2017, 117 (15), 10403-10473.
    148. Bruce, P. G.; West, A., The A‐C Conductivity of Polycrystalline LISICON, Li2+ 2x Zn1− x GeO4, and a Model for Intergranular Constriction Resistances. J. Electrochem Soc. 1983, 130 (3), 662.
    149. Hakari, T.; Nagao, M.; Hayashi, A.; Tatsumisago, M., All-solid-state lithium batteries with Li3PS4 glass as active material. J. Power Sources 2015, 293, 721-725.
    150. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K., A lithium superionic conductor. Nat. Mater. 2011, 10 (9), 682-686.
    151. Takada, K.; Nakano, S.; Inada, T.; Kajiyama, A.; Sasaki, H.; Kondo, S.; Watanabe, M., Compatibility of lithium ion conductive sulfide glass with carbon-lithium electrode. J. Electrochem. Soc. 2003, 150 (3), A274.
    152. Takada, K.; Inada, T.; Kajiyama, A.; Sasaki, H.; Kondo, S.; Watanabe, M.; Murayama, M.; Kanno, R., Solid-state lithium battery with graphite anode. Solid State Ion 2003, 158 (3-4), 269-274.
    153. Kobayashi, T.; Yamada, A.; Kanno, R., Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON. Electrochim. Acta 2008, 53 (15), 5045-5050.
    154. Trevey, J. E.; Gilsdorf, J. R.; Miller, S. W.; Lee, S.-H., Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries. Solid State Ion 2012, 214, 25-30.
    155. Ohtomo, T.; Hayashi, A.; Tatsumisago, M.; Kawamoto, K., Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling. J. Non-Cryst. Solids 2013, 364, 57-61.
    156. Lu, P.; Ding, F.; Xu, Z.; Liu, J.; Liu, X.; Xu, Q., Study on (100-x)(70Li2S-30P2S5)-xLi2ZrO3 glass-ceramic electrolyte for all-solid-state lithium-ion batteries. J. Power Sources 2017, 356, 163-171.
    157. Minami, K.; Mizuno, F.; Hayashi, A.; Tatsumisago, M., Structure and properties of the 70Li2S·(30− x) P2S5· xP2O5 oxysulfide glasses and glass–ceramics. J. Non-Cryst. Solids 2008, 354 (2-9), 370-373.
    158. Minami, K.; Hayashi, A.; Tatsumisago, M., Electrical and electrochemical properties of the 70Li2S·(30− x) P2S5· xP2O5 glass-ceramic electrolytes. Solid State Ion 2008, 179 (27-32), 1282-1285.
    159. Ohtomo, T.; Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M., Electrical and electrochemical properties of Li2S–P2S5–P2O5 glass–ceramic electrolytes. J. power sources 2005, 146 (1-2), 715-718.
    160. Tao, Y.; Chen, S.; Liu, D.; Peng, G.; Yao, X.; Xu, X., Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells. J. Electrochem. Soc. 2015, 163 (2), A96.
    161. Huang, B.; Yao, X.; Huang, Z.; Guan, Y.; Jin, Y.; Xu, X., Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries. J. Power Sources 2015, 284, 206-211.
    162. Hayashi, A.; Muramatsu, H.; Ohtomo, T.; Hama, S.; Tatsumisago, M., Improvement of chemical stability of Li 3 PS 4 glass electrolytes by adding M x O y (M= Fe, Zn, and Bi) nanoparticles. J. Mater. Chem. A 2013, 1 (21), 6320-6326.
    163. Sahu, G.; Lin, Z.; Li, J.; Liu, Z.; Dudney, N.; Liang, C., Air-stable, high-conduction solid electrolytes of arsenic-substituted Li 4 SnS 4. Energy Environ. Sci. 2014, 7 (3), 1053-1058.
    164. Ohtomo, T.; Hayashi, A.; Tatsumisago, M.; Kawamoto, K., Glass electrolytes with high ion conductivity and high chemical stability in the system LiI-Li2O-Li2S-P2S5. Electrochemistry 2013, 81 (6), 428-431.
    165. Xu, Z.-M.; Bo, S.-H.; Zhu, H., LiCrS2 and LiMnS2 Cathodes with Extraordinary Mixed Electron–Ion Conductivities and Favorable Interfacial Compatibilities with Sulfide Electrolyte. ACS Appl. Mater. Interfaces 2018, 10 (43), 36941-36953.
    166. Xu, Z.; Chen, R.; Zhu, H., A Li 2 CuPS 4 superionic conductor: a new sulfide-based solid-state electrolyte. J. Mater. Chem. A 2019, 7 (20), 12645-12653.
    167. De Klerk, N. J.; Rosłoń, I.; Wagemaker, M., Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder. Chem. Mater. 2016, 28 (21), 7955-7963.
    168. Wang, X.; Xiao, R.; Li, H.; Chen, L., Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li 3 PS 4 electrolyte. Phys. Chem. Chem. Phys. 2016, 18 (31), 21269-21277.
    169. Xu, R.-c.; Xia, X.-h.; Wang, X.-l.; Xia, Y.; Tu, J.-p., Tailored Li 2 S–P 2 S 5 glass-ceramic electrolyte by MoS 2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. J. Mater. Chem. A 2017, 5 (6), 2829-2834.

    無法下載圖示 全文公開日期 2026/02/03 (校內網路)
    全文公開日期 2026/02/03 (校外網路)
    全文公開日期 2031/02/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE