簡易檢索 / 詳目顯示

研究生: 余芃萱
Peng Xuan Yu
論文名稱: 探討鋰離子在無陽極鋰離子電池中的電鍍效應與改善鋰離子成核的機制研究
Study the electrodeposition effects of lithium ions in an anode-free lithium-ion battery and investigate the mechanisms for enhancing lithium-ion nucleation
指導教授: 王復民
Fu-Ming Wang
湯茂竹
Mau-Tsu Tang
口試委員: 湯茂竹
Mau-Tsu Tang
劉偉仁
Wei-Ren Liu
張仍奎
Jeng-Kuei Chang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 97
中文關鍵詞: 無陽極鋰離子電池SEI預形成銅集流體
外文關鍵詞: Anode-Free Lithium-Ion Battery, Pre SEI formation, Copper Current Collector
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應全球暖化與氣候變遷的衝擊,鋰離子電池因其能量密度高、壽命長、自放電率低、使用溫度範圍廣而在各種應用中佔有優勢,但仍與一公升汽油所提供的能量相差甚遠,所以科學家提出無陽極鋰離子電池 (Anode free battery, AFB),其擁有比現今鋰離子電池高出兩倍以上體積能量密度,然而,AFB由於低庫倫效率而造成循環壽命低的問題仍需解決。本研究使用大氣電漿濺鍍(Atmospheric pressure plasmas jet , APPJ)在銅箔與3D泡沫銅表面製備一層親鋰性氮化銅箔膜,接著將高離子電導度的聚矽氧烷共聚物塗覆到銅箔上,最後進行預鋰化,提供因為氮化銅還原成氮化鋰消耗的鋰離子,同時在循環前預先形成一層穩固的人工SEI層,鋰離子可以在集流體表面可以均勻且平滑的成核,在後續的循環中不會輕易地形成鋰枝晶,保護AFB的集流體表面,增加循環穩定性與壽命。
    實驗結果顯示,在NMC811 AFB中,未經處理銅箔的初始庫倫效率為77.37,而經過APPJ改質處理AFB可以達到81.07,未經處理泡沫銅Mesh初始庫倫效率為53.2,而經過APPJ改質處理達到70.63,並且在使用經過預鋰化的陽極組成的AFB在初始圈數可以提供較未經過預鋰化極高出2%~ 7%的電容量,代表APPJ表面改質、聚矽氧烷共聚物塗佈、預鋰化確實可以製造穩定的人工SEI,改善無陽極鋰離子電池的初始庫倫效率以及循環壽命。


    In response to the impacts of global warming and climate change, lithium-ion batteries hold advantages in various applications due to their high energy density, long life, low self-discharge rate, and wide operating temperature range. However, they still significantly lag behind the energy provided by a liter of gasoline. As a solution, scientists have proposed Anode-Free Batteries (AFBs) that possess more than double the volumetric energy density of current lithium-ion batteries. Unfortunately, AFBs suffer from low Coulombic efficiency leading to short cycle life, which remains a problem to be solved. This study uses Atmospheric Pressure Plasma Jet (APPJ) to prepare a lithium-friendly copper nitride film on the surface of copper foil and 3D foam copper. Then, a high ionic conductivity polysiloxane copolymer is coated on the copper foil, followed by Pre SEI formation, to supply the lithium ions consumed in the reduction of copper nitride to lithium nitride, while also pre-forming a stable artificial SEI layer. Lithium ions can uniformly and smoothly nucleate on the current collector surface, preventing easy formation of lithium dendrites in subsequent cycles, protecting the AFB current collector surface, and increasing cycle stability and life.

    Experimental results show that in NMC811 AFBs, the initial Coulombic efficiency of untreated copper foil is 77.37, while APPJ-modified AFB can reach 81.07. The initial Coulombic efficiency of untreated foam copper mesh is 53.2, but after APPJ modification, it reaches 70.63. Moreover, AFBs using pre-lithiated anodes can provide 2% to 7% higher initial capacity compared to those without Pre SEI formation, indicating that APPJ surface modification, polysiloxane copolymer coating, and Pre SEI formation can indeed create a stable artificial SEI, improving the initial Coulombic efficiency and cycling life of anode-free lithium-ion batteries.

    Abstract I 摘要 II Acknowledgments III Contents IV List of Figures VI List of Tables XI Chapter 1 Introduction 1 1.1 Climate Change Mitigation Strategies and Energy Storage 1 1.2 ZAdvantages and Disadvantages of Lithium-Ion Batteries 2 Chapter 2 Literature Review 5 2.1 Introduction to Lithium-Ion Batteries 5 2.2 Solid Electrolyte Interface 9 2.2.1 SEI Formation Mechanism and Structural Composition 9 2.2.2 Mechanism of the Solid Electrolyte Interphase (SEI) and its Electrochemical Interaction with Lithium Ions 11 2.3 Battery Failure Mechanism - Lithium Dendrites 12 2.3.2 Formation of Dead Lithium 20 2.4 Strategies to Improve the Coulombic Efficiency of Anode-Free Lithium-Ion Batteries 21 2.4.2 Improving the charging and discharging protocols 26 2.5 Nitride Interfaces for Stabilized Electrolytes 27 2.5.1 Nitride interface configuration 27 2.5.2 Characteristics of Copper Nitride (Cu3N) 30 2.6 Atmospheric pressure plasmas jet , APPJ 33 2.7 Functionalized siloxane-based solid polymer 35 2.8 Research Motivation and Objectives 36 Chapter 3 Experimental Method 38 3.1 Experimental Procedures 38 3.2 Instrumentation and Equipment 39 3.3 Experimental Materials and Chemicals 40 3.4 Acid treatment 41 3.5 Atmospheric Pressure Plasma Jet (APPJ) Processing 42 3.6 Method for Preparing the Novel Polymer Adhesive CEAM950 43 3.7 Method of Assembling Batteries 44 3.8 Coin Cell Electrochemical Analysis 45 3.9 Material Characterization and Analysis Methods 46 3.9.1 Scanning Electron Microscope, SEM 46 3.9.2 X-ray photoelectron spectroscopy, XPS 46 3.9.3 Projection x-ray microscope, PXM 47 3.10 Cyclic voltammetry, CV 48 Chapter 4 Results and Discussion 49 4.1 Impact of Cu3N Artificial SEI on Lithium Ion Plating/Stripping 49 4.2 Application Test of 3D Copper Foam 60 4.3 Electrolyte Optimization Testing 68 4.4 Novel Polymer CEAM950 Coating Test 72 4.5 Pre reacted Li3N test for anode-free lithium-ion cells 78 Chapter 5 Conclusion 82 Chapter 6 Future outlook 84 Reference 85 Appendix 93 Projection x-ray microscope, PXM 93 Optimization Testing of Atmospheric Plasma Modification Conditions 94 PP130 Foam Copper Testing 96

    1. Unies, N. Accord de paris. in 21ème Conférence des Parties. 2015.
    2. Arora, N.K. and I. Mishra, COP26: more challenges than achievements. Environmental Sustainability, 2021. 4(4): p. 585-588.
    3. Olabi, A. and M.A. Abdelkareem, Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 2022. 158: p. 112111.
    4. Keck, F., et al., The impact of battery energy storage for renewable energy power grids in Australia. Energy, 2019. 173: p. 647-657.
    5. Rahman, M.M., et al., Assessment of energy storage technologies: A review. Energy Conversion and Management, 2020. 223: p. 113295.
    6. Thapa, P., et al. A Comparative Study on VRLA and Li-ion Battery for Use in Frequency Modulation (FM) Station. IEEE.
    7. Schmidt, O., et al., Projecting the Future Levelized Cost of Electricity Storage Technologies. Joule, 2019. 3(1): p. 81-100.
    8. McDowall, J., F. Danet, and S. Lansburg. One size doesn’t fit all: Lithium-ion technology choices for standby applications. in Battcon. 2016.
    9. Stan, A.-I., et al. A comparative study of lithium ion to lead acid batteries for use in UPS applications. IEEE.
    10. Whittingham, M.S., Electrical energy storage and intercalation chemistry. Science, 1976. 192(4244): p. 1126-1127.
    11. Kim, T., et al., Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of materials chemistry A, 2019. 7(7): p. 2942-2964.
    12. Hawkins, T.R., et al., Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of industrial ecology, 2013. 17(1): p. 53-64.
    13. Rajaeifar, M.A., et al., Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective. 2022, Elsevier. p. 106144.
    14. Xu, J., et al., High‐Energy Lithium‐Ion Batteries: Recent Progress and a Promising Future in Applications. Energy & Environmental Materials, 2023. 6(5): p. e12450.
    15. Cunanan, C., et al., A review of heavy-duty vehicle powertrain technologies: Diesel engine vehicles, battery electric vehicles, and hydrogen fuel cell electric vehicles. Clean Technologies, 2021. 3(2): p. 474-489.
    16. Yong, J.Y., et al., A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renewable and sustainable energy reviews, 2015. 49: p. 365-385.
    17. Tarascon, J.M., Key challenges in future Li-battery research. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. 368(1923): p. 3227-3241.
    18. Chen, Y., et al., A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 2021. 59: p. 83-99.
    19. Arbizzani, C., G. Gabrielli, and M. Mastragostino, Thermal stability and flammability of electrolytes for lithium-ion batteries. Journal of Power Sources, 2011. 196(10): p. 4801-4805.
    20. Baba, Y., S. Okada, and J.-i. Yamaki, Thermal stability of LixCoO2 cathode for lithium ion battery. Solid State Ionics, 2002. 148(3-4): p. 311-316.
    21. Neudecker, B.J., N.J. Dudney, and J.B. Bates, "Lithium-free" thin-film battery with in situ plated Li anode. Journal of the Electrochemical Society, 2000. 147(2): p. 517-523.
    22. Shao, A., et al., Challenges, Strategies, and Prospects of the Anode‐Free Lithium Metal Batteries. Advanced Energy and Sustainability Research, 2022. 3(4): p. 2100197.
    23. Liu, S., K. Jiao, and J. Yan, Prospective strategies for extending long-term cycling performance of anode-free lithium metal batteries. Energy Storage Materials, 2022.
    24. Lin, L., et al., Li‐Rich Li2 [Ni0. 8Co0. 1Mn0. 1] O2 for Anode‐Free Lithium Metal Batteries. Angewandte Chemie International Edition, 2021. 60(15): p. 8289-8296.
    25. Tong, Z., et al., Interfacial chemistry in anode-free batteries: challenges and strategies. Journal of Materials Chemistry A, 2021. 9(12): p. 7396-7406.
    26. Huang, C.-J., et al., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nature Communications, 2021. 12(1): p. 1452.
    27. Thirumalraj, B., et al., Nucleation and growth mechanism of lithium metal electroplating. Journal of the American Chemical Society, 2019. 141(46): p. 18612-18623.
    28. Fang, C., et al., Quantifying inactive lithium in lithium metal batteries. Nature, 2019. 572(7770): p. 511-515.
    29. Zhang, X.-Q., et al., Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries. Journal of Materials Chemistry A, 2020. 8(8): p. 4283-4289.
    30. Zhou, H., et al., What limits the capacity of layered oxide cathodes in lithium batteries? ACS Energy Letters, 2019. 4(8): p. 1902-1906.
    31. Tian, Y., et al., Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy, 2020. 78: p. 105344.
    32. Manthiram, A., A reflection on lithium-ion battery cathode chemistry. Nature Communications, 2020. 11(1).
    33. Agubra, V. and J. Fergus, Lithium Ion Battery Anode Aging Mechanisms. Materials, 2013. 6(4): p. 1310-1325.
    34. Wang, Q., et al., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 2019. 55: p. 93-114.
    35. Huang, X., Separator technologies for lithium-ion batteries. Journal of Solid State Electrochemistry, 2011. 15(4): p. 649-662.
    36. Fergus, J.W., Recent developments in cathode materials for lithium ion batteries. Journal of power sources, 2010. 195(4): p. 939-954.
    37. Whittingham, M.S., Lithium Batteries and Cathode Materials. Chemical Reviews, 2004. 104(10): p. 4271-4302.
    38. Chikkannanavar, S.B., D.M. Bernardi, and L. Liu, A review of blended cathode materials for use in Li-ion batteries. Journal of Power Sources, 2014. 248: p. 91-100.
    39. Feng, X., et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 2018. 10: p. 246-267.
    40. Baumann, M., et al., CO2 Footprint and Life-Cycle Costs of Electrochemical Energy Storage for Stationary Grid Applications. Energy Technology, 2017. 5(7): p. 1071-1083.
    41. Osiak, M., et al., Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. Journal of Materials Chemistry A, 2014. 2(25): p. 9433-9460.
    42. Cheng, H., et al., Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 2021. 57: p. 451-468.
    43. Crabtree, G., E. Kócs, and L. Trahey, The energy-storage frontier: Lithium-ion batteries and beyond. MRS Bulletin, 2015. 40(12): p. 1067-1078.
    44. Zuo, X., et al., Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy, 2017. 31: p. 113-143.
    45. Takami, N., et al., High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications. Journal of power sources, 2013. 244: p. 469-475.
    46. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews, 2004. 104(10): p. 4303-4418.
    47. Dunn, B., H. Kamath, and J.-M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science, 2011. 334(6058): p. 928-935.
    48. Azuma, H., et al., Advanced carbon anode materials for lithium ion cells. Journal of power sources, 1999. 81: p. 1-7.
    49. Parimalam, B.S. and B.L. Lucht, Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF<sub>6</sub>, LiBF<sub>4</sub>, LiDFOB, LiBOB, and LiTFSI. Journal of The Electrochemical Society, 2018. 165(2): p. A251-A255.
    50. Mendoza-Hernandez, O.S., et al., Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge. Journal of Power Sources, 2015. 280: p. 499-504.
    51. Chakraborty, A., et al., Review of Computational Studies of NCM Cathode Materials for Li‐ion Batteries. Israel Journal of Chemistry, 2020. 60(8-9): p. 850-862.
    52. Baumann, M., et al. Environmental impacts of different battery technologies in renewable hybrid micro-grids. in 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). 2017. IEEE.
    53. Schipper, F., et al., Recent advances and remaining challenges for lithium ion battery cathodes. Journal of The Electrochemical Society, 2016. 164(1): p. A6220.
    54. Lamb, J., et al., Investigating the role of energy density in thermal runaway of lithium-ion batteries with accelerating rate calorimetry. Journal of The Electrochemical Society, 2021. 168(6): p. 060516.
    55. Omar, N., et al. Evaluation of performance characteristics of various lithium-ion batteries for use in BEV application. IEEE.
    56. Zhang, H., et al., <scp> Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> </scp> spinel anode: Fundamentals and advances in rechargeable batteries. InfoMat, 2022. 4(4).
    57. Horstmann, B., et al., Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy & Environmental Science, 2021. 14(10): p. 5289-5314.
    58. Meda, U.S., et al., Solid Electrolyte Interphase (SEI), a boon or a bane for lithium batteries: A review on the recent advances. Journal of Energy Storage, 2022. 47: p. 103564.
    59. Gasteiger, H., K. Krischer, and B. Scrosati, Electrochemical cells: basics. Lithium Batteries: Advanced Technologies and Applications, 2013: p. 1-19.
    60. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries. Chemistry of Materials, 2010. 22(3): p. 587-603.
    61. An, S.J., et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016. 105: p. 52-76.
    62. Horstmann, B., et al., Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy &amp; Environmental Science, 2021. 14(10): p. 5289-5314.
    63. Agubra, V.A. and J.W. Fergus, The formation and stability of the solid electrolyte interface on the graphite anode. Journal of Power Sources, 2014. 268: p. 153-162.
    64. Shi, S., et al., Direct calculation of Li-ion transport in the solid electrolyte interphase. Journal of the American Chemical Society, 2012. 134(37): p. 15476-15487.
    65. Peled, E., D. Golodnitsky, and G. Ardel, Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. Journal of The Electrochemical Society, 1997. 144(8): p. L208-L210.
    66. Jow, T.R., et al., Factors limiting Li+ charge transfer kinetics in Li-ion batteries. Journal of the electrochemical society, 2018. 165(2): p. A361.
    67. Uchida, S. and M. Ishikawa, Lithium bis (fluorosulfonyl) imide based low ethylene carbonate content electrolyte with unusual solvation state. Journal of Power Sources, 2017. 359: p. 480-486.
    68. Xu, K., A. von Cresce, and U. Lee, Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir, 2010. 26(13): p. 11538-11543.
    69. von Cresce, A. and K. Xu, Preferential solvation of Li+ directs formation of interphase on graphitic anode. Electrochemical and Solid-State Letters, 2011. 14(10): p. A154.
    70. Single, F., B. Horstmann, and A. Latz, Revealing SEI morphology: in-depth analysis of a modeling approach. Journal of The Electrochemical Society, 2017. 164(11): p. E3132.
    71. Terlouw, T., et al., Towards the determination of metal criticality in home-based battery systems using a Life Cycle Assessment approach. Journal of Cleaner Production, 2019. 221: p. 667-677.
    72. Liu, B., J.-G. Zhang, and W. Xu, Advancing lithium metal batteries. Joule, 2018. 2(5): p. 833-845.
    73. Chen, X.R., et al., Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Advanced Materials, 2021. 33(8): p. 2004128.
    74. Ely, D.R. and R.E. García, Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. Journal of the Electrochemical Society, 2013. 160(4): p. A662.
    75. Pei, A., et al., Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Letters, 2017. 17(2): p. 1132-1139.
    76. Wu, L.-N., et al., Suppressing lithium dendrite growth by a synergetic effect of uniform nucleation and inhibition. Journal of Materials Chemistry A, 2020. 8(8): p. 4300-4307.
    77. Li, Q., et al., Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. ACS Energy Letters, 2018. 3(9): p. 2259-2266.
    78. Li, Y., et al., Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science, 2017. 358(6362): p. 506-510.
    79. Kim, Y.-J., et al., Facet selectivity of Cu current collector for Li electrodeposition. Energy Storage Materials, 2019. 19: p. 154-162.
    80. Ju, Z., et al., Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nature communications, 2020. 11(1): p. 488.
    81. Lin, C.-C., et al., Nanotwinned Copper Foil for “Zero Excess” Lithium–Metal Batteries. ACS Applied Energy Materials, 2023. 6(4): p. 2140-2150.
    82. Chazalviel, J.-N., Electrochemical aspects of the generation of ramified metallic electrodeposits. Physical review A, 1990. 42(12): p. 7355.
    83. Rosso, M., et al., Onset of dendritic growth in lithium/polymer cells. Journal of power sources, 2001. 97: p. 804-806.
    84. Qian, J., et al., High rate and stable cycling of lithium metal anode. Nature Communications, 2015. 6(1): p. 6362.
    85. Perez Beltran, S., et al., Localized high concentration electrolytes for high voltage lithium–metal batteries: correlation between the electrolyte composition and its reductive/oxidative stability. Chemistry of Materials, 2020. 32(14): p. 5973-5984.
    86. Ko, M., S. Chae, and J. Cho, Challenges in accommodating volume change of Si anodes for Li‐ion batteries. ChemElectroChem, 2015. 2(11): p. 1645-1651.
    87. Sacci, R.L., et al., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chemical Communications, 2014. 50(17): p. 2104-2107.
    88. Li, L., L. Ma, and B.A. Helms, Architected Macroporous Polyelectrolytes That Suppress Dendrite Formation during High-Rate Lithium Metal Electrodeposition. Macromolecules, 2018. 51(19): p. 7666-7671.
    89. Cheng, J.-H., et al., Visualization of lithium plating and stripping via in operando transmission X-ray microscopy. The Journal of Physical Chemistry C, 2017. 121(14): p. 7761-7766.
    90. Akolkar, R., Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. Journal of Power Sources, 2014. 246: p. 84-89.
    91. Brissot, C., et al., Concentration measurements in lithium/polymer–electrolyte/lithium cells during cycling. Journal of power sources, 2001. 94(2): p. 212-218.
    92. Nishida, T., et al., Optical observation of Li dendrite growth in ionic liquid. Electrochimica acta, 2013. 100: p. 333-341.
    93. Liu, H., et al., Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem, 2019. 1(1): p. 100003.
    94. Bai, P., et al., Transition of lithium growth mechanisms in liquid electrolytes. Energy & Environmental Science, 2016. 9(10): p. 3221-3229.
    95. Chen, K.-H., et al., Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. Journal of Materials Chemistry A, 2017. 5(23): p. 11671-11681.
    96. Chen, X.-R., et al., New insights into “dead lithium” during stripping in lithium metal batteries. Journal of Energy Chemistry, 2021. 62: p. 289-294.
    97. Zhang, S.S., X. Fan, and C. Wang, A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochimica Acta, 2017. 258: p. 1201-1207.
    98. Liu, S., et al., Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating. Energy Storage Materials, 2018. 14: p. 143-148.
    99. Kim, J., et al., Homogeneous Li deposition guided by ultra-thin lithiophilic layer for highly stable anode-free batteries. Energy Storage Materials, 2023. 61: p. 102899.
    100. Assegie, A.A., et al., Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries. Nanoscale, 2019. 11(6): p. 2710-2720.
    101. Redda, H.G., et al., The surface modification of electrode materials using gel polymer electrolytes for anode-free lithium metal batteries (AFLMB). Materials Today Energy, 2022. 30: p. 101141.
    102. Zhang, Q., et al., Sulfide‐based solid‐state electrolytes: synthesis, stability, and potential for all‐solid‐state batteries. Advanced Materials, 2019. 31(44): p. 1901131.
    103. Chen, W., et al., Laser‐induced silicon oxide for anode‐free lithium metal batteries. Advanced Materials, 2020. 32(33): p. 2002850.
    104. Neudecker, B., N. Dudney, and J. Bates, “Lithium‐Free” thin‐film battery with in situ plated Li anode. Journal of the Electrochemical Society, 2000. 147(2): p. 517.
    105. Louli, A., et al., Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nature Energy, 2020. 5(9): p. 693-702.
    106. Sahalie, N.A., et al., Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. Journal of Power Sources, 2019. 437: p. 226912.
    107. Hagos, T.T., et al., Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries. ACS applied materials & interfaces, 2019. 11(10): p. 9955-9963.
    108. Beyene, T.T., et al., Effects of concentrated salt and resting protocol on solid electrolyte interface formation for improved cycle stability of anode-free lithium metal batteries. ACS applied materials & interfaces, 2019. 11(35): p. 31962-31971.
    109. Alvarado, J., et al., Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy & Environmental Science, 2019. 12(2): p. 780-794.
    110. Woo, J.-J., et al., Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion. Journal of the Electrochemical Society, 2014. 161(5): p. A827.
    111. Hawari, N.H., et al., Understanding SEI evolution during the cycling test of anode-free lithium-metal batteries with LiDFOB salt. RSC advances, 2023. 13(36): p. 25673-25680.
    112. Nilsson, V., et al., Highly concentrated LiTFSI–EC electrolytes for lithium metal batteries. ACS Applied Energy Materials, 2019. 3(1): p. 200-207.
    113. Lee, Y.-G., et al., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy, 2020. 5(4): p. 299-308.
    114. Huang, W.Z., et al., Anode‐Free Solid‐State Lithium Batteries: A Review. Advanced Energy Materials, 2022. 12(26): p. 2201044.
    115. Qian, J.F., et al., Anode-Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials, 2016. 26(39): p. 7094-7102.
    116. Tu, Z., et al., Stabilizing protic and aprotic liquid electrolytes at high-bandgap oxide interphases. Chemistry of Materials, 2018. 30(16): p. 5655-5662.
    117. Tamwattana, O., et al., High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Letters, 2021. 6(12): p. 4416-4425.
    118. Yang, C.-P., et al., Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature communications, 2015. 6(1): p. 8058.
    119. Umh, H.N., et al., Lithium metal anode on a copper dendritic superstructure. Electrochemistry Communications, 2019. 99: p. 27-31.
    120. Genovese, M., et al., Measuring the coulombic efficiency of lithium metal cycling in anode-free lithium metal batteries. Journal of The Electrochemical Society, 2018. 165(14): p. A3321.
    121. Plieth, W., Electrochemistry for materials science. 2008: Elsevier.
    122. Shen, X., et al., Advanced electrode materials in lithium batteries: Retrospect and prospect. Energy Material Advances, 2021.
    123. Mulliken, R., Lewis acids and bases and molecular complexes. The Journal of Chemical Physics, 1951. 19(4): p. 514-515.
    124. Wang, Z., et al., Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes. Chemical Science, 2021. 12(26): p. 8945-8966.
    125. Peled, E. and S. Menkin, SEI: past, present and future. Journal of The Electrochemical Society, 2017. 164(7): p. A1703.
    126. Alpen, U., Li3N: A promising Li ionic conductor. Journal of Solid State Chemistry, 1979. 29(3): p. 379-392.
    127. Wu, M., et al., Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. Journal of Power Sources, 2011. 196(19): p. 8091-8097.
    128. Li, Y., et al., Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS central science, 2018. 4(1): p. 97-104.
    129. Baloch, M., et al., Variations on Li3N protective coating using ex-situ and in-situ techniques for Li° in sulphur batteries. Energy Storage Materials, 2017. 9: p. 141-149.
    130. Liu, Y., et al., An artificial solid electrolyte interphase with high Li‐ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Advanced Materials, 2017. 29(10): p. 1605531.
    131. Liang, X., et al., Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. Journal of Power Sources, 2011. 196(22): p. 9839-9843.
    132. Li, N.W., et al., Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping. Advanced Science, 2017. 4(2): p. 1600400.
    133. Kim, K.J., J.H. Kim, and J.H. Kang, Structural and optical characterization of Cu3N films prepared by reactive RF magnetron sputtering. Journal of Crystal Growth, 2001. 222(4): p. 767-772.
    134. Jiang, A., M. Qi, and J. Xiao, Preparation, structure, properties, and application of copper nitride (Cu 3 N) thin films: A review. Journal of Materials Science & Technology, 2018. 34(9): p. 1467-1473.
    135. Hahn, U. and W. Weber, Electronic structure and chemical-bonding mechanism of Cu 3 N, Cui 3 NPd, and related Cu (I) compounds. Physical Review B, 1996. 53(19): p. 12684.
    136. Xiao, J., Y. Li, and A. Jiang, Structure, optical property and thermal stability of copper nitride films prepared by reactive radio frequency magnetron sputtering. Journal of Materials Science & Technology, 2011. 27(5): p. 403-407.
    137. Nakamura, T., et al., Preparation of copper nitride (Cu3N) nanoparticles in long-chain alcohols at 130–200° C and nitridation mechanism. Inorganic chemistry, 2014. 53(2): p. 710-715.
    138. Sajeev, A., et al., Development of Cu3N electrocatalyst for hydrogen evolution reaction in alkaline medium. Scientific Reports, 2022. 12(1): p. 2004.
    139. Yu, W., J. Zhao, and C. Jin, Simultaneous softening of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mi mathvariant="normal">N</mml:mi></mml:mrow></mml:math>phonon modes along the<mml. Physical Review B, 2005. 72(21).
    140. Alyousef, H.A., A. Hassan, and H.M. Zakaly, Exploring the Impact of Substrate Placement on Cu3N Thin Films as a Solar Cell Window Layer: Structural and Optical Attributes. Materials Today Communications, 2023: p. 106183.
    141. Chen, W., et al., Characterization of Cu3N/CuO thin films derived from annealed Cu3N for electrode application in Li-ion batteries. Thin Solid Films, 2019. 672: p. 157-164.
    142. Lee, D., et al., Copper Nitride Nanowires Printed Li with Stable Cycling for Li Metal Batteries in Carbonate Electrolytes. Advanced Materials, 2020. 32(7): p. 1905573.
    143. Deshmukh, R., et al., Ultrasmall Cu<sub>3</sub>N Nanoparticles: Surfactant-Free Solution-Phase Synthesis, Nitridation Mechanism, and Application for Lithium Storage. Chemistry of Materials, 2015. 27(24): p. 8282-8288.
    144. Wang, J., et al., Cu<sub>3</sub>N and its analogs: a new class of electrodes for lithium ion batteries. Journal of Materials Chemistry A, 2017. 5(18): p. 8762-8768.
    145. Tendero, C., et al., Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006. 61(1): p. 2-30.
    146. Walsh, J.L., et al., Three distinct modes in a cold atmospheric pressure plasma jet. Journal of Physics D: Applied Physics, 2010. 43(7): p. 075201.
    147. Sugimoto, I., S. Nakano, and H. Kuwano, Enhanced saturation of sputtered amorphous SiN film frameworks using He‐and Ne‐Penning effects. Journal of applied physics, 1994. 75(12): p. 7710-7717.
    148. Qayyum, A., et al., Optical emission spectroscopy of Ar–N2 mixture plasma. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007. 107(3): p. 361-371.
    149. Kim, M., et al., Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics. Surface and coatings Technology, 2003. 174: p. 839-844.
    150. Lin, H.H., et al., Atmospheric Pressure Plasma Jet Irradiation of N Doped Carbon Decorated on Li4Ti5O12 Electrode as a High Rate Anode Material for Lithium Ion Batteries. Journal of The Electrochemical Society, 2019. 166(3): p. A5146-A5152.
    151. Zhang, Z., et al., Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo (oxyethylene) side chains: synthesis and conductivity. Macromolecules, 2003. 36(24): p. 9176-9180.
    152. Rossi, N.A., et al., Synthesis and characterization of tetra-and trisiloxane-containing oligo (ethylene glycol) s highly conducting electrolytes for lithium batteries. Chemistry of materials, 2006. 18(5): p. 1289-1295.
    153. Li, Y.-J., et al., A promising PMHS/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Dalton transactions, 2018. 47(42): p. 14932-14937.
    154. Wang, F.-M., C.-C. Wan, and Y.-Y. Wang, Synthesis of functionalized copolymer electrolytes based on polysiloxane and analysis of their conductivity. Journal of Applied Electrochemistry, 2009. 39: p. 253-260.
    155. Hannan, M., et al., Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues. Journal of Energy Storage, 2021. 42: p. 103023.
    156. Heubner, C., et al., From lithium‐metal toward anode‐free solid‐state batteries: current developments, issues, and challenges. Advanced Functional Materials, 2021. 31(51): p. 2106608.
    157. Qian, J., et al., Anode‐free rechargeable lithium metal batteries. Advanced Functional Materials, 2016. 26(39): p. 7094-7102.
    158. Kim, E., et al., Effect of 3D lithiophilic current collector for anode-free Li ion batteries. Journal of Alloys and Compounds, 2023. 966: p. 171393.
    159. Qi, L., et al., Advances in artificial layers for stable lithium metal anodes. Chemistry–A European Journal, 2020. 26(19): p. 4193-4203.
    160. Sun, Y., et al., A novel organic “Polyurea” thin film for ultralong‐life lithium‐metal anodes via molecular‐layer deposition. Advanced Materials, 2019. 31(4): p. 1806541.
    161. 殷廣鈐, 奈米 X 光顯微術實驗設施. 國家同步輻射研究中心簡訊.
    162. Hui, C.-y., et al., Flexible energy storage system—an introductory review of textile-based flexible supercapacitors. Processes, 2019. 7(12): p. 922.
    163. Wen, Y., et al., Introducing NO3–into Carbonate‐Based Electrolytes via Covalent Organic Framework to Incubate Stable Interface for Li‐Metal Batteries. Advanced Functional Materials, 2022. 32(15): p. 2109377.
    164. Ye, M., et al., Integration of localized electric-field redistribution and interfacial tin nanocoating of lithium microparticles toward long-life lithium metal batteries. ACS Applied Materials & Interfaces, 2020. 13(1): p. 650-659.
    165. Liang, P., et al., In situ preparation of a binder-free nano-cotton-like CuO–Cu integrated anode on a current collector by laser ablation oxidation for long cycle life Li-ion batteries. Journal of Materials Chemistry A, 2017. 5(37): p. 19781-19789.
    166. Zhao, M., et al., Constructing porous nanosphere structure current collector by nitriding for lithium metal batteries. Journal of Energy Storage, 2022. 47: p. 103665.
    167. Pereira, N., et al., Electrochemistry of Cu3 N with lithium: A complex system with parallel processes. Journal of the Electrochemical Society, 2003. 150(9): p. A1273.
    168. Fan, X., et al., Fabrication of well-ordered CuO nanowire arrays by direct oxidation of sputter-deposited Cu3N film. Materials letters, 2008. 62(12-13): p. 1805-1808.
    169. Kim, R.H., D.W. Han, and H.S. Kwon, Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries. Electrochimica Acta, 2012. 66: p. 126-132.
    170. Sahay, R., et al., High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability. The Journal of Physical Chemistry C, 2012. 116(34): p. 18087-18092.
    171. Nanda, S., A. Gupta, and A. Manthiram, Anode‐free full cells: a pathway to high‐energy density lithium‐metal batteries. Advanced Energy Materials, 2021. 11(2): p. 2000804.

    無法下載圖示 全文公開日期 2026/02/05 (校內網路)
    全文公開日期 2026/02/05 (校外網路)
    全文公開日期 2026/02/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE