簡易檢索 / 詳目顯示

研究生: 蔡春恩
Chun-En Tsai
論文名稱: 二次交聯改質聚乙烯醇為直接甲醇燃料電池質子傳導膜之研究
Investigation of Poly(Vinyl Alcohol)-based Proton Conducting Membranes Modified by a Two-step Crosslinking Strategy for DMFCs
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 林智汶
Chi-Wen Ljn
陳志堅
Jyh-Chien Chen
高憲明
Hsien-Ming Kao
劉豫川
Yu-Chung Liu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 182
中文關鍵詞: 直接甲醇燃料電池(DMFC)聚乙烯醇質子傳導磺酸化二次交聯半-互穿網狀
外文關鍵詞: DMFC, Poly(vinyl alcohol), Proton conducting, Sulfonation, Two-step crosslinking process, semi-interpenetrating network
相關次數: 點閱:242下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在藉二次交聯步驟改質聚乙烯醇作為低溫操作用的直接甲醇燃料電池(Direct methanol fuel cell, DMFC)之質子傳導電解質薄膜,本研究採用成膜性高、具良好化學穩定性且低價格的聚乙烯醇( Polyvinyl alcohol, PVA)為膜材主體,以二次交聯製程製備改質PVA電解質薄膜,藉以取代價格昂貴又無法有效阻擋甲醇穿透的Nafion膜材。本研究之改質聚乙烯醇薄膜主要分成兩個部份來探討。(一)基本型網狀構造薄膜:係為以丁二酸磺酸(sulfosuccinic acid ,SSA)同時作為磺酸化劑與第一交聯劑,以便在引進磺酸根(SO3H)來提高氫離子傳導性的同時,利用丁二酸磺酸的羧酸基-COOH與聚乙烯醇上的羥基-OH進行酯化交聯反應,此為第一次交聯;並於成膜後,再利用戊二醛(Glutaraldehyde, GA) 作為二次交聯劑,利用GA上的醛基-CHO與PVA上剩餘之羥基-OH進行醇醛縮合之二次交聯反應。(二)半-互穿網狀構造之薄膜:係為在以丁二酸磺酸(SSA)與聚乙烯醇(PVA)進行第一次交聯的同時,於該PVA混合溶液中,摻混以高分子量之聚苯乙烯磺酸(Poly(styrene sulfonic acid),PSSA),於成膜時形成半-互穿網狀構造之薄膜,其後再利用戊二醛進行二次交聯反應。
    於第一組研究中發現,此二次交聯製程改質聚乙烯醇之質子傳導膜,較以往文獻中只使用一次交聯之改質方式更能提昇薄膜之機械強度及抗水性,即使在高含量的磺酸化劑存在下,例如SO3H/PVA-OH 之莫耳比高於0.45,薄膜亦不會被水溶解,顯示薄膜具有良好之水穩定性。研究顯示此二次交聯改質之聚乙烯醇薄膜,具有良好之質子傳導性,於室溫下測定可達5.3 x 10-2 S cm-1,及良好之甲醇滲透抑制性,同一薄膜之甲醇滲透率為3.53 x 10-7 cm2 S-1,顯示改質聚乙烯醇薄膜之質子傳導性及甲醇滲透抑制性均優於Nafion。惟,在第一組研究中亦發現薄膜之質子傳導率及甲醇滲透率均隨SSA的含量增加而增加,顯示過多的SSA會減少可與GA進行第二次交聯反應之PVA上的OH含量,而使薄膜之外層疏水性保護層變得薄弱,因而降低甲醇滲透抑制性。
    在第二組研究中,同樣使用二次交聯程序進行改質PVA,惟,固定適當比例之SSA第一交聯劑含量,其使SSA-SO3H/PVA-OH 之莫耳比=0.22,在第一次交聯的同時摻混以不同含量之高分子量聚苯乙烯磺酸(PSSA)作為磺酸化劑,於成膜時形成半-互穿網狀之構造,此方式不會隨SSA之含量而影響PVA與GA之第二次交聯反應,同時研究顯示,摻混以PSSA之長鏈高分子,當其量夠多時,例如PSSA/poly(vinyl alcohol) (g g−1) 大於0.72時,在此雙交聯的製程下,可因長鏈分子所產生之鏈糾纏效應,而提昇薄膜結構之緻密性,因而同時提昇質子傳導率及甲醇滲透抑制性,獲得較佳選擇率之薄膜,此膜材顯示良好之質子傳導性,於室溫下測定可達5.88 x 10-2 S cm-1,及良好之甲醇滲透抑制性,同一薄膜之甲醇滲透率為1.68 x 10-7 cm2 S-1,亦顯示該等改質聚乙烯醇薄膜之質子傳導性及甲醇滲透抑制性均優於Nafion。


    The aim of this study was to investigation of poly(vinyl alcohol)-based proton conducting membranes modified by a two-step crosslinking strategy for low temperature DMFCs. Because of its good chemical stability, film-fabrication ability and low cost, PVA was chosen to be the matrix of developed membranes for substitution the Nafion membrane showing high cost and poor barrier of methanol crossover. There were two systems developed in this study. One is synthesizes poly(vinyl alcohol) (PVA)-based polymer electrolyte membranes by a modified two-step crosslinking process involving esterization and acetal ring formation reactions. The other is Poly(styrene sulfonic acid)/poly(vinyl alcohol) proton-conducting membranes with semi-interpenetrating networks (semi-IPNs) were prepared using a previously modified two-step crosslinking strategy.
    The first work of this study uses sulfosuccinic acid (SSA) as the first crosslinking agent to form an inter-crosslinked structure and a promoting sulfonating agent. Glutaraldehyde (GA) as the second crosslinking agent, reacts with the spare OH group of PVA and forms, not only a dense structure at the outer membrane surface, but also a hydrophobic protective layer. Compare with membranes prepared by a traditional one-step crosslinking process, membranes prepared by the two-step crosslinking process exhibit excellent dissolution resistance in water. The membranes become water-insoluble even at a molar ratio of SO3H/PVA-OH as high as 0.45. Moreover, the synthesized membranes also exhibit high proton conductivities and high methanol permeability resistance. The current study measures highest proton conductivity of 5.3 x 10-2 S cm-1 at room temperature from one of the synthesized membranes, higher than that of the Nafion® membrane. Methanol permeability of the synthesized membranes measures about 3.53 x 10-7 cm2 S-1, about one order of magnitude lower than that of the Nafion® membrane.
    The other work of this study is investigation of poly(styrene sulfonic acid)/poly(vinyl alcohol) proton-conducting membranes with semi-interpenetrating networks (semi-IPNs) were prepared using a modified two-step crosslinking strategy. We previously employed sulfosuccinic acid (SSA) and glutaraldehyde (GA) as crosslinking agents to form a dense hydrophobic layer at the outer membrane surface. Although the proton conductivity of the resulting membrane increased with the content of SSA, the methanol permeability also increased. In this study it was found that the introduction of a sufonating agent, with a high molecular weight, i.e. poly(styrene sulfonic acid) (PSSA), at a PSSA/poly(vinyl alcohol) (g g−1) ratio greater than 0.72, increased the density of the tangled IPN structures that effectively impede the membrane's permeability to MeOH, while enhancing its proton conductivity. The synthesized semi-IPN membranes exhibited high proton conductivities (up to 5.88 × 10−2 S cm−1 at room temperature, i.e. greater than those of Nafion membranes) and high resistances to MeOH permeation (ca. 1.68 × 10−7 cm2 S−1, that is approximately one order of magnitude lower than that of Nafion membranes).

    目錄 摘要….................................................................................................I Abstract…........................................................................................... IⅤ 誌謝........................................................................................ⅤII 目錄………………………………………...…………..…………IX 圖目錄…………………………………….………………………… XⅤ 表目錄………………………………………………...……………XXII 符號表.............................................................................................. XXIⅤ 第一章 緒論……………………………………………………………..1 1.1前言………………………………………………………1 1.2燃料電池的發展簡介……………………………………………2 1.3 燃料電池種類………………………………………………….3 1.3.1鹼液型燃料電池 (Alkaline Fuel Cell, AFC) ……...…6 1.3.2磷酸型燃料電池 (Phosphoric Acid Fuel Cells, PAFC) ..…8 1.3.3熔融碳酸鹽型燃料電池 (Molten Carbonate Fuel Cells, MCFC)…………………………………….………….……..9 1.3.4固態氧化物型燃料電池 (Solid Electrolyte Fuel Cells, SOFC)………………………………..…10 1.3.5質子交換薄膜型燃料電池 (Proton Exchange Membrane Fuel Cells , PEMFC) ………………………………………11 1.3.6直接甲醇燃料電池 (Direct Methanol Fuel Cells, DMFC) ………………13 1.4直接甲醇燃料電池之電化學原理………………….…………13 1.5直接甲醇燃料電池所面臨之瓶頸與發展方向………….……16 1.5.1 DMFC之陽極材料及其反應機制……………..…….……17 1.5.2 DMFC之陰極材料及其反應機制……………...…………21 1.5.3 DMFC之電解質薄膜材料………………………...………23 1.6 研究動機與目的………………….……………………………25 1.7 研究架構………………………………….……………………26 第二章 文獻回顧………………………………………………………29 2.1質子交換膜的工作原理………………………………………29 2.2高分子電解質薄膜材料的分類及發展現況………………..30 2.2.1 Nafion 薄膜材料系列………….………………………32 2.2.2 Nafion改質薄膜材料系列…………………………………36 2.2.3其它有機高分子薄膜材料系列…………………………38 2.2.4無機高分子薄膜材料系類…………………………………47 2.2.5有機-無機混成高分子薄膜材料系列…………………48 2.3高分子電解質薄膜之氫離子傳導機制………..………..50 第三章 實驗藥品、設備、步驟與原理…………………………………56 3.1實驗藥品與設備………………………………………………56 3.1.1實驗藥品……………………………………………………56 3.1.2實驗設備與器材……………………………………………57 3.2改質聚乙烯醇薄膜的製備……………………………………58 3.2.1 PVA-SSA-GA系列網狀構造薄膜製備………………58 3.2.2 PVA-PSSA-SSA-GA系列半-互穿網狀構造薄膜製備…60 3.3聚乙烯醇的磺酸化、交聯反應與薄膜製備原理……………62 3.3.1聚乙烯醇之簡介……………………………………………61 3.3.2磺酸化的原理………………………………………………63 3.3.3聚乙烯醇磺酸化的原理………………………………63 3.3.4聚乙烯醇與戊二醛之縮合交聯原理……………………64 3.3.5聚乙烯醇的磺酸化、二次交聯改質薄膜的原理……65 3.3.5.1 PVA-SSA-GA系列網狀構造薄膜…...………..…...…65 3.3.5.2 PVA-PSSA-SSA-GA系列之半-互穿網狀構造薄膜66 3.4薄膜的成型原理………………………………………………...69 3.4.1相轉換法(phase transfer)…………………………………69 3.5實驗方法與原理………………………………………………70 3.5.1薄膜之結構鑑定…………………………………………70 3.5.1.1傅立葉轉換紅外光譜儀(FTIR)鑑定分析……….……70 3.5.1.2 X光射線繞射(X-ray diffraction)分析………….……71 3.5.2薄膜之熱性質分析…………………………………………72 3.5.2.1 DSC示差掃瞄熱分析…………………..……………72 3.5.2.2 TGA熱重分析……………………………………73 3.5.2.3熱程序升溫脫附反應(TPD)分析…………......………74 3.5.3薄膜之電化學性質分析………..…………..………………76 3.5.3.1 AC-Impedance交流阻抗電化學特性分析…...………76 3.5.4薄膜之物理性質分析………………………………………84 3.5.4.1薄膜含水率測試………………………………………84 3.5.4.2離子交換(Ion exchange capacity, IEC)容量測試……85 3.5.4.3甲醇滲透率量測……………………………………86 第四章 實驗結果……………………………………………………88 4.1改質PVA薄膜結構的鑑定……………………………………88 4.1.1 Pure PVA薄膜的官能基鑑定(FTIR/ATR分析)…………88 4.1.2 PVA-SSA-GA改質薄膜的官能基鑑定(FTIR/ATR分析) ………………………………………………………90 4.1.3 PVA-PSSA-SSA-GA改質薄膜的官能基鑑定(FTIR/ATR分析)...............102 4.1.4 X光射線繞射(X-ray diffraction)分析…………………108 4.2改質PVA薄膜之熱性質分析…………...…………………….112 4.2.1改質PVA薄膜之DSC示差掃瞄熱分析………………….112 4.2.2改質PVA薄膜之TGA熱重分析………………...……….115 4.2.3改質PVA薄膜之熱程控脫附反應 (TPD)與質譜儀(MS)分析.........................119 4.3改質PVA薄膜之電化學性質分析………………....…………132 4.3.1 AC-Impedance 交流阻抗分析……..…………...………132 4.4改質PVA薄膜之物理性質分析……………………..………134 4.4.1改質PVA薄膜之離子交換容量(IEC)分析……………134 4.4.2改質PVA薄膜之含水率分析……………………………135 4.4.3改質PVA薄膜之甲醇滲透率分析…………………...…142 4.4.4改質PVA薄膜之選擇率評估………………………...…144 第五章 綜合討論………………………………………………….150 5.1影響薄膜性質之主要因素……………………….………..150 5.1.1薄膜之磺酸化…………………………………………….150 5.1.2薄膜之交聯反應…………………………………………151 5.2影響薄膜導電度的主要因素………………………………154 5.2.1分子結構…………………………………..……………154 5.2.2電荷載子的數目…………………………………………155 5.2.3電荷載子的遷移速率……………………………………156 5.2.4溫度…………………………………..……..……………158 5.3影響甲醇滲透率的主要因素…..…………….……………160 第六章 結論………………………………………162 第七章 參考文獻……………………………………………………..165 作者簡介…………………………………………………178 圖目錄 Fig. 1.1 Schematic principle of a direct methanol fuel cell……………15 Fig. 1.2 The polarization curves for a direct methanol fuel cell……...…16 Fig. 1.3 The possible dehydration reactions for methanol on the anode catalysts……………………………….…...19 Fig. 1.4 The dehydration of water on anode catalysts…………...……...20 Fig. 1.5 The re-dehydration and desorption of carbon dioxide on anode catalysts……………………….….20 Fig.1.6 Oxygen reduction mechanisms on the cathode catalysts………………………..22 Fig. 1.7 The experimental flow chart………………………….………..28 Fig. 2.1 Transport mechanism in membrane………………..…………..29 Fig. 2.2 Chemical structure of the perfluorosulfonic acid electrolyte……………………….…………...33 Fig. 2.3 Dimensions of water-filled micropores……………….………..34 Fig. 2.4 Different forms of proton in water medium………………….52 Fig. 2.5 Proton conduction in water: mobility of proton………………..53 Fig. 2.6 Proton hops between two water molecules……………………53 Fig. 2.7 Proton mobility via a Zundel ion complex………………….. 54 Fig. 2.8 Mechanism of proton conduction in water…..………………55 Fig. 3.1 The experimental flow chart for the synthesis of PVA-SSA-GA membranes…………………………………………..58 Fig. 3.2 The experimental flow chart for the synthesis of PVA-PSSA-SSA-GA membranes………………………………….60 Fig. 3.3 The structure of PVA………………………………….62 Fig. 3.4 The structure of poly vinyl acetate ( PVAc ) monomer….….…62 Fig. 3.5 Crosslinking reaction between PVA and GA…………………..64 Fig. 3.6 Scheme:Crosslinking PVA formed by reaction between PVA and GA (a)Acetal ring group or ether linkage and (b) Aldehyde formation by monofunctional reaction…………...………………..65 Fig. 3.7 Possible crosslinking structure of PVA, SSA and GA…………67 Fig. 3.8 Semi-IPN structure of PVA-PSSA-SSA-GA membrane……….68 Fig. 3.9 AgO TPR reaction of TCD signal curve……..……...75 Fig. 3.10 Phase diagram showing the relationship between alternating current and voltage signals at frequency ω……………………….77 Fig. 3.11 Calculation of total impedance from component impedances..78 Fig. 3.12 Equivalent circuit of an electrochemical cell………..………..80 Fig. 3.13 (a) Nyquist plot (b)Bode plot………………………….……82 Fig. 3.14 The top view and cross-section view of AC impedance cell (a) real equipment , (b) Schematic diagram…………...….……..84 Fig. 3.15 Schematic diagram of methanol diffusion cell………………..87 Fig. 4.1 ATR IR curve of Pure PVA membrane…………………………89 Fig. 4.2 Compare the ATR IR curve of Pure PVA and PVA-SSA membrane………………………………………….90 Fig. 4.3 Crosslinking PVA formed by reaction between PVA and GA…91 Fig. 4.4 Compare the ATR IR cure (500〜4000 cm-1) of Pure PVA, PVA-SSA and PVA-SSA-GA membrane……………………….…92 Fig. 4.5 (a)〜(c) ATR IR spectra of the membrane with various molar ratios of SSA/OH (a) 0.152(1-PVA-SSA), (b) 0.222(2-PVA-SSA); and the second crosslinking step with GA for 1 hr (C1)and 2 hr (C2) ; and followed by heat treatment for 2 hr (H2), (c) the membranes with various molar ratios of SSA/OH = 0.152(1-PVA-SSA), 0.222(2-PVA-SSA), 0.293(3-PVA-SSA), 0.364(4-PVA-SSA)for the second crosslinking step with GA for 1 hr (C1)…………...……101 Fig. 4.6 (a)〜(c) ATR IR spectra of membranes made with 22 mol% SSA/PVA-OH, and PSSA/PVA (g g–1) ratios of 0.00 (PVA-SSA), 0.36(1-PVA-PSSA-SSA), 0.54(2-PVA-PSSA-SSA), 0.72(3-PVA-PSSA-SSA), 0.9(4-PVA-PSSA-SSA) and 1.33(5-PVA-PSSA-SSA) after crosslinking with GA for 1 hr (C1) or 2 hr (C2) , and subsequent heat treatment for 2 hr (H2)…………107 Fig. 4.7 (a)〜(d) XRD curves of the membranes with various molar ratios of SSA/OH (a) 0.152(1-PVA-SSA), (b) 0.222(2-PVA-SSA), (c) 0.293(3-PVA-SSA), (d) 0.364(4-PVA-SSA); C1 and C2 means the second crosslinking step with GA for one and two hours; H2 means by heat treatment for two hours……………………..……110 Fig. 4.8 XRD curves of the membrane with various molar ratios of SSA/OH = 0.152(1-PVA-SSA), 0.222(2-PVA-SSA), 0.293(3-PVA-SSA), 0.364(4-PVA-SSA) for the second crosslinking step with GA: (a) for 1 hr (C1) , and (b) for 2 hr (C2), with the second crosslinking step followed by heat treatment for 2 hr (H2)111 Fig. 4.9 (a)〜(d) XRD curves of membranes made with 22 mol% SSA/PVA-OH and PSSA/PVA (g g-1) ratios of (a) 0.36(1-PVA-PSSA-SSA), (b) 0.54(2-PVA-PSSA-SSA), (c) 0.72(3-PVA-PSSA-SSA), and (d) 0.9(4-PVA-PSSA-SSA) after crosslinking with GA for 1 hr (C1) or 2 hr (C2) and subsequent heat treatment for 2 hr (H2)…………………………111 Fig. 4.10 XRD curves of membranes made with 22 mol% SSA/PVA-OH and PSSA/PVA (g g-1) ratios of 0.36(1-PVA-PSSA-SSA), 0.54(2-PVA-PSSA-SSA), 0.72(3-PVA-PSSA-SSA), and 0.9(4-PVA-PSSA-SSA) after crosslinking with GA for 1 hr (C1) and subsequent heat treatment for 2 hr (H2)………………………..……..112 Fig. 4. 11 DSC curve of pure PVA…………………….113 Fig. 4.12 (a)〜(b) DSC curve of the membrane with various molar ratios of SSA/OH = 0.152(1-PVA-SSA), 0.222(2-PVA-SSA), 0.293(3-PVA-SSA), 0.364(4-PVA-SSA) for the second crosslinking step with GA: (a) for 1 hr (C1), and (b) for 2 hr (C2), with the second crosslinking step followed by heat treatment for 2 hr (H2)…………………………………….……114 Fig. 4.13 DSC curve of the membranes made with 22 mol% SSA/PVA-OH and PSSA/PVA (g g-1) ratios of 0.36(1-PVA-PSSA-SSA), 0.54(2-PVA-PSSA-SSA), 0.72(3-PVA-PSSA-SSA), 0.9(4-PVA-PSSA-SSA), and 1.33(5-PVA-PSSA-SSA) after crosslinking with GA for 1 h (C1) and subsequent heat treatment for 2 hr(H2) …………………….……115 Fig . 4.14 TGA curve of pure PVA……………………….……116 Fig. 4.15 (a)〜(b) TGA curves of the membrane with various molar ratios of SSA/OH = 0.152(1-PVA-SSA), 0.222(2-PVA-SSA), 0.293(3-PVA-SSA), 0.364(4-PVA-SSA) for the second crosslinking step with GA: (a) 1 hr (C1) , and (b) for 2 hr (C2), with the second crosslinking step followed by heat treatment for 2 hr (H2) ……117 Fig. 4.16 TGA curve of the membranes made with 22 mol% SSA/PVA-OH and PSSA/PVA (g g-1) ratios of 0.36(1-PVA-PSSA-SSA), 0.54(2-PVA-PSSA-SSA), 0.72(3-PVA-PSSA-SSA), 0.9(4-PVA-PSSA-SSA), and 1.33(5-PVA-PSSA-SSA) after crosslinking with GA for 1 hr (C1) and subsequent heat treatment for 2 hr (H2) ……………….……119 Fig. 4.17 Temperature programmed desorption (TPD) curve of pure PVA………………………………………….120 Fig 4.18 Decompsion mass of pure PVA at defferennt temperature:(a)90℃ (b) 140℃ (c) 258℃ (d) 329℃ (e) 400℃…………….…121 Fig. 4.19 Temperature programmed desorption (TPD) curve of 2-PVA-SSA membrane……………………….124 Fig. 4.20 Temperature programmed desorption (TPD) curve of 1-PVA-SSA-GA-C2H2 membrane…………………..……..…….125 Fig. 4.21 Temperature programmed desorption (TPD) curve of 4-PVA-PSSA-SSA-GA-C1H2 membrane…………..……..…….125 Fig. 4.22 Decompsion mass of 2-PVA-SSA membrane at defferennt temperature:(a)50℃ (b) 100℃ (c) 150℃ (d) 200℃ (e) 250℃(f)350℃(g)400℃(h)450℃………………..…………….…….127 Fig. 4.23 Decompsion mass of 1-PVA-SSA-C2H2 membrane at defferennt temperature:(a)60℃ (b) 100℃ (c) 150℃ (d) 200℃ (e) 250℃(f)300℃……………………..………….128 Fig. 4.24 Decompsion mass of 4-PVA-PSSA-SSA-C1H2 membrane at defferennt temperature:(a)50℃ (b) 100℃ (c) 150℃ (d) 200℃ (e) 250℃(f)300℃(g)350℃(h)550℃……………...…..………….130 Fig. 4.25 Decompsion mass of 4-PVA-PSSA-SSA-C1H2 membrane at defferennt temperature:(a)M=14 (b) M=18 (c) M=17 (d) M=32〜64………………………………………………….132 Fig. 4.26 (a), (b) DSC curves of PVA-SSA-GA membranes……….….141 Fig. 4.27 DSC curves of PVA-PSSA-SSA-GA membranes……..…….142 Fig. 4.28 Calibration curve of Methanol concentration vs. dn/dc….….144 Fig. 4.29 (a), (b) Methanol permeability and proton conductivity of PVA-SSA-GA membranes at different molar ratio percentages of SO3H/OH………………………….147 Fig. 4.30 Methanol permeabilities and proton conductivities of PVA-PSSA-SSA-GA membranes were featuring 22 mol% SSA/PVA-OH and PSSA/PVA (g g–1) ratios of 0.00, 0.36, 0.54, 0.72, 0.9, and 1.33. These membranes were crosslinked with GA for 1 h and then subjected to heat treatment for 2 h…………..……….148 Fig. 4.31 (a)〜(c) The relation with proton conductivities and ion exchange capacity (IEC) of (a) PVA-SSA-GA-C1H2,(b) PVA-SSA-GA-C2H2,and (c) PVA-PSSA-SSA-GA-C1H2 membranes…………………….149 Fig.5.1 Profile structure of SPVA membrane....................……….….152 Fig.5.2 Over swellen in the inert of film case curly and stratify…...….153 表目錄 Table 1.1 The developing history of fuel cells……………………..…....4 Table 1.2 Comparision of different fuel cells……………………..……..5 Table 2.1 The permeabilities of Nafion membranes…………….………36 Table 2.2 The methanol crossover rate of PBI membrane on open circuit potential (OPC)………………………………..46 Table 2.3 The effect fuel cell operation factors on methanol crossover and performance. The PBI membrane was employed in this test…………………………………………………46 Table 3.1 Typical circuit elements………………………79 Table4.1 Assignments of the ATR IR (500〜4000 cm-1) peaks of pure PVA membrane……………………………….…89 Table 4.2 Assignments of the ATR IR (500〜4000 cm-1) peaks of PVA-SSA-GA membranes………………………..………….95 Table 4.3 Assignments of the signals in the ATR IR spectra (500〜4000 cm–1) of the PVA-PSSA-SSA-GA membranes………………………..………104 Table 4.4 Compare with Definition IEC and Real IEC of PVA-SSA-GA membranes……………….……….136 Table 4.5 Compare with Definition IEC and Real IEC of PVA-PSSA-SSA-GA membranes…………………...136 Table 4.6 Compare with the free water and bonding water contant of the PVA, Nafion, and PVA-SSA-GA membranes…………………………………140 Table 4.7 Compare with the free water and bonding water contant of the PVA, Nafion, and PVA-PSSA-SSA-GA membranes……...140 Table 4.8 The Methanol Permeability、Proton Conductivity and Selectivity of PVA-SSA-GA membranes………………..146 Table 4.9 The Methanol Permeability、Proton Conductivity and Selectivity of PVA-PSSA-SSA-GA membranes………...146 符號表 Ea:氧化電位,V Ec:還原電位,V Ecell:全電池的電位,V q:散射向量 λ:銅靶的Kα值之波長,A Wdry:乾膜重,g Wwet:濕膜重,g P:滲透係數,cm2/s IEC:離子交換容量,m mole/g f:頻率,Hz E(t):瞬時電位 I(t):瞬時電流 ω:角頻率 Θ:相角差 Z:阻抗,Ω Rs:溶液阻抗,Ω Rp:鈍化膜阻抗,Ω Rct:電荷轉移阻抗,Ω σ:導電度,S/cm σ0:頻率因子 k:波茲曼常數,8.625x10-5 eV/K V:strength vibration,拉伸振動 δ:bending vibration ,彎曲振動 ω:wagging vibration,搖擺振動 γ:rocking vibration,搖擺振動 Vs:對稱性的拉伸振動 Vas:非對稱性的拉伸振動 δas:非對稱性的彎曲振動 ni:電荷載子的數目 qi:載子所帶電荷 μi:載子的遷移率

    1. 衣寶廉,燃料電池 五南圖書出版公司 (2003).
    2. 黃鎮江,燃料電池 全華科技圖書股份有限公司 (2003).
    3. W. R. Grove, Philos .Mag. Ser.3, 14 ,127 (1839).
    4. 吳滄琪,磺酸化高分子於燃料電池質子交換膜製備之應用,元智大學化工系(2003).
    5. 鄭耀宗,徐耀昇,燃料電池技術進展的現況,燃料電池論文集,15-27 (1989).
    6. 鄭煜騰、萬瑞霙、林修正,酸性燃料電池的製成研究,能源季刊,第二十五卷第四期,161 (1995).
    7. O. Stonehart ,“Development of Alloy Electrocatalysts for Phosphoric Acid Fuel Cells(PAFC)”,J. Apl. Electrochem., 22, 995 (1992).
    8. 李國霖,熔融碳酸鹽燃料電池的研發,能源季刊,第二十四卷第四期,57 (1997).
    9. D. Rastler, Opportunities and challenges for fuel cells in the evolving energe enterprise, Fuel Cells Bulletin, 19, 7 (1999).
    10. K. Ledjeff-Hey and A. Heinzel, Critical issues and future prospects for solid polymer fuel cells, J. of Power Sourses, 61, 125(1996).
    11. G. Alande, M. C. Denis, P. Gouerec, D. Guay, J. P. Dodelet, and R. Schulz, Bifunctional Catalysts for Alkaline Fuel Cells J. New Mater. Electrochem. Syst, In Press.
    12. A. J. Apleby and F.R. Folkes,”Fuel Cell Handbook,Van Nostrand Reinhold”,New York (1989).
    13. L. J. M. J. Bolmen and M. N. Megerwa ,”Fuel Cell Systems”, Plenum Press , New York and London (1993).
    14. A. Heinzel, R. Nolte, K. Ledjeff-Hey and M. Zedda, “Membrane fuel cells-concepts and system design”, Electrochim. Acta, 43, 3817 (1998).
    15. S. Surampudi, S. R. Narayanan, and E. Vamos,”Advances in direct methanol fuel-cells”, Journal of Power Sources, 47, 377 (1994).
    16. M. P. Hogarth, and G. A. Hards, “Platinum Metal Rev.”, 40, 150 (1996).
    17. 董士平,含磷矽酸鹽玻璃於直接甲醇燃料電池之應用,台灣科技大學化工系 (2006).
    18. 曾育貞,改質聚乙烯醇作為直接甲醇燃料電池之高分子聚電解質薄膜之研究 (2006).
    19. 沈嘉進,改質聚乙烯醇作為直接甲醇燃料電池電解質薄膜之研究 (2005).
    20. C. Linda, F. K. Andreas, and S. Ulrich, Fuel cells: Principles, Types, Fuel, and Applications, chemphyschem, 1, 162 (2000).
    21. K. Ledjeff-Hey and Heinzel, Critical issues and future prospects for solid polymer fuel cell, J. Power Sources, 61,125 (1996).
    22. M. Watanabe, Y. Furuuchi, and Motoo S., Electrocatalysis by Ad-atoms Part ⅩⅢ. Preparation of Ad-electrodes with Tin Ad-atoms for Methanol, Formaldehyde and Formic Acid Fuel Cells, J. Electrochem. Chem., 191, 367 (1985).
    23. R. J. Behm, Z. Jusys, and J. Kaiser, Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation-A DEMS study, Electrochimca Acta, 47, 3693-3706 (2002)
    24. H. A. Gastieger, N. M. Marvokic, and P. N. Ross, Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface, J. Phys. Chem., 99, 8945 (1995).
    25. J. Mcbreen and S. Mukerjee, An In Situ X-Ray Absorption Spectroscopy Investigation of the Effect of Sn Additions to Carbon-Supported Pt Electrocatalysts, Journal of The Electrochemical Society, 146 (2) 600-606 (1999).
    26. B. N. Grgur, G. Zhuang, and N. M. Marvokic, Electrooxidation of H2/CO mixture on a well-characterized Pt75Mo25 alloy around surface, J. Phys. Chem. B, 101, 3910 (1997).
    27. K. M. Myoung, C. Jihoon, C. Kyuwoong, and K. Hasuck, Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications, Electrochemical Acta, 45, 4211 (2000).
    28. N. A. Oliveira, and M. J. Giz, The Electro-oxidation of Ethanol on Pt-Ru and Pt-Mo Particales Supported on High-Sueface-Area Carbon, J. Electrochem. Soc., 149, A272 (2002).
    29. R.Venkatarman, H. R. Kunz and J. M. Fentonb, Development of New CO Tolerant Anode Catalysts for Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, 150 (3), A278-284 (2003).
    30. B. Guran, R. Viswanathan, R. Lin, T. J. Lafrenz, K. L. Ley, and E. S. Smotkin, Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation, J. Phys. Chem. B, 102, 9997 (1998).
    31. A. S. Arico, Z. Poltarzewski, H. Kim, Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cell, J. Power Sources, 55, 159 (1995).
    32. 黃炳照,微甲醇燃料電池奈米觸媒之物理與化學現象,台灣奈米科技,第六章,302 (2004).
    33. J. Shim, D. Y. Yoo, and J. S. Lee, “Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell”, Electrochim. Acta, 45, 1943 (2000).
    34. 陳竣明,直接甲醇燃料電池陽極奈米合金觸媒之製備與鑑定,台灣科技大學化工系 (2004).
    35. S. P. S. Yen, S. R. Naranan, G. Halpert, E. Graham, A. Yavrouian, Polymer material for electrolytic membranes fuel cell, U.S.Patent 5, 795, 496 (1998)
    36. X. Ren, T. A. Zawadzinski, F. Uribe, H. Dai and S. Gottesfeld, “Methanol cross-over in direct methanol fuel cells”, Electrochem. Soc. Proc. 95(23) 284-298 (1995).
    37. 高志勇,「磺酸化磷睛環聚合物電解質之合成及其性質之研究」,工業材料,196期,111-119 (2003)年.
    38. 許義政,磺酸化聚二醚酮奈米複合質子交換膜之研究,長庚大學,化學與材料工程所 (2004).
    39. 邱志豪,聚苯咪唑合成及薄膜性質,元智大學化工系 (2004).
    40. T. Schultz, S. Zhou, and K. Sundmacher, “Review: Current status of and recent developments in the direct methanol fuel cell, Chem. Eng. Technol”. 24, 12 (2001).
    41. P. S. Kauranen and E. Skou,“Methanol permeability in perfluorsulfonate proton exchange membranes at elevated temperatures” J. Appl. Electrochem. 26, 909 (1996).
    42. S. R. Narayanan, A. Kindler, B. Jeffries-Nakamura, W. Chum, H. Frank, M. Smart, T. L.Valdez, S. Surampudi, G. Halpert, Annu.Battery Conf. Appl. Adv. 11, 113 (1996).
    43. D. H. Jung, C. H. Lee, C. S. Kim, and D. R. Shin, “Performance of a direct methanol polymer electrolyte fuel cell”, J. Power Sources 71, 169 (1998).
    44. M. W. Verdugge, Methanol Diffusion in Perfluorinated Ion-Exchange Membranes at elevated temperature, J. Appl. Electrochem. 26, 909 (1996).
    45. X. Ren, M. Wilson, and S. Gottesfeld, High performance direct methanol polymer electrolyte fuel cell, J. Electrochem. Soc. 143, L12 (1996).
    46. J. Cruickshank, and K. Scott, The degree and effect of methanol crossover in the direct methanol fuel cell, J. Power Sources 70 (1998).
    47. Y. Higuchi, N. Terada, H. Shimoda, S.U.S. Hommura “Patent application”, 0026883A1 ; EP1139472, (2001).
    48. M. Watanabe, H. Uchida, Y. Seki, and M. Emori “The Electrochemical Society Meeting”, PV94-2, Abstract No. 606, Electrochemical Society: Pennington, NJ, 946-947(1994).
    49. P. L. Antonucci, A. S. Arico, P. Creti, E. Ramunni and V. Antonucci, Solid State Ionics 125, 431 (1999).
    50. R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt, C. Rogers, Selective Electrodeposition of Catalyst within Membrane-Electrode Structures, J. Electrochem. Soc. 141, 46 (1994).
    51. M. Doyle, S. K. Choi, G. Proulx, High-Temperature Proton Conducting Membranes Based on Perfluorinated Ionomer Membrane-Ionic Liquid Composites, J. Electrochem. Soc. 147, 34 (2000).
    52. K. A. Mauritz, Mater. Sci. Eng., C 6, 121 (1998).
    53. N. Miyake, J. S. Wainwright and R. F. Savinell, J. Electrochem. Soc. 148(2001).
    54. K.T. Adjemian, S.J. Lee, S. Srinivasan, J. Benziger and A.B. Bocarsly, J. Electrochem. Soc.149, A256 (2002).
    55. G. Alberti, L. Boccali, M. Casciola, L. Massinelli, and E. Staiti, Solid State Ionics 84, 97 (1996).
    56. C. Pu, W. Huang, K. L. Ley, and E. S. Smotkin, A methanol impermeable proton conducting composiye electrolyte system, J. Electrochem. Soc. 142, L119 (1995).
    57. M. Rikukawa and K. Sanui,”Proton-conducting polymer electrolyte membranes base on hydrocarbon Polymers,” Prog. Polym. Sci., 25, 1463-1502 (2000).
    58. F. Donoso, W. Gorecki and C. Berthier, “NMR, conductivity and neutron scattering investigation of ionic dynamics in the anhydrous polymer protonic conductor PEO (H3PO4)x “ Solid State Ionics, 28-30, 969-974(1988).
    59. M. G. Fiona, Polymer Electrolytes, RSC Materials Monographs, UK,1997.
    60. M. F. Daniel, B. Desbat, F. Cruege, O. Trinquet and J. C.Lassegues, ”Solid state protonic conductors: poly (ethylene imine)sulfates and phosphates,” Solid State Ionics, 28-30, 637-641 (1988).
    61. J. C. Lassegues, D. Scoolmann and O. Trinquet, ”Proton conducting acid/polymer blends,” Solid State Ionics, 51, 443-448 (1992).
    62. R. Tanaka, H. Yamamoto, S. Kawamura and T. Iwase, “Proton Conducting behavior of Poly (etheylenimine)-H3PO4 System,”Electrochimica Acta, 40, 2421-2424 (1995).
    63. G.K.R. Senadeera, M. A. Careem, S. Skaarup and K. West, ”Enhance ionic conductivity of poly(ethylene imine) Phosphate,“ Solid State Ionics, 85, 37-42 (1996).
    64. D. Rodriguez, C. Jegat, O. Trinquet, J. Grondin and J. C. Lassegues, “Proton conduction in poly(acrylamide)-acid blends, ”Solid State Ionics, 61, 195-202 (1993).
    65. X. Weilin, L. Changpeng, X. Xinzhong, S. Yi, L. Yanzhuo, X. Wei, L. Tianhong, New proton exchange membranes based on poly(vinylalcohol) for DMFCs, Solid State Ionics, 171, 121-127 (2004).
    66. S. Petty-Weeks, J. J. Zupancic and J. R. Swedo, ”Proton conducting Interpenetranting polymer networks,” Solid State Ionics, 31, 117-125(1988).
    67. P. N. Gupta and K. P. Singh,”Characterization of H3PO4 based PVA complex system,“ Solid State Ionics, 86-88, 319-323 (1996).
    68. M. A. Vargas, R. A. Vargas and B. Mellander, “More studies on the PVA + H3PO2 + H2O proton conductor gels,“ Electrochimica Acta, 45,1399-1403 (2000).
    69. M. Suzuki and T. Yoshida, “Ionic conduction in partially phosphorylated poly(vinyl alcohol) as polymer electrolytes”, Polymer 41, 4531-4536 (2000).
    70. H. Wu and Y. Wang, “A methanol barrier polymer electrolyte membrane in direct methanol fuel cells”, J. New. Mat. Electrochem. Systems, 251-254 (2002).
    71. A. K. Sharma, “Conductivity and discharge characteristics of polyblend (PVP+PVA+KIO3) electrolyte”, Journal of Power Sources 114, 338-345 (2003).
    72. B. S. Pivovar, T. Wang, and E. L. Cussler, Pervaporation membranes in direct methanol fuel cells, J. Membranes Science 154, 155 (1999).
    73. T. A. Zawodzinski, C. Derouin, S. Gottesfeld, Water uptake by and transport through Nafion 117 membranes, J. Electrochem. Soc. 140, 1041 (1995).
    74. T. A. Zawodzinski, J. davey, J. Valerio, S. Gottesfeld, The water content dependence of electro-osmotic drag in proton-conducting polymer electrolyte, Electrochem. Acta 40, 297 (1995).
    75. C. C. Yang, “Chemical composition and XRD analyses for alkaline composite PVA polymer electrolyte”, Materials Letter 58, 33-38 (2003).
    76. W. Xu and C. Liu, “New proton exchange membranes based on poly (vinyl alcohol) for DMFCs”, Solid State Ionics 171, 121-127 (2004).
    77. J. W. Rhima and H. B. Park, “Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes”, Journal of Membrane Science 238, 143-151 (2004).
    78. H. Akita, K. K. Honda, G. Kenkyusho, W. S. Saltama, 351-0193(JP) E. P. Pat. 1085051 (2001).
    79. J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, Y. M. Lee, J. Membr. Sci. 238, 143-151 (2004).
    80. M. S. Kang, “Highly charged proton exchange membranes prepared by using water soluble polymer blends for fuel cells”, Journal of Membranes Science 247, 127-135 (2005).
    81. C. W. Lin, Y. F. Huang, A. M. Kannan, J. Power Sources 164, 449-456 (2007).
    82. C. W. Lin, Y. F. Huang, A. M. Kannan, J. Power Sources 171, 340-347 (2007).
    83. T. Qiao, T. Hamaya, T. Okada, Chem. Mater. 17, 2413-2421 (2005).
    84. W. Charles, J. Wolker, J. Electrochem. Sci. 151, 1797-1803 (2004).
    85. C. K. Yeom, K. H. Lee, J. Membr. Sci., 109, 257-265 (1996).
    86. D. S. Kim, H. B. Park, J. W. Rhim, Y. M. Lee, J. Membr. Sci. 240, 37-48 (2004).
    87. D. S. Kim, H. B. Park, J. W. Rhim, Y. M. Lee, Solid State Ionics 176, 117-126 (2005).
    88. J. S. Wainright, J. Wang, D. Weng, R. F. Savinell, and M. Litt, “Acid-doped polybenzimidazoles: A New polymer electrolyte”, J. Electrochem. Soc. 142, L121 (1995).
    89. J. T. Wang, S. Wasmus, and R. F. Savinell, “Real-time spectrometric study of the methanol crossover in a direct methanol fuel cell”, J. Electrochem. Soc. 143, 1233 (1996).
    90. J. S. Wainright, J. Wang, D. Weng, R. F. Savinell, Protonic conduction in alkaline earth metaphosphate glasses containing water, Proc. Intersoc. Energy Convers. Eng Conf. 31, 1107 (1996).
    91. J. T. Wang, S. Wasmus, and R. F. Savinell, M. Litt, A direct methanol fuel cell using acid-dopes polybenzimidazole as polymer electrolyte, J. Appl. Electrochem. 26, 751 (1996).
    92. S. Wasmus and A. Kuver, “Methanol oxidation and direct methanol fuel cells: a selective review”J. Electroanal. Chem., 461, 14 (1999).
    93. A. Heinzel and V. M. Barragan, “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells”, J. Power Sources 84, 70 (1999).
    94. M. Kawahara, J. Morita, M Rikukawa, Kohei Sanui, Naoya Ogata, “Synthesis and proton conductivity of thermally stable polymer electrolyte: poly (benzimidazole) complexes with strong acid molecules,” electrochimica Acta, 45, 1395-1398 (2000).
    95. K. Tsuruhara, M. Rikukawa, K. Sanui, N. Ogata, Y.Nagasaki and M. Kato, ”Synthesis of proton conducting polymer basedon Poly( silamine ), ” Electrochimica Acta, 45, 1391-1394 (2000).
    96. F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodinski and J.E. J. McGrath, Membr. Sci. 197, 231 (2002).
    97. M. Hogarth and X. Glipa, High temperature membranes for sold polymer fuel cells, Johnson Matthey Technology Centre.
    98. A. Kuver, K. P. Kaamloth, Comparative study of methanol crossover across electropolymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell, Electrochem. Acta 43, 2527 (1998).
    99. Y. Abe, H. Shimakawa, and L. L. Hench, Proton conduction in alkaline earth metaphosphate glasses containging water, J. Non-Cryst. Solids 51 , 357 (1982).
    100. Y. Abe, H. Hosono, Y. Ohta, and L. L. Hench, Proton conduction in oxide glasses: simple relations between electrical conductivity, activation energy, and O-H bonding state, Phys. Rev. B. 38, 10116 (1988).
    101. Y. Abe, H. Hosono, W. H. Lee and T. Kasuga, Electrical conduction due to proton and alkai-metal ion in oxide glasses, Phys. Rev. B. 48, 15621 (1993)
    102. M. Kotama, H. Hosono, Y. Abe and L. L. Hench, Evidence for protonic conduction in barium phosphate glasses, J. Electrochem. Soc. 138, 2928 (1991).
    103. M. Nagami and Y. Abe, Evidence of water-cooperative proton conduction in silica glasses, Phys. Rev. B. 55, 12108 (1997).
    104. C. Wang, M. Nogami and Y. Abe, Protonic conduction in P2O5-SiO2 glasses prepared by sol-gel method, J. Sol-Gel Sci. Technol. 14, 273 (1999)
    105. C. Wang, M. Nogami, Effect of formamide additive on protonic conduction of P2O5-SiO2 glasses prepared by sol-gel method, Material Letters. 42, 225 (2000).
    106. 吳千舜,”新穎質子交換膜”,中央大學化學研究所 (2004).
    107. D. H. Jung, S. Y. Cho. D. H. Peck, D. R. Shin, J. S. Kim, Performance evaluation of a Nafion/silscon oxide hybrid memberance for direct methanol fuel cell, Journal of Power Sources, 106, 173 (2002).
    108. F. Damay, L. C. Klein, Transport properties of Nafion composite membranes for proton-exchange membranes fuel cell, Solid State Ionics, 262, 162-163 (2003).
    109. U. Tadashi, O. Kenji, M. Hiroshi and M. Takashi, Structure and permeation characterisics of an aqueous ethanol solution of organic-inorgaic hybrid membranes composed of poly(vinyl alcohol) and tetraethoxysiliane, Macromolecules, 35, 9156 (2002).
    110. S.P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter and K. Richau, Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells, J. Membr. Sci., 203, 215 (2002).
    111. K.T. Adjemiana, S. Srinivasana, J. Benzigerb and A.B. Bocarslya, Investigation of PEMFC operation above 100℃ employing perfluorosulfonic acid silicon oxide composite membranes, Journal of Power Sources, 109, 356-364 (2002).
    112. K. D. Kreuer, On the complexity of proton conduction phenomena, Solid state ionics, 136-137, 149-160 (2000).
    113. E. Spohr, P. Commer, and A. A. Kornyshev, Enhancing proton mobility in polymer electrolyte membrane: lessons form molecular dynamics simulations, J. Phys. Chem. B. 106, 10506 (2002).
    114. A. A. Kornyshev, A. M. Kuznetsov, E. Spohr and J. Ulstrup, Kinetics of proton transport in water, J. Phys. Chem. B. 107, 3351 (2003).
    115. S. P. Tung and B. J. Hwang, “Synthesis and characterization of xP2O5-(100-x)SiO2 glass electrolytes prepared by accelerated sol-gel process with water/vapor management”, J. Membr. Sci. 241, 315-323 (2004).
    116. A. Apicella, H. B. Hopfenberg, and S. Piccarolo. “Low temperature thermal aging of ethylene vinyl alcohol copolymers.” Polymer Engineering and Science 1982;22:382-7.
    117. H. Strathmann, J. membr. sci. 1981; 9: 121-189.
    118. R. E. Kesting. “Synthetic Polymeric Membranes”. John Wiley and Sons, New York, NY, 1985.
    119. 黃鼎翰,以低溫水熱法合成奈米級釤及鉍摻雜鈰系固態氧化物燃料電池電解質與其電化學性質之研究,台灣科技大學材料科技研究所 (2004).
    120. C. K. Yeom and K. H. Lee, Prevaporation separation of water-acetic acid mixtures through poly(vinly alcohol) membranes crosslinked with glutaraldehyde, J. Membr. sci. 109, 257-265 (1996).
    121. A. Gruger, A. Regis. T. Schmatko, P. Colomban, Vibr. Spectrosc. 26, 215-225 (2001).
    122. R. Buzzoni, S. Bordiga, G. Ricchiardi, G. Spoto, A. Zecchina, J. Phys. Chem. 99, 11937-11951 (1995).
    123. K.D. Kreuer, J. Memb. Sci. 185, 29-39 (2001).
    124. C. E. Tsai, C. W. Lin, B. J. Hwang, J. Power Sources 195, 2166-2173 (2010).
    125. E. J. Shin, Study on the Structure and Processibility of the Iodinated Poly(Vinyl Alcohol). I. Thermal Analyses of Iodinated Poly(vinyl alcohol) Films, J. of Applied Polymer Science, Vol. 91, 2407-2415 (2004).
    126. J. Qiao, T. Hamaya and T. Okada* , Chemically Modified Poly(vinyl alcohol)-Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) as a Novel Proton-Conducting Fuel Cell Membrane , Chem. Mater. , 17, 2413-2421(2005).
    127. K. D. Kreuer, J. Membr. Sci. 185, 29-39 (2001).
    128. S. P. Tung, B. J. Hwang, J. Membr. Sci. 241, 315-323 (2004).

    QR CODE