簡易檢索 / 詳目顯示

研究生: Jusni Manidar Lumban Gaol
Jusni Manidar Lumban Gaol
論文名稱: 以摻雜PSS的氧化鋅作為有機太陽能電池電洞傳輸層之研究
Investigation of PSS doped ZnO nanoparticles as Hole Transport Layer for Organic Photovoltaics
指導教授: 何 郡軒
Jinn-Hsuan Ho
口試委員: 戴 龑
Yian Tai
陳銘崇
Chen Ming Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 73
中文關鍵詞: 聚苯乙烯磺酸氧化鋅奈米粒子電洞傳導層
外文關鍵詞: PSS doping, ZnO Nanoparticles, Poly (4-styrene sulfonate acid)
相關次數: 點閱:309下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在發展具高穩定性之電洞傳導層,以混和摻雜聚苯乙烯磺酸(Poly (4-styrene sulfonate acid))於氧化鋅奈米粒子(ZnO NPs)水溶液中,並以旋轉塗佈法沉積於有機太陽能之主動層表面。依據不同摻雜聚苯乙烯磺酸比例之電洞傳導層應用於有機太陽能電池元件,其中以0.167:1之摻雜比例可得較佳之光電轉換效率為2.5%,藉由摻雜聚苯乙烯磺酸之電洞傳導層可得較平滑之表面粗糙度,使載子傳遞之再結合率下降,進而提升填充因子並得到較佳之光電轉換效率。藉由摻雜聚苯乙烯磺酸之氧化鋅奈米粒子,其較低之功函數(-5.25 eV)可匹配有機太陽能電池元件之能帶圖譜,同時氧化鋅奈米粒子具有較佳之導電性質有利於載子傳遞於電極。以摻雜聚苯乙烯磺酸之氧化鋅奈米粒子具有類p型半導體之傳導性質,藉由聚苯乙烯磺酸螯合鋅原子造成氧化鋅奈米粒子之鋅缺乏,其中螢光光譜儀可得於氧過量之訊號,並同時比較於X光光電子能譜儀可得鋅缺乏之訊號,藉以產生具類p型之氧化鋅奈米粒子。氧化鋅奈米子之電洞傳導層相較於氧化鉬之電洞傳導層於水中具有較佳之穩定性,其氧化鋅奈米粒子之元件效率相較於氧化鉬可於水中維持較長之生命週期。


    In this study, we developed a doping method using PSS (Poly (4-styrene sulfonate acid)) doped ZnO nanoparticles (NPs) as Hole transport layer (HTL) in Organic photovoltaics (OPVs). In particular, we directly mixed the ZnO NPs with variant ratios of PSS and spin-coated on top of active layer (P3HT:PCBM) as HTLs, the best device based on PSS doped ZnO 3 (0.167:1) layer demonstrated a performance up to PCE of 2.05%. In addition, PSS doped ZnO 3 (0.167:1) layer has the lowest roughness (Rq) about 34.1 nm compare to the another variant of doping materials which reducing the charge recombination at interface. On the other hand, PSS doped ZnO 3 (0.167:1) layer also has a high work function of 5.25 eV, which is benefit for hole transporting properties. Moreover, PSS doped ZnO 3 (0.167:1) layer has a conductivity of 1.11E+04 corresponded from ITO as a substrate. Further information, the PL measurement showed that PSS doped ZnO 3 (0.167:1) layer has a decreased intensity at 500-600 nm, indicative of the present of oxygen. Then, in XPS, there is a/the deficiency zinc by the weaker intensity compare to that of ZnO NPs. Both of the PL and XPS results revealed that the PSS doped ZnO 3 (0.167:1) layer is p-type like material. According to our motivation, to improve the stability of HTL in OPVs, we compare PSS doped ZnO 3 (0.167:1) with MoO3 as HTL under water condition. It shown the PSS doped ZnO 3 (0.167:1) is able to survive until 3 days while the device using the MoO3 as HTL degrades immediately.

    摘要 I Abstract II Acknowledgments III Table of Contents IV Figure Index VI Table Index VIII Chapter 1 Introduction 1 1.1 Preface 1 1.2 Solar cells Type 2 1.2.1 Inorganic solar cells 3 1.2.2 Organic solar cells 4 1.3 Development of organic solar cells 5 1.3.1 Single layer of conjugated polymers 6 1.3.2 Bilayer heterojunction of conjugated polymers 6 1.3.3 Bulk heterojunction (BHJ) of conjugated polymers 7 1.4 Object of study 11 Chapter 2 Literature Review 13 2.1 Degradation of stability organic solar cells device 13 2.2 Strategies for the lifetime improvement 14 Chapter 3 Experimental Section 17 3.1 Materials and chemicals 17 3.1.1 Material of substrate 17 3.1.2 Material of preparation ZnO SG (ETL) 17 3.1.3 Material preparation of active layer 17 3.2 Experimental procedural 18 3.2.1 Preparation ITO and pure glass as a substrate material 18 3.2.2 Preparation of ZnO sol-gel as Electron transport layer 18 3.2.3 Preparation of P3HT:PC61BM as an Active layer material 18 3.2.4 Preparation Hole transport layer 18 3.2.5 Device fabrication and Flow chart experimental procedural 19 3.3 Experimental apparatus 24 3.3.1 Organic photovoltaic gloves box 24 3.3.2 Thermal evaporation system 24 3.3.3 Photolithography system for OPV pattern 26 3.4 Characterization instrumental 26 3.4.1 Ultraviolet-visible spectroscopy (UV-Vis) 26 3.4.2 X-ray diffraction (XRD) 27 3.4.3 Scanning electron microscopy (SEM) 28 3.4.4 Atomic force microscopy (AFM) 29 3.4.5 Solar simulator measurement system 30 3.4.6 Incident photon to electron conversion efficiency (IPCE) 31 3.4.7 Kelvin probe force microscope 32 3.4.8 Hall effect measurement 32 3.4.9 Photoluminescence (PL) 33 3.4.10 X-ray photoelectron spectroscopy (XPS) 33 Chapter 4 Results and discussion 34 4.1 Zinc oxide Nanoparticles (ZnO NPs) synthesize and characterization 35 4.2 PSS doped ZnO NPs 30 in different ratio of PSS 39 4.3 PSS doping ZnO NPs 3 in different ratio of PSS 43 4.4 Testing stability device under Deionized water condition 54 4.5 Possible mechanism of longer stability in ZnO HTL 56 Chapter 5 Conclusion 58 5.1 Summary 58 5.2 Perspectives 58 Reference 60

    1. Maturová, K., et al., Morphological device model for organic bulk heterojunction solar cells. 2009. 9(8): p. 3032-3037.
    2. Madogni, V.I., et al., Comparison of degradation mechanisms in organic photovoltaic devices upon exposure to a temperate and a subequatorial climate. 2015. 640: p. 201-214.
    3. Janotti, A. and C.G.J.R.o.p.i.p. Van de Walle, Fundamentals of zinc oxide as a semiconductor. 2009. 72(12): p. 126501.
    4. Look, D.C., Recent advances in ZnO materials and devices. Materials Science and Engineering: B, 2001. 80(1): p. 383-387.
    5. Fan, J.C., et al., p-Type ZnO materials: theory, growth, properties and devices. 2013. 58(6): p. 874-985.
    6. Parida, B., et al., A review of solar photovoltaic technologies. 2011. 15(3): p. 1625-1636.
    7. Chopra, K., et al., Thin‐film solar cells: an overview. 2004. 12(2‐3): p. 69-92.
    8. Kibria, M.T., et al. A Review: Comparative studies on different generation solar cells technology. in Proc. of 5th International Conference on Environmental Aspects of Bangladesh. 2014.
    9. Miles, R.W., G. Zoppi, and I.J.M.t. Forbes, Inorganic photovoltaic cells. 2007. 10(11): p. 20-27.
    10. Van Wieringen, A. and N.J.P. Warmoltz, On the permeation of hydrogen and helium in single crystal silicon and germanium at elevated temperatures. 1956. 22(6-12): p. 849-865.
    11. Kaur, M., H.J.I.J.O.C.E. Singh, and Management, A review: comparison of silicon solar cells and thin film solar cells. 2016. 3(2): p. 15-23.
    12. Rajh, T., et al., Semiconductor photophysics. 7. Photoluminescence and picosecond charge carrier dynamics in cadmium sulfide quantum dots confined in a silicate glass. 1992. 96(11): p. 4633-4641.
    13. Hou, J., et al., Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. 2009. 131(43): p. 15586-15587.
    14. Marks, R., et al., The photovoltaic response in poly (p-phenylene vinylene) thin-film devices. 1994. 6(7): p. 1379.
    15. McGehee, M.D. and M.A.J.N.m. Topinka, Solar cells: Pictures from the blended zone. 2006. 5(9): p. 675.
    16. Peumans, P., A. Yakimov, and S.R.J.J.o.A.P. Forrest, Small molecular weight organic thin-film photodetectors and solar cells. 2003. 93(7): p. 3693-3723.
    17. Tang, C.W.J.A.P.L., Two‐layer organic photovoltaic cell. 1986. 48(2): p. 183-185.
    18. Dennler, G., M.C. Scharber, and C.J. Brabec, Polymer‐fullerene bulk‐heterojunction solar cells. Advanced materials, 2009. 21(13): p. 1323-1338.
    19. Wong, K.W., et al., Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly (styrene sulphonate) with a self-assembly monolayer. 2002. 80(15): p. 2788-2790.
    20. Thambidurai, M., et al., Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer. 2014. 66: p. 433-442.
    21. Lattante, S.J.E., Electron and hole transport layers: their use in inverted bulk heterojunction polymer solar cells. 2014. 3(1): p. 132-164.
    22. Conings, B., et al., Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells. 2010. 96(16): p. 81.
    23. Ahmad, J., et al., Materials and methods for encapsulation of OPV: A review. 2013. 27: p. 104-117.
    24. Qi, B., Z.-G. Zhang, and J.J.S.R. Wang, Uncovering the role of cathode buffer layer in organic solar cells. 2015. 5: p. 7803.
    25. Hermerschmidt, F., et al., Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols. 2017. 9(16): p. 14136-14144.
    26. Lai, T.-H., et al., Properties of interlayer for organic photovoltaics. 2013. 16(11): p. 424-432.
    27. Brauer, G., et al. Activities towards p-type doping of ZnO. in Journal of Physics: Conference Series. 2011. IOP Publishing.
    28. Perkampus, H.-H., UV-VIS Spectroscopy and its Applications. 2013: Springer Science & Business Media.
    29. Kato, Y.K., et al., Observation of the spin Hall effect in semiconductors. 2004. 306(5703): p. 1910-1913.
    30. Beccat, P., et al., Quantitative surface analysis by XPS (X-ray photoelectron spectroscopy): application to hydrotreating catalysts. 1999. 54(4): p. 487-496.
    31. Kanai, K., et al., Electronic structure of anode interface with molybdenum oxide buffer layer. 2010. 11(2): p. 188-194.
    32. Meyer, J., et al., Transition metal oxides for organic electronics: energetics, device physics and applications. 2012. 24(40): p. 5408-5427.
    33. Kröger, M., et al., Role of the deep-lying electronic states of MoO 3 in the enhancement of hole-injection in organic thin films. 2009. 95(12): p. 251.
    34. Sanehira, E.M., et al., Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using MoO x/Al for hole collection. 2016. 1(1): p. 38-45.
    35. Gulbinski, W., et al., Study of the influence of adsorbed water on AFM friction measurements on molybdenum trioxide thin films. 2001. 475(1-3): p. 149-158.
    36. Beek, W.J., et al., Hybrid solar cells using a zinc oxide precursor and a conjugated polymer. 2005. 15(10): p. 1703-1707.
    37. Goh, E., X. Xu, and P.J.S.M. McCormick, Effect of particle size on the UV absorbance of zinc oxide nanoparticles. 2014. 78: p. 49-52.
    38. Zhou, J., et al., Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties. Journal of Luminescence, 2007. 122-123: p. 195-197.
    39. Willardson, R.K., E.R. Weber, and M. Stavola, Identification of Defects in Semiconductors. 1998: Academic Press.
    40. Chi, C.-Y., et al., ZnO as an effective hole transport layer for water resistant organic solar cells. Journal of Materials Chemistry A, 2018. 6(15): p. 6542-6550.
    41. Dixit, T., I. Palani, and V.J.R.A. Singh, Insights into non-noble metal based nanophotonics: exploration of Cr-coated ZnO nanorods for optoelectronic applications. 2018. 8(13): p. 6820-6833.
    42. Vanheusden, K., et al., Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. 1996. 68(3): p. 403-405.
    43. Fabbri, F., et al., S-induced modifications of the optoelectronic properties of ZnO mesoporous nanobelts. Scientific Reports, 2016. 6: p. 27948.
    44. Moore, K., M.L.J.P. Pantoya, Explosives, Pyrotechnics: An International Journal Dealing with Scientific, and T.A.o.E. Materials, Combustion of environmentally altered molybdenum trioxide nanocomposites. 2006. 31(3): p. 182-187.
    45. Yu, J., C. Li, and S. Liu, Effect of PSS on morphology and optical properties of ZnO. Journal of Colloid and Interface Science, 2008. 326(2): p. 433-438.
    46. Yang, H.B., et al., Cesium Carbonate Functionalized Graphene Quantum Dots as Stable Electron-Selective Layer for Improvement of Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014. 6(2): p. 1092-1099.
    47. Gregor, H.P., F.C. Collins, and M. Pope, Studies on ion-exchange resins. III. Diffusion of neutral molecules in a sulfonic acid cation-exchange resin. Journal of Colloid Science, 1951. 6(4): p. 304-322.
    48. Buttersack, C., Accessibility and catalytic activity of sulfonic acid ion-exchange resins in different solvents. Reactive Polymers, 1989. 10(2): p. 143-164.
    49. Wang, H., et al., Growth of p-type ZnO thin films by (N, Ga) co-doping using DMHy dopant. Journal of Physics D: Applied Physics, 2007. 40(15): p. 4682-4685.
    50. Yuan, J., et al., The aggregation of polystyrene-b-poly (ethylene oxide)-b-polystyrene triblock copolymers in aqueous solution. 2002. 38(8): p. 1537-1546.

    無法下載圖示 全文公開日期 2024/02/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE