簡易檢索 / 詳目顯示

研究生: 董士平
Shih-ping Tung
論文名稱: 含磷矽酸鹽玻璃於直接甲醇燃料電池之應用
Phosphor-silicate Glass for Direct Methanol Fuel Cells
指導教授: 黃炳照
Bing-joe Hwang
口試委員: 周澤川
T. C. Chou
萬其超
Chi-chao Wan
杜景順
Jing-shan Do
林智汶
Chi-wen Lin
吳乃立
Nae-lih Wu
陳貴賢
K. H. Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 155
中文關鍵詞: 含磷矽酸鹽玻璃溶膠-凝膠法直接甲醇燃料電池有機-無機混成薄膜膜電極組
外文關鍵詞: phosphor-silicate glass, sol-gel process, direct methanol fuel cells, hybrid membranes, membrane electrode assembly
相關次數: 點閱:263下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的,是針對文獻上以溶膠-凝膠法(accelerated sol-gel method)製備含磷矽酸鹽(phosphor-silicate)玻璃薄膜耗時的缺點,進行製程之改良,利用所研發出之加速式溶膠-凝膠法,再配合水與蒸氣管理系統(water/vapor management),合成含磷矽酸鹽玻璃薄膜,以應用於直接甲醇燃料電池(direct methanol fuel cells)電解質;其次探討所製備之含磷矽酸鹽玻璃薄膜中,磷含量對薄膜物理化學及電化學性質之影響;最後,則進行含磷矽酸鹽玻璃薄膜之改質過程,亦即將所合成出之含磷矽酸鹽玻璃薄膜材料與目前廣泛用於直接甲醇燃料電池電解質薄膜之Nafion材料進行混合,製成Nafion/含磷矽酸鹽玻璃混成薄膜(hybrid membrane),並進行膜電極組(membrane electrode assembly)及單電池(single fuel cell)之組裝,測試其應用在直接甲醇燃料電池之特性。
    由本研究結果發現,利用所研發出之加速式溶膠-凝膠法,配合水與蒸氣管理系統,可以有效地縮短含磷矽酸鹽玻璃薄膜之製程時間,從傳統製程之1~6個月至本製程之三天左右,且保有9.45 x 10-3 S/cm的高導離子性(proton conductivity)與2.1 x 10-9 cm2/s之低甲醇滲透性(methanol permeability);藉由同步傅利葉轉換紅外線光譜(in-situ FTIR)的技術分析含磷矽酸鹽玻璃薄膜形成過程中之水解與縮合反應(hydrolysis and condensation reactions)過程,證實其為一具有網狀結構(network structure)之高穩定性無機薄膜。其次,針對磷含量對薄膜物理化學及電化學性質之影響方面,高磷含量之含磷矽酸鹽玻璃薄膜可成功的經由所發展出之加速式溶膠-凝膠法配合水與蒸氣管理系統進行合成,且研究發現,隨著磷含量的增加,含磷矽酸鹽玻璃薄膜之導離子性、離子交換容積率(ionic exchange capacity)及選擇性(selectivity)亦隨之增加,其中,高含磷矽酸鹽玻璃薄膜之導離子性於低相對濕度(low relative humidity)環境下,甚至優於現今廣為使用之Nafion電解質薄膜;而經由壓汞實驗(mercury porosimetry)則進一步得知磷含量對薄膜中之孔洞分佈(pore size distribution)與孔隙度(porosity)之影響,隨著磷含量的增高,薄膜中之孔洞分佈也越趨複雜,小於3 nm的孔洞亦隨之增多,而孔隙度亦隨之增高。在核磁共振儀(NMR)結果中,可發現原來以氫鍵方式鍵結於Si-OH上之OH則因親水性較高之磷酸的加入,而改為鍵結於P-OH上;而在1H NMR變溫實驗裡,顯示-50 oC左右之溫度對於氫離子於薄膜中之環境與其運動性存在著一個重要之改變,於水合含磷矽酸鹽玻璃薄膜中,水合之形式以OH官能基居多,而以水分子之形式較少,且OH官能基於結構中之運動性較好,而水分子則較差。
    在含磷矽酸鹽玻璃薄膜之改質方面,混合含磷矽酸鹽玻璃粉末與Nafion溶液所合成之有機-無機混成薄膜(organic-inorganic hybrid membrane)則顯現出有機化合物之機械韌性與無機化合物之高熱穩定性之特點,使其更適合應用於燃料電池之電解質上;此種Nafion/含磷矽酸鹽玻璃混成薄膜之導離子性較原本之含磷矽酸鹽玻璃薄膜為高,而甲醇滲透性則較Nafion為低;此外由X-ray繞射光譜(XRD)的研究發現,隨著含磷矽酸鹽玻璃粉末含量之增加,混成薄膜之結晶度亦隨之改變。在膜電極組與單電池測試方面,運用此一Nafion/含磷矽酸鹽玻璃混成薄膜所製備之單一直接甲醇燃料電池在陽極進料為2 M甲醇溶液,陰極為自然空氣對流,全電池操作電壓為20 oC之狀況下,表現出0.66 V的高開環電位與13.42 mW的輸出功率,明白顯示此類型Nafion/含磷矽酸鹽玻璃混成薄膜具應用於直接甲醇燃料電池之潛力。


    In this study, three stages of research are preformed here. In the first part, an accelerated sol-gel process with water/vapor management was developed to synthesize phosphor-silicate glass membranes for shortening the gelation time and enhancing their proton conductivities. The gelation time needed is shortened from 1~6 months in the literature’s report [Materials Letters, 42, 2000, 225] to about 3 days successfully in the developed process. The gelation reactions in the sol-gel process for the synthesis of SiO2-P2O5 glass membranes were investigated by in-situ FTIR spectroscopy. Types of water involving free/hydrogen bonded/strong hydrogen bonded water and hydroxyl group in the synthesized SiO2-P2O5 glass membranes were determined by TGA and in-situ FTIR. A SiO2-P2O5 glass membrane with a methanol permeability of 2.1 x 10-9 cm2/s and high proton conductivity (9.45x10-3 S/cm) was obtained by the developed process.

    In the second part of this study, a series of inorganic proton conductive membranes based on hydrated phosphor-silicate glass [xP2O5-(100-x)SiO2, x=10, 20, 30, 40 and 50, molar ratio] synthesized by an accelerated sol-gel process with water/vapor management are investigated. The phosphor-silicate glass membranes with high P2O5 content can be synthesized successfully in a short time (~3 days) by the developed process. Due to the formation of the P2O5 and SiO2 network structure, the hydrated phosphor-silicate glass membranes show good thermal stability. Two or three kinds of pore sizes existing in the synthesized glass membranes were observed. Increasing the content of the P2O5 of the glass membrane leads to decrease its major pore size and increase its porosity. However, it was observed that the pore size of the glass membrane becomes larger while its P2O5 content is higher than 40%. The conductivity and the methanol permeability increase with the increasing the content of the P2O5, and interestingly, a maximum selectivity (the ratio of the conductivity to permeability) occurs at the 30P2O570SiO2 glass membrane. The glass membranes shows slightly lower conductivity but much higher selectivity compared with the Nafion 117 membrane. The effect of the P2O5 content on the properties of the glass membrane is also characterized and discussed.

    At the last part, the characteristics of the Nafion/hydrated phosphor-silicate hybrid membranes for direct methanol fuel cells (DMFCs) were investigated. The effect of the ratio of the hydrated phosphor-silicate to Nafion on the morphology, thermal and chemical stabilities, crystalline structure, proton conductivity, and methanol permeability of the hybrid membrane were studied. The thermal and chemical stability as well as methanol impermeability of the hybrid membrane are relatively better than those of the Nafion 117 membrane. The hybrid membranes show higher proton conductivity than the hydrated phosphor-silicate glass membranes but slightly lower than the Nafion 117 membrane. It was found that the crystalline structure of the hybrid membranes is changed with the content of the SiO2-P2O5 particles. The direct methanol fuel cell composed of the hybrid membrane shows a maximum power density of about 13.42 mW cm-2 at the condition of 20 oC air breathing and 2 M methanol feed solution. The single cell of the hybrid membrane also shows a higher open circuit voltage than that of the Nafion 117 membrane, indicating the methanol crossover of the hybrid membranes is less than compared to that of the Nafion.

    中文摘要 I 英文摘要 IV 誌謝 VI 目錄 VII 圖目錄 XI 表目錄 XVI 第一章 緒論 1.1 燃料電池之源起 1 1.2 直接甲醇燃料電池之構造與工作原理 5 1.3 直接甲醇燃料電池所面臨之瓶頸與發展方向 9 1.3.1 陽極材料及其反應機制 10 1.3.2 陰極材料及其反應機制 14 1.3.3 高分子電解質薄膜材料 17 1.3.3.1 高分子電解質薄膜材料之分類 18 1.3.3.1.1 Nafion 材料系列 21 1.3.3.1.2 Nafion 材料改質系列 25 1.3.3.1.3 其他有機高分子薄膜材料系列 26 1.3.3.1.4 無機高分子薄膜材料系列 29 1.3.3.1.5 有機-無機混成高分子薄膜材料系列 31 1.3.3.2 高分子電解質薄膜材料之離子傳導機制 33 1.3.3.3 溶膠-凝膠法(sol-gel method)合成高分子電解質薄膜 39 第二章 研究動機與目的 2.1 開發加速式溶膠-凝膠法合成含磷矽酸鹽玻璃薄膜 41 2.2 含磷矽酸鹽玻璃薄膜中磷含量效應之探討 42 2.3 Nafion/含磷矽酸鹽玻璃混成薄膜之合成 42 2.4 膜電極組及燃料電池之組裝 43 第三章 實驗藥品、設備、方法與原理 3.1 實驗藥品與設備 3.1.1 實驗藥品 44 3.1.2 實驗設備 45 3.2 實驗方法 3.2.1 以加速式溶膠-凝膠法合成含磷矽酸鹽玻璃薄膜 47 3.2.2 含磷矽酸鹽玻璃薄膜中磷含量效應之探討 49 3.2.3 Nafion/含磷矽酸鹽玻璃混成薄膜之合成 50 3.2.4 膜電極組與燃料電池之組裝 52 3.2.5 物理化學性質與電化學性質分析 53 3.3 實驗原理 3.3.1 傅利葉紅外線光譜(FTIR) 59 3.3.2 熱重分析(TG Analysis, TGA) 60 3.3.3 交流阻抗分析(AC Impedance Analysis) 61 3.3.4 電化學模擬系統 65 3.3.5 核磁共振儀 (Nuclear Magnetic Resonance, NMR) 70 第四章 實驗結果探討 4.1 以加速式溶膠-凝膠法合成含磷矽酸鹽玻璃薄膜 及其性質測試 4.1.1 同步傅利葉轉換紅外線光譜分析結果 75 4.1.2 水與蒸汽管理系統之探討 83 4.1.3 熱重分析結果探討 84 4.1.4 吸濕劑∼甲醯胺之功能研究 86 4.1.5 離子導電性與甲醇滲透性之結果探討 88 4.1.6 綜合討論 91 4.2 含磷矽酸鹽玻璃薄膜中磷含量效應之探討及其性質測試 4.2.1 薄膜之合成與穩定度測試分析 93 4.2.2 熱重分析與離子交換容積分析探討 95 4.2.3 離子導電性與傳導機制分析 99 4.2.4 孔道特性分析 104 4.2.5 甲醇滲透與選擇性結果探討 113 4.2.6 核磁共振儀分析 116 4.2.7 綜合討論 122 4.3 Nafion/含磷矽酸鹽玻璃混成薄膜之合成及其性質測試 4.3.1 混成薄膜之合成與微結構分析 124 4.3.2 X-ray繞射結果與結晶度(crystallinity)分析 126 4.3.3 熱與化學穩定性探討以及離子交換容積分析 131 4.3.4 離子導電性之結果分析 133 4.3.5 甲醇滲透率與選擇性結果探討 137 4.3.6 綜合討論 139 4.4 膜電極組及全燃料電池之組裝與性質測試 140 第五章 總論與建議 143 第六章 參考文獻 146 作者簡介 156 英文簡歷 157

    1. Grove W.R., Philos. Mag. Ser. 3, 14, 127 (1839)
    2. 鄭耀宗,徐耀昇,燃料電池技術進展的現況,燃料電池論文集,15-27 (1989)
    3. K. Ledjeff-Hey and A. Heinzel, Critical issues and future prospects for solid polymer fuel cells , J. of Power Sourses, 61, 125(1996).L
    4. G. Alande, M. C. Denis, P. Gouerec, D. Guay, J. P. Dodelet, and R. Schulz, Bifunctional Catalysts for Alkaline Fuel Cells J. New Mater. Electrochem. Syst., In Press.
    5. D. Rastler, Opportunities and challenges for fuel cells in the evolving energe enterprise, Fuel Cells Bulletin, 19, 7 (1999).
    6. J. M. Ogden, M. M. Steinbugler, and T. G. Kreutz, A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implication for vehicle design and infrastructure development, J. of Power Sources, 79, 143 (1999).
    7. J. M. Ogden, T. G. Kreutz and M. M. Steinbugler, Fuels for fuel cell vehicles, Fuel Cells Bulletin , 16, 5 (1999).
    8. A. Heinzel, Membrane fuel cells - concepts and system design Electrochimica Acta, 43, 3817 (1998).
    9. S. Surampudi, S. R. Narayanan, and E. Vamos, Advances in direct oxidation methanol fuel cells, J. Power Source, 47, 377 (1994)
    10. M. P. Hogarth, and G. A. Hards, Study of the powder/membrane interface by using the powder microelectrode technique I. The Pt-black/Nafion® interfaces Platinum Metal Rev., 40, 150 (1996).
    11. C. Linda, F. K. Andreas, and S. Ulrich, Fuel cells: Principles, Types, Fuels, and Applications, chemphyschem, 1, 162 (2000).
    12. K. Ledjeff-Hey and A. Heinzel, Critical issues and future prospects for solid polymer fuel cells, J. Power Sources, 61, 125(1996).
    13. M. Watanabe, Y. Furuuchi, and Motoo S., Electrocatalysis by Ad-atoms Part XIII. Preparation of Ad-electrodes with Tin Ad-atoms for Methanol, Formaldehyde and Formic Acid Fuel Cells, J. Electrochem.Chem., 191, 367(1985).
    14. R. J. Behm , Z. Jusys , and J. Kaiser , Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation-A DEMS study, Electrochimica Acta , 47 3693-3706 (2002).
    15. H. A. Gastieger, N. M. Marvokic, and P. N. Ross, Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface, J. Phys. Chem., 99, 8945(1995).
    16. J. McBreen and S. Mukerjee, An In Situ X-Ray Absorption Spectroscopy Investigation of the Effect of Sn Additions to Carbon-Supported Pt Electrocatalysts, Journal of The Electrochemical Society, 146 (2) 600-606 (1999) .
    17. B. N. Grgur, G. Zhuang, and N. M. Marvokic, Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy around surface, J. Phys. Chem. B , 101, 3910(1997).
    18. K. M. Myoung, C. Jihoon, C. Kyuwoong, and K. Hasuck, Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications, Electrochimica Acta , 45, 4211(2000).
    19. N. A. Oliveira, and M. J. Giz, The Electro-oxidation of Ethanol on Pt-Ru and Pt-Mo Particles Supported on High-Surface-Area Carbon, J. Electrochem. Soc., 149, A272(2002).
    20. R. Venkataraman , H. R. Kunz and J. M. Fentonb , Development of New CO Tolerant Ternary Anode Catalysts for Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, 150 (3) A278-A284 (2003) .
    21. B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, and E. S. Smotkin, Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation1, J. Phys. Chem. B, 102, 9997(1998).
    22. A. S. Arico, Z. Poltarzewski, H. Kim, Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells, J. Power Sources, 55, 159 (1995).
    23. 黃炳照,微甲醇燃料電池奈米觸媒之物理與化學現象,台灣奈米科技,第六章,302 (2004)
    24. J. Shim, D. Y. Yoo, and J. S. Lee, Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell, Electrochim. Acta, 45, 1943 (2000)
    25. S. P. S. Yen, S.R. Naranan, G. Halpert, E. Graham, A Yavrouian, Polymer material for electrolytic membranes fuel cell, U.S. Patent 5, 795, 496 (1998)
    26. 許義政,磺酸化聚二醚奈米複合質子交換膜之研究,長庚大學化工與材料工程系
    27. T. Schultz, S. Zhou, and K. Sundmacher, Review: Current status of and recent developments in the direct methanol fuel cell, Chem. Eng. Technol. 24, 12 (2001).
    28. M. W. Verdrugge, Methanol Diffusion in Perfluorinated Ion-Exchange Membranes, J. Electrochem. Soc. 136(1989) 417.
    29. P. S. Kauranen, E. Skou, Methanol permeability in perfluorsulfonate proton exchange membranes at elevated temperatures, J. Appl. Electrochem. 26(1996) 909.
    30. S. R. Narayanan, A. Kindler, B. Jeffries-Nakamura, W. Chum, H. Frank, M. Smart, T. L.Valdez, S. Surampudi, G. Halpert, Annu.Battery Conf. Appl. Adv. 11(1996) 113.
    31. X. Ren, M. Wilson, and S. Gottesfeld, High performance direct methanol polymer electrolyte fuel cell, J. Electrochem. Soc. 143(1996) L12
    32. J. Cruickshank, and K. Scott, The degree and effect of methanol crossover in the direct methanol fuel cell, J. Power Sources 70(1998) 40
    33. D. H. Jung, C. H. Lee, C. S. Kim, and D. R. Shin, Performance of a direct methanol polymer electrolyte fuel cell, J. Power Sources 71(1998) 169.
    34. P. L. Antonucci, A.S. Arico, P. Creti, E. Ramunni, V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion- silica electrolyte for high temperature operation, Solid State Ionics, 125, 431-437 (1999)
    35. R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt, C. Rogers, Selective Electrodeposition of Catalyst within Membrane-Electrode Structures J. Electrochem. Soc. 141, 46 (1994).
    36. M. Doyle, S.K. Choi, G. Proulx, High-Temperature Proton Conducting Membranes Based on Perfluorinated Ionomer Membrane-Ionic Liquid Composites J. Electrochem. Soc. 147, 34 (2000).
    37. C. Pu, W. Huang, K. L. Ley, and E. S. Smotkin, A methanol impermeable proton conducting composite electrolyte system, J. Electrochem. Soc. 142(1995) L119.
    38. A. Kuver, K. P. Kaamloth, Comparative study of methanol crossover across electropolymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell, Electrochem. Acta 43(1998) 2527.
    39. B. S. Pivovar, Y. Wang, and E. L. Cussler, Pervaporation membranes in direct methanol fuel cells, J. Membrane Science 154(1999) 155.
    40. T. A. Zawodzinski, C. Derouin, S. Gottesfeld, Water uptake by and transport through Nafion 117 membranes, J. Electrochem. Soc. 140(1995) 1041
    41. T. A. Zawodzinski, J. davey, J, Valerio, S. Gottesfeld, The water content dependence of electro-osmotic drag in proton-conducting polymer electrolyte, Electrochem. Acta 40(1995) 297.
    42. J. S. Wainright, J.-T. Wang, D. Weng, R. F. Savinell, and M. Litt , Acid-doped polybenzimidazoles: A New polymer electrolyte, J. Electrochem. Soc. 142(1995) L121
    43. J.-T. Wang, S. Wasmus, and R. F. Savinell, Real-time spectrometric study of the methanol crossover in a direct methanol fuel cell, J. Electrochem. Soc. 143(1996) 1233
    44. J. S. Wainright, J. Wang , R. F. Savinell, Protonic conduction in alkaline earth metaphosphate glasses containing water Proc. Intersoc. Energy Convers. Eng Conf. 31 (1996) 1107
    45. J.-T. Wang, S. Wasmus, and R. F. Savinell, M. Litt, A direct methanol fuel cell using acid-dopes polybenzimidazole as polymer electrolytes, J. Appl. Electrochem. 26(1996) 751
    46. S. Wasmus, A. Kuver, Methanol oxidation and direct methanol fuel cells: a selective review, J. Electroanal. Chem., 461(1999) 14
    47. A. Heinzel, V. M. Barragan, A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells, J. Power Sources 84(1999) 70.
    48. X. Weilin, L. Changpeng, X. Xinzhong, S. Yi, L. Yanzhuo, X. Wei, L. Tianhong, New proton exchange membranes based on poly(vinyl alcohol) for DMFCs, Solid State Ionics, 171, 121-127 (2004).
    49. J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, Y. M. Lee, Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes, J. Membrane Sci. 238, 143-151 (2004).
    50. Z. G. Shao, X. Wang, I. M. Hsing, Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell, Journal of Membrane Science, 210, 147-153 (2002)
    51. M. Hogarth, X. Glipa, High temperature membranes for sold polymer fuel cells, Johnson Matthey Technology Centre.
    52. Y. Abe, H. Shimakawa, and L. L. Hench, Protonic conduction in alkaline earth metaphosphate glasses containing water. J. Non-Cryst. Solids 51 (1982) 357.
    53. Y. Abe, H. Hosono, Y. Ohta, and L. L. Hench, Protonic conduction in oxide glasses: simple relations between electrical conductivity, activation energy, and O-H bonding state. Phys. Rev. B. 38 (1988) 10166.
    54. Y. Abe, H. Hosono, O. Okita, and L. L. Hench, Protonic conduction phosphate glasses. J. Electrochem. Soc. 141 (1994) L64.
    55. G. Li, M. Nogami, and Y. Abe, Influence of heat treatment and humidity on protonic conduction in sol-gel derived amorphous phosphate films. Solid State Ionics 83 (1996) 209.
    56. Y. Abe, H. Shimakawa and L. -L. Hench. Protonic conduction in alkaline earth metaphosphate glasses containing water. J. Non-Cryst. Solids. 51 (1982) 357.
    57. Y. Abe, H. Hosono, Y. Ohta and L. -L. Hench. Protonic conduction in oxide glasses: simple relations between electrical conductivity, activation energy, and O-H bonding state. Phys. Rev. B. 38 (1988) 10166.
    58. Y. Abe, H. Hosono, W. -H. Lee and T. Kasuga. Electrical conduction due to protons and alkai-metal ions in oxide glasses. Phys. Rev. B. 48 (1993) 15621.
    59. M. Kotama, H. Hosono, Y. Abe and L. -L. Hench. Evidence for protonic conduction in barium phosphate glasses. J. Electrochem. Soc.. 138 (1991) 2928.
    60. M. Nagami and Y. Abe. Evidence of water-cooperative proton conduction in silica glasses. Phys. Rev. B. 55 (1997) 12108.
    61. C. Wang, M. Nogami and Y. Abe. Protonic conduction in P2O5-SiO2 glasses prepared by sol-gel method. J. Sol-Gel Sci. Technol.. 14 (1999) 273.
    62. C. Wang and M. Nogami. Effect of formamide additive on protonic conduction of P2O5-SiO2 glasses prepared by sol-gel method. Materials Letters. 42 (2000) 225.
    63. D.H. Jung, S.Y. Cho , D.H. Peck , D.R. Shin, J.S. Kim, Performance evaluation of a Nafion/silicon oxide hybrid memberance for direct methanol fuel cell, Journal of Power Sources, 106, 173 (2002)
    64. F. Damay, L.C. Klein, Transport properties of Nafion composite membranes for proton-exchange membranes fuel cells, Solid State Ionics, 261, 162– 163 (2003)
    65. K. Furukawa, Kaga F., Okajima K., and Sudoh M., Generation Performance of Gas-Feed Direct Methanol Fuel Cell, International Journal of Green Energy, 1(1), 123-135 (2004).
    66. U. Tadashi, O. Kenji, M. Hiroshi, M. Takashi, Structure and permeation characterisics of an aqueous ethanol solution of organic-inorgaic hybrid membranes composed of poly(vinyl alcohol) and tetraethoxysiliane, Macromolecules, 35, 9156 (2002)
    67. S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, K. Richau, Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells, Journal of Membrane Science, 203, 215 (2002).
    68. M. Eikerling, A. A. Kornyshev, A. M. Kuznetsov, J. Ulstrup, and S. Walbran, Mechanisms of proton conductance in polymer electrolyte membranes, J. Phys. Chem. B 105 (2001) 3646.
    69. E. Spohr, P. Commer, and A. A. Kornyshev, Enhancing proton mobility in polymer electrolyte membrane: lessons from molecular dynamics simulations, J. Phys. Chem. B 106 (2002) 10560.
    70. A. A. Kornyshev, A. M. Kuznetsov, E. Spohr and J. Ulstrup, Kinetics of proton transport in water, J. Phys. Chem. B 107 (2003) 3351.
    71. 黃立寧,PTFE/Nafion-TEOS複合膜的製備及性能研究,元智大學化學工程系。
    72. J. Wen, and E. M. James, Sol-Gel Preparation of Composites of Poly(dimethylsiloxane) with SiO2/TiO2, and Their Mechanical Properties, Polymer Jounral, 27(5), 492 (1995).
    73. B. -S. Pivovar, Y. Wang and E. -L. Cussler. Pervaporation membranes in direct methanol fuel cells. J. Membr. Sci.. 154 (1999) 155
    74. G. Gebel, P. Aldebert, M. Pineri, Structure and related properties of solution-cast perfluorosulfonated ionomer films, Macromolecules, 20 (1987) 1425-1428.
    75. P. L. Antonucci, A. S. Arico, P. Creti, E. Ramunni, V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation, Solid State Ionics, 125 (1999) 431-437.
    76. A. S. Arico, P. Creti, P. L. Antonucci, V. Antonucci, Comparison of Ethanol and Methanol Oxidation in a Liquid-Feed Solid Polymer Electrolyte Fuel Cell at High Temperature, Electrochemical and Solid-State Letters, 1 (1998) 66-68.
    77. M. Nagai, K. Kobayashi, Y. Nakajima, Inorganic–orgnic composite protonic conductors comprising silicophosphate glass and ion-exchange resin, Solid State Ionics, 136-137 (2000) 249-254.
    78. P. Staiti, A. S. Arico, V. Baglio, F. Lufrano, E. Passalacqua, V. Antonucci, Hybrid Nafion–silica membranes doped with heteropolyacids for application in direct methanol fuel cells, Solid State Ionics, 145 (2001)101-107.
    79. Z. G. Shao, P. Joghee, I-Ming Hsing, Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells, J. Membr. Sci., 229 (2004) 43-51.

    QR CODE