簡易檢索 / 詳目顯示

研究生: 林筠翔
Yun-Hsiang Lin
論文名稱: 鋰離子電池非線性老化行為模式之建模
Nonlinear Aging Behavior Modeling of Lithium-ion Battery
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 蔡大翔
Da-Hsiang Tsai
楊景龍
Jing-Lung Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 110
中文關鍵詞: 鋰離子電池老化模型交流阻抗分析
外文關鍵詞: Lithium-­ion battery, Aging model, Alternative Current Impedance Spectroscopy
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的為建立一結合鋰離子電池 (Lithium­ion Battery) 之等效電路、熱
    動態及鋰離子電池老化模型。透過交流阻抗分析儀之分析 (Alternative Current
    Impedance Spectroscopy, ACIS) 實驗,並以最小平方法求出鋰離子電池模型在不
    同電壓狀態 (State Of Charge, SOC) 與不同環境溫度之老化實驗下之參數,以多種
    老化數學模型進行參數老化趨勢之描述,建立鋰離子電池參數模型,其中參數
    包括串聯電阻 (Internal Resistance)、極化電阻 (Polarization Resistance)、下
    壓因子 (Depression Factor)、極化電容 (Polarization Capacitance)、擴散電阻
    (Diffusion Resistance) 及擴散電容 (Diffusion Capacitance)。最後藉由鋰離子
    電池之充放電實驗與模型之模擬結果進行比對,以驗證模型之精確度。實驗驗證
    乃透過不同充放電行程,在常溫下對不同老化程度之鋰離子電池進行模型驗證,
    實驗之量測值包括電壓與溫度,之後將模型結果與實驗量測值進行比對,最後模
    型結果精準度良好。


    The purpose of this paper is to establish an equivalent circuit for lithium­ion battery, ther­mal dynamics and aging model of lithium ion battery. Through ACIS(Alternative CurrentImpedance Spectroscopy) experiment, the parameters of the lithium ion battery model un­der different aging experiments of different state of charge (SOC) and different ambient temperatures were obtained by the least square method. And then establishing a lithium-ion battery parameter model by describing the aging trend of parameters with various aging mathematical models. The parameter where include series resistance、polar­ization resistance、depression factor、polarization capacitance、diffusion resistance and diffusion capacitance. Finally, the charge and discharge experi­ments of the lithium ion battery are compared with the simulation results of the model to verify the accuracy of the model. The experimental verification is to verify the lithium­-ion battery of different aging degree at normal temperature through different charging and discharging profile. The measured values include voltage and temperature and then com­pare the model results with the experimental measured values. The final model results are accurate.

    致謝................................................................................................................................ i 摘要................................................................................................................................ ii 英文摘要........................................................................................................................ iii 本目錄............................................................................................................................ v 圖目錄............................................................................................................................ ix 表目錄............................................................................................................................ x 第一章 緒論.................................................................................................................. 1 1.1 研究背景....................................................................................................... 1 1.2 文獻回顧....................................................................................................... 4 1.2.1 等效電路模型文獻回顧............................................................... 4 1.2.2 熱效應模型文獻回顧................................................................... 5 1.2.3 老化模型文獻回顧....................................................................... 5 1.3 研究目的與方法........................................................................................... 7 1.4 論文架構....................................................................................................... 7 第二章 實驗硬體設備與軟體介紹.............................................................................. 8 2.1 元件介紹....................................................................................................... 8 2.1.1 鋰離子電池介紹........................................................................... 8 2.1.2 鋰離子電池原理........................................................................... 8 2.2 硬體設備....................................................................................................... 11 2.2.1 交流阻抗分析儀........................................................................... 12 2.2.2 直流電子負載機........................................................................... 14 2.2.3 可程式直流電源供應器............................................................... 16 2.2.4 可程式恆溫試驗機....................................................................... 17 2.2.5 霍爾元件....................................................................................... 18 2.2.6 電阻式溫度感測器....................................................................... 19 2.2.7 數據擷取系統............................................................................... 20 第三章 鋰離子電池模型.............................................................................................. 21 3.1 交流阻抗分析............................................................................................... 21 iv 目 錄 3.2 鋰離子電池等效電路模型........................................................................... 25 3.2.1 ZARC 元件................................................................................... 26 3.2.2 Warburg 元件................................................................................ 28 3.2.3 鋰離子電池等效電路總結........................................................... 29 3.3 鋰離子電池之熱動態模型........................................................................... 31 3.4 鋰離子電池老化模型................................................................................... 32 第四章 模擬及實驗結果.............................................................................................. 35 4.1 鋰離子電池加速老化與交流阻抗實驗....................................................... 35 4.2 鋰離子電池等效電路參數老化模型擬合................................................... 41 4.2.1 不同數學模型擬合 C d 之結果比較............................................ 43 4.2.2 不同數學模型擬合 R i 之結果比較............................................ 46 4.2.3 不同數學模型擬合 R p 之結果比較............................................ 49 4.2.4 不同數學模型擬合 C p 之結果比較............................................ 52 4.2.5 不同數學模型擬合 R d 之結果比較............................................ 55 4.2.6 數學模型與參數總結................................................................... 58 4.3 鋰離子電池熱動態模型參數鑑別............................................................... 59 4.4 鋰離子電池模型動態驗證........................................................................... 62 4.4.1 鋰離子電池電流 2A 充電行程於絕熱情況之模型驗證............ 63 4.4.2 鋰離子電池 NYCC 駕駛行程於自然散熱 (室溫) 情況之模 型驗證........................................................................................... 78 第五章 結論與未來展望.............................................................................................. 94 5.1 結論............................................................................................................... 94 5.2 未來展望....................................................................................................... 94 附錄 (不同數學模型擬合各參數結果圖).................................................................... 95 參考文獻........................................................................................................................111

    [1] 謝錦隆張永瑞. 再生能源 hcpv.sofc 高功率地利調控系統研製報告技術. 核能
    研究所 , 2009.
    [2] TARUN HURIA. Rechargeable lithium battery energy storage systems for vehicular applications. 2012.
    [3] Stephan Buller. Impedance­based simulation models for energy storage devices in advanced automotive power systems.
    [4] Evgenij Barsoukov and J Ross Macdonald. Impedance spectroscopy: theory, exper­iment, and applications. John Wiley & Sons, 2018.
    [5] EugeneWillihnganz. Abridgeformeasuringstoragebatteryresistance. Transactions
    of The Electrochemical Society, 79(1):253–258, 1941.
    [6] Alexander Farmann, Wladislaw Waag, and Dirk Uwe Sauer. Adaptive approach for
    on­board impedance parameters and voltage estimation of lithium­ion batteries in
    electric vehicles. Journal of Power Sources, 299:176–188, 2015.
    [7] Madeleine Ecker, Jochen B Gerschler, Jan Vogel, Stefan Käbitz, Friedrich Hust,Philipp Dechent, and Dirk Uwe Sauer. Development of a lifetime prediction model for lithium­ion batteries based on extended accelerated aging test data. Journal of Power Sources, 215:248–257, 2012.
    [8] D Andre, M Meiler, K Steiner, Ch Wimmer, T Soczka­Guth, and DU Sauer. Char­
    acterization of high­power lithium­ion batteries by electrochemical impedance spec­
    troscopy. i. experimental investigation. Journal of Power Sources, 196(12):5334–
    5341, 2011.
    [9] DAndre, MMeiler,KSteiner,HWalz, TSoczka­Guth, andDUSauer. Characteriza­tionofhigh­powerlithium­ionbatteriesbyelectrochemicalimpedancespectroscopy.
    ii: Modelling. Journal of Power Sources, 196(12):5349–5356, 2011.
    [10] DBernardi, EPawlikowski,andJohnNewman. Ageneralenergybalanceforbattery
    systems. Journal of the electrochemical society, 132(1):5–12, 1985.
    [11] Jamie Gomez, Ruben Nelson, Egwu E Kalu, Mark H Weatherspoon, and Jim P
    Zheng. Equivalent circuit model parameters of a high­power li­ion battery: Thermal
    and state of charge effects. Journal of Power Sources, 196(10):4826–4831, 2011.
    [12] Karen E Thomas and John Newman. Heats of mixing and of entropy in porous
    insertion electrodes. Journal of power sources, 119:844–849, 2003.
    [13] Christophe Forgez, Dinh Vinh Do, Guy Friedrich, Mathieu Morcrette, and Charles Delacourt. Thermal modeling of a cylindrical lifepo4/graphite lithium­ion battery.Journal of Power Sources, 195(9):2961–2968, 2010.
    [14] Ralph E Williford, Vilayanur V Viswanathan, and Ji­Guang Zhang. Effects of en­tropy changes in anodes and cathodes on the thermal behavior of lithium ion batter­ies. Journal of Power Sources, 189(1):101–107, 2009.
    [15] Vilayanur V Viswanathan, Daiwon Choi, Donghai Wang, Wu Xu, Silas Towne,
    Ralph E Williford, Ji­Guang Zhang, Jun Liu, and Zhenguo Yang. Effect of entropy
    change of lithium intercalation in cathodes and anodes on li­-ion battery thermal-man­agement. Journal of Power Sources, 195(11):3720–3729, 2010.
    [16] OliverBohlen, JuliaKowal, andDirkUweSauer. Ageingbehaviourofelectrochem­
    ical double layer capacitors: Part i. experimental study and ageing model. Journal of Power Sources, 172(1):468–475, 2007.
    [17] Oliver Bohlen, Julia Kowal, and Dirk Uwe Sauer. Ageing behaviour of electro­
    chemical double layer capacitors: Part ii. lifetime simulation model for dynamic
    applications. Journal of Power Sources, 173(1):626–632, 2007.
    [18] Alvin J Salkind, Craig Fennie, Pritpal Singh, Terrill Atwater, and David E Reis­ner. Determination of state­of­charge and state­of­health of batteries by fuzzy logic methodology. Journal of Power sources, 80(1­2):293–300, 1999.
    [19] Michel Broussely, Ph Biensan, F Bonhomme, Ph Blanchard, S Herreyre, K Nechev, and RJ Staniewicz. Main aging mechanisms in li ion batteries. Journal of power sources, 146(1­2):90–96, 2005.
    [20] Julius Schmitt, Arpit Maheshwari, Michael Heck, Stephan Lux, and Matthias Vetter.Impedancechangeandcapacityfadeoflithiumnickelmanganesecobaltoxide­based
    batteries during calendar aging. Journal of Power Sources, 353:183–194, 2017.
    [21] Noboru Sato. Thermal behavior analysis of lithium­ion batteries for electric and hybrid vehicles. Journal of power sources, 99(1­2):70–77, 2001.
    [22] Yoshio Nishi. Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources, 100(1­2):101–106, 2001.
    [23] 鄭文欽. 含熱效應之超級電容等效電路模型 . PhD thesis, 2011.
    [24] 張鑒淸曹楚南. 電化學阻抗譜導論 , volume 24. 科學出版社, 2002.
    [25] Battery and energy technologies, http://www.mpoweruk.com/.
    [26] B. Scrosati W. A. van Schalkwijk. Advances in lithium­ion batteries.
    [27] Emanuel Peled. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of The Electrochemical Society, 126(12):2047–2051, 1979.
    [28] John Christensen and John Newman. A mathematical model for the lithium­ion neg­ative electrode solid electrolyte interphase. Journal of The Electrochemical Society, 151(11):A1977–A1988, 2004.
    [29] Kazuo Onda, Takamasa Ohshima, Masato Nakayama, Kenichi Fukuda, and Takuto
    Araki. Thermal behavior of small lithium­ion battery during rapid charge and dis­
    charge cycles. Journal of Power sources, 158(1):535–542, 2006.
    [30] Chao Hu, Gaurav Jain, Prabhakar Tamirisa, and Tom Gorka. Method for estimating capacity and predicting remaining useful life of lithium­ion battery. In 2014 Interna­tional Conference on Prognostics and Health Management, pages 1–8. IEEE, 2014.
    [31] 蕭文龍. 多變量分析最佳入門實用書 : SPSS+ LISREAL (SEM). 碁峰資訊, 2007.

    無法下載圖示 全文公開日期 2024/08/26 (校內網路)
    全文公開日期 2024/08/26 (校外網路)
    全文公開日期 2024/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE