簡易檢索 / 詳目顯示

研究生: 陳致宏
Chih-Hung Chen
論文名稱: 利用濕式蝕刻法製備可繞折之輕量化電極應用於高效率鋰離子電池之研究
Preparation of Foldable Lightweight Electrode Materials by Wet Etching Method for High Efficiency Lithium Ion Batteries
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 趙基揚
Chi-Yang Chao
顏維謀
Wei-Mo Yan
施劭儒
shao-ju shih
游進陽
Chin-Yang Yu
王丞浩
Chen-Hao Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 91
中文關鍵詞: 鋰離子電池濕式蝕刻LTO 負極LFP 正極可繞折之輕 量化電池
外文關鍵詞: Lithium ion battery, LTO anode, LFP cathode, Light-weight electrode, flexible LIB
相關次數: 點閱:264下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,軟性鋰離子系統不斷增長的需求。因此,研究具有高機械柔韌性和良好電子和鋰離子導電性的可靠電極變得至關重要。然而,傳統的幾微米厚度的銅集流體在 LIB 中佔很大比例,使得低能量密度的 LIB 的柔韌性大大降低。第一部分針對負極收集器 (銅箔),使用具量產性且簡易之濕式蝕刻工藝製造超薄銅層(<1 μm)。該過程為準備好的電極提供了必要的柔韌性。使用新型 LTO/Cu 作為負極的LIB 電池在 0.1C 的 40 次充放電循環期間表現出 123 mA h/g 的能量容量。此外,使用 LTO/Cu 的 LIB 的庫侖效率在 40 次循環後仍保持在 99%以上。這些結果表明了這種新型負極的用途及其在高密度和軟性商用鋰離子電池中的潛力。第二部分製造軟性無鋁箔LiFePO4 (LFP)正極。所獲得的電容量顯示出與具有鋁箔收集器的傳統電極相似但比傳統電極彎曲性能有更好的柔韌性。這項研究為開發用於低成本和軟性鋰離子電池的無金屬收集器開闢了一條新途徑。


    Recently, there has been a growing demand for flexible Li-ion systems. Therefore, it becomes crucial to investigate reliable electrodes with high mechanical flexibility, good electronic and Li-ion conductivity.
    However, the traditional copper current collector with a thickness of several micrometers occupies a large proportion in LIBs, which makes the flexibility of LIBs with low energy density greatly reduced. The first part is aimed for the negative collector (copper foil), using a mass-producible and simple wet etching process to fabricate an ultra-thin copper layer (<1 μm). This process provides the necessary flexibility for the prepared electrodes. The LIB battery using the novel LTO/Cu as anode exhibits an energy capacity of 123 mA h/g during 40 charge-discharge cycles at 0.1C-rate. Furthermore, the coulombic efficiency of LIB using LTO/Cu remained above 99% after 40 cycles.
    These results demonstrate the utility of this novel anode and its potential in high-density and flexible commercial lithium-ion batteries. The second part manufactures the flexible aluminum foil-free LiFePO4 (LFP) cathode.
    The obtained capacitance shows similar flexibility to conventional electrodes with aluminum foil collectors but better bending properties than conventional electrodes. This research opens up a new avenue for developing flexible LIB for low-cost and metal-free collectors.

    中文摘要 ................................................................................................... I ABSTRACT.............................................................................................. II 誌謝 ......................................................................................................... IV 目錄 .........................................................................................................VI 圖目錄 ..................................................................................................... IX 表目錄 ..................................................................................................... XI 第一章 緒論 ............................................................................................ 1 1-1 前言........................................................................................... 1 第二章 原理與文獻探討......................................................................... 3 2-1 鋰離子二次電池 ....................................................................... 3 2-1-1 發展................................................................................ 3 2-1-2 電池機制......................................................................... 6 2-2 鋰離子二次電池組成 ............................................................... 6 2-2-1 隔離膜............................................................................. 8 2-2-2 電解液............................................................................. 8 2-2-3 負極(陽極)材料/銅箔 ..................................................... 9 2-2-4 正極(陰極)材料/鋁箔 ................................................... 12 2-3 乾式/濕式蝕刻法 .................................................................... 15 第三章 研究動機 .................................................................................. 22 第四章 實驗儀器 .................................................................................. 23 4-1 實驗材料及藥品 ..................................................................... 23 4-2 實驗流程 ................................................................................. 25 4-2-1 負極材料實驗架構及分析儀器流程圖 ...................... 25 4-3 實驗儀器與設備 ..................................................................... 26 4-2-2 正極材料實驗架構及分析儀器流程圖 ....................... 27 4-2-3 鈕扣型電池組裝.......................................................... 28 4-4 儀器分析原理 ......................................................................... 29 4-4-1 X 光繞射分析儀(X-ray diffraction Spectrometer, XRD) ................................................................................................ 29 4-4-2 場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope , FE-SEM)............................................. 31 4-4-3 場發射雙束型聚焦離子束顯微鏡 (Dual-Beam Focus Ion Beam, DB-FIB)................................................................. 34 4-4-4 顯微拉曼光譜儀 (Micro Raman Spectrometer) .......... 36 4-4-5 感應耦合電漿發射光譜儀 (Inductively Couple Plasma Optical Emission Spectrometry, ICP-OES)............................. 37 4-4-6 電化學分析儀............................................................... 39 4-4-7 循環伏安法(Cyclic Voltammetry,CV)....................... 41 4-4-8 電化學阻抗頻譜(Electrochemistry Impedance Spectroscopy, EIS).................................................................. 42 第五章 實驗結果與討論....................................................................... 44 5-1 高選擇率之銅蝕刻液應用於負極材料................................... 44 5-1-1 負極電極微觀表面分析 .............................................. 44 5-1-2 負極電極晶相分析...................................................... 45 5-1-3 兩系統銅蝕刻液機制特性的比較 .............................. 48 5-1-4 電極電化學分析.......................................................... 50 5-1-5 彎曲應力測試.............................................................. 55 5-2 低溫及超高選擇率之鋁蝕刻液應用於正極材料.................. 57 5-2-1 正極電極微觀表面分析 .............................................. 57 5-2-2 正極電極晶相分析...................................................... 59 5-2-3 兩系統鋁蝕刻液機制特性的比較 .............................. 62 5-2-4 電極電化學分析.......................................................... 64 5-2-5 彎曲應力測試.............................................................. 69 第六章 結論 .......................................................................................... 72 6-1 高選擇率之銅蝕刻液應用於負極材料................................... 72 6-2 低溫及超高選擇率之鋁蝕刻液應用於正極材料................... 73 Reference ................................................................................................ 74

    1. Zhou, G., F. Li, and H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci., 2014. 7(4): p. 1307-1338.
    2. Whittingham, M.S., Lithium Batteries and Cathode Materials. Chemical Reviews, 2004. 104(10): p. 4271-4302.
    3. Zaghib, K., et al., Advanced Electrodes for High Power Li-ion Batteries. Materials (Basel), 2013. 6(3): p. 1028-1049.
    4. Yoshino, A., The Birth of the Lithium-Ion Battery. Angewandte Chemie International Edition, 2012. 51(24): p. 5798-5800.
    5. Yamaki, J.-i., et al., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. Journal of Power Sources, 1998. 74(2): p. 219-227.
    6. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
    7. Song, Y., et al., From separator to membrane: Separators can function more in lithium ion batteries. Electrochemistry Communications, 2021. 124.
    8. Lavi, O., et al., Electrolyte Solutions for Rechargeable Li-Ion Batteries Based on Fluorinated Solvents. ACS Applied Energy Materials, 2020. 3(8): p. 7485-7499.
    9. Kierzek, K. and J. Machnikowski, Factors influencing cycle-life of full Li-ion cell built from Si/C composite as anode and conventional cathodic material. Electrochimica Acta, 2016. 192: p. 475-481.
    10. Julien, C.M., et al. Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics, 2014. 2, 132-154 DOI: 10.3390/inorganics2010132.
    11. Cui, L.-F., et al., Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS Nano, 2010. 4(7): p. 3671-3678.
    12. Kim, S.W. and K.Y. Cho, Current Collectors for Flexible Lithium Ion Batteries: A Review of Materials. J. Electrochem. Sci. Technol, 2015. 6(1): p. 1-6.
    13. Liu, X.H., et al., Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes. Nano Letters, 2011. 11(6): p. 2251-2258.
    14. Liu, X.H., et al., Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett, 2011. 11(6): p. 2251-8.
    15. Chu, H.-C. and H.-Y. Tuan, High-performance lithium-ion batteries with 1.5 μm thin copper nanowire foil as a current collector. Journal of Power Sources, 2017. 346: p. 40-48.
    16. Kim, G., et al., 3D Amorphous Silicon on Nanopillar Copper Electrodes as Anodes for High-Rate Lithium-Ion Batteries. ACS Nano, 2014. 8(2): p. 1907-1912.
    17. Sandu, G., et al., Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries. Sci Rep, 2018. 8(1): p. 9794.
    18. Lee, G.-H., H.-W. Shim, and D.-W. Kim, Superior long-life and high-rate Ge nanoarrays anchored on Cu/C nanowire frameworks for Li-ion battery electrodes. Nano Energy, 2015. 13: p. 218-225.
    19. Lin, R., et al., Copper nanowires based current collector for light-weight and flexible composite silicon anode with high stability and specific capacity. RSC Advances, 2015. 5(106): p. 87090-87097.
    20. Lin, R., et al., Cu@Sn nanostructures based on light-weight current collectors for superior reversible lithium ion storage. RSC Advances, 2016. 6(24): p. 20042-20050.
    21. Lu, L.L., et al., Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. Nano Lett, 2016. 16(7): p. 4431-7.
    22. Park, Y.-k., et al., Robust Free-standing Electrodes for Flexible Lithium-ion Batteries Prepared by a Conventional Electrode Fabrication Process. Electrochimica Acta, 2017. 247: p. 371-380.
    23. Nitta, N., et al., Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
    24. Thackeray, M.M., et al., Electrochemical extraction of lithium from LiMn2O4. Materials Research Bulletin, 1984. 19: p. 179-187.
    25. Sugiawati, V.A., et al., Electrodeposition of Polymer Electrolyte into Carbon Nanotube Anodes for High Performance Flexible Li-Ion Microbatteries. ECS Meeting Abstracts, 2018. MA2018-01(3): p. 416.
    26. Sun, X., et al., Three-Dimensional Porous Carbon Nanotube Papers as Current Collector and Buffer for SnO2 Anodes. Nano, 2017. 12(11).
    27. Liu, Y., et al., Electrolyte solutions design for lithium-sulfur batteries. Joule, 2021. 5(9): p. 2323-2364.
    28. Kretschmer, K., et al., A free-standing LiFePO4–carbon paper hybrid cathode for flexible lithium-ion batteries. Green Chemistry, 2016. 18(9): p. 2691-2698.
    29. Zhang, H., et al., Nitrogen-doped carbon paper with 3D porous structure as a flexible free-standing anode for lithium-ion batteries. Sci Rep, 2017. 7(1): p. 7769.
    30. Sugiawati, V.A., et al., Light-Weight and Flexible Carbon Nanotubes (CNT) Tissues As Anode Materials for Flexible Li-Ion Microbatteries. ECS Meeting Abstracts, 2019. MA2019-01: p. 303-303.
    31. Liu, F., et al., Folded structured graphene paper for high performance electrode materials. Adv Mater, 2012. 24(8): p. 1089-94.
    32. Ranjbartoreh, A.R., et al., Advanced mechanical properties of graphene paper. Journal of Applied Physics, 2011. 109(1).
    33. Gwon, H., et al., Flexible energy storage devices based on graphene paper. Energy & Environmental Science, 2011. 4(4).
    34. Zhu, R., et al., Silicon in Hollow Carbon Nanospheres Assembled Microspheres Cross-linked with N-doped Carbon Fibers toward a Binder Free, High Performance, and Flexible Anode for Lithium-Ion Batteries. Advanced Functional Materials, 2021. 31(33): p. 2101487.
    35. Baker, D.A. and T.G. Rials, Recent advances in low-cost carbon fiber manufacture from lignin. Journal of Applied Polymer Science, 2013. 130(2): p. 713-728.
    36. Oehrlein, G.S. and J.F. Rembetski, Plasma-based dry etching techniques in the silicon integrated circuit technology. IBM Journal of Research and Development, 1992. 36(2): p. 140-157.
    37. Chien, Y.-H.C., C.-C. Hu, and C.-M. Yang, A Design for Selective Wet Etching of Si3N4/SiO2 in Phosphoric Acid Using a Single Wafer Processor. Journal of The Electrochemical Society, 2018. 165(4): p. H3187.
    38. Pearton, S.J. and D.P. Norton, Dry Etching of Electronic Oxides, Polymers, and Semiconductors. Plasma Processes and Polymers, 2005. 2(1): p. 16-37.
    39. Datta, M. and D. Harris, Electrochemical micromachining: An environmentally friendly, high speed processing technology. Electrochimica Acta, 1997. 42(20): p. 3007-3013.
    40. Çakır, O., Review of Etchants for Copper and its Alloys in Wet Etching Processes. Key Engineering Materials, 2008. 364-366: p. 460-465.
    41. Bryce, C. and D. Berk, Kinetics of the dissolution of copper in iron(III) chloride solutions. Industrial & Engineering Chemistry Research, 1995. 34(4): p. 1412-1418.
    42. Jeong, H.-C., et al., The effect of spray characteristics on the etching of invar alloy with FeCl3 solution. International Journal of Precision Engineering and Manufacturing, 2009. 10(4): p. 107-114.
    43. Georgiadou, M. and R. Alkire, Anisotropic Chemical Etching of Copper Foil: II . Experimental Studies on Shape Evolution. Journal of The Electrochemical Society, 1993. 140(5): p. 1348.
    44. Williams, K.R., K. Gupta, and M. Wasilik, Etch rates for micromachining processing-part II. Journal of Microelectromechanical Systems, 2003. 12(6): p. 761-778.
    45. Darchen, A., R. Drissi-Daoudi, and A. Irzho, Electrochemical investigations of copper etching by Cu(NH3)4Cl2 in ammoniacal solutions. Journal of Applied Electrochemistry, 1997. 27(4): p. 448-454.
    46. Ibrahim, A., et al., Study of the impact of chemical etching on Cu surface morphology, graphene growth and transfer on SiO2/Si substrate. Carbon, 2017. 123: p. 402-414.
    47. Okazaki, S., et al., Wet Etching of Amorphous TiO2 Thin Films Using H3PO4–H2O2 Aqueous Solution. Japanese Journal of Applied Physics, 2013. 52(9R): p. 098002.
    48. Matylitskaya, V., S. Partel, and S. Kasemann. Study of selective wet etching of titanium towards copper in hydrofluoric free etchant. in Proceedings 21 International Conference on Applied Physics of Condensed Matter and of the Scientific Conference Advanced Fast Reactors. 2015. Slovakia: Slovak University of Technology.
    49. Allen, D.M. and H.J.A. Almond, Characterisation of aqueous ferric chloride etchants used in industrial photochemical machining. Journal of Materials Processing Technology, 2004. 149(1-3): p. 238-245.
    50. Kadleckova, M., et al., Preparation of Textured Surfaces on Aluminum-Alloy Substrates. Materials (Basel), 2018. 12(1).
    51. Çakır, O., Chemical etching of aluminium. Journal of Materials Processing Technology, 2008. 199(1-3): p. 337-340.
    52. Ding, J., et al., Investigation of a Macromolecular Additive on the Decrease of the Aluminum Horizontal Etching Rate in the Wet Etching Process. Metals, 2022. 12(5).
    53. Çakır, O., Study of Etch Rate and Surface Roughness in Chemical Etching of Stainless Steel. Key Engineering Materials, 2007. 364-366: p. 837-842.
    54. Shams el Din, A.M. and M.Y. Fakhr, A thermometric study of the reaction between Fe and HNO3. Corrosion Science, 1974. 14(11): p. 635-644.
    55. Yonemura, M., et al., Template Synthesis of Phenol-based Heterodinucleating Macrocycles with Dissimilar N(amine)2O2 and N(imine)2O2 Metal-binding Sites. Chemistry Letters, 1996. 25(8): p. 601-602.
    56. Burns, D.W., MEMS Wet-Etch Processes and Procedures, in MEMS Materials and Processes Handbook. 2011. p. 457-665.
    57. Cumba, L.R., U.d.O. Bicalho, and D.R. do Carmo, Preparation and voltammetric studies of titanium (IV) Phosphate modified with silver hexacyanoferrate to a voltammetric determination of l-cysteine. International Journal of Electrochemical Science, 2012: p. 4465-4478.
    58. Sarasam, A.R., R.K. Krishnaswamy, and S.V. Madihally, Blending Chitosan with Polycaprolactone:  Effects on Physicochemical and Antibacterial Properties. Biomacromolecules, 2006. 7(4): p. 1131-1138.
    59. Wan, L., et al., Facile synthesis of iron oxide with wormlike morphology and their application in water treatment. Journal of Solid State Chemistry, 2008. 181(4): p. 735-740.
    60. Bersani, D., et al., Methodological evolutions of Raman spectroscopy in art and archaeology. Analytical Methods, 2016. 8(48): p. 8395-8409.
    61. Azuma, S., et al., Optical response due to many magnons inα−Fe2O3. Physical Review B, 2005. 71(1).
    62. Bersani, D., P.P. Lottici, and A. Montenero, Micro-Raman investigation of iron oxide films and powders produced by sol–gel syntheses. Journal of Raman Spectroscopy, 1999. 30(5): p. 355-360.
    63. McCarty, K.F. and D.R. Boehme, A Raman study of the systems Fe3−xCrxO4 and Fe2−xCrxO3. Journal of Solid State Chemistry, 1989. 79(1): p. 19-27.
    64. Wang, Y.-C., et al., Synergetic Effect of Aluminum and Mo/Al Etching in Phosphoric Acid-Based Etchant with Nitric Acid. Journal of The Electrochemical Society, 2011. 159(2): p. D103-D107.
    65. Samina, M., A. Karim, and A. Venkatachalam, Corrosion Study of Iron and Copper Metals and Brass Alloy in Different Medium. E-Journal of Chemistry, 2011. 8: p. 193987.
    66. Lu, B., et al., Preparation and mechanism of formation of hematite particles in the Fe-HNO3 system. Journal of Physics and Chemistry of Solids, 2011. 72(9): p. 1032-1036.
    67. Abderrahim, K., et al., Evaluation of the effect of Tetramethylammonium hydroxide on the corrosion inhibition of A9M steel in industrial water: an experimental, morphological and MD simulation insights. Chemical Data Collections, 2020. 28.
    68. Charlotte Friederike, K., et al., Another Base, Another Solvent? Desalinating Iron Finds with Tetramethylammonium Hydroxide Solution. E-Preservation Science, 2011. 8: p. 81-85.

    無法下載圖示 全文公開日期 2025/12/27 (校內網路)
    全文公開日期 2025/12/27 (校外網路)
    全文公開日期 2025/12/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE