簡易檢索 / 詳目顯示

研究生: 李佾修
Yi-Siou Li
論文名稱: 混合高分子犧牲層轉印氧化銦錫薄膜於透明有機電子元件之研究
Study of Polymer Blends Sacrificial Layer for Transferable ITO Thin Film on Transparent Organic Electronics
指導教授: 戴龑
Yian Tai
口試委員: 黃柏仁
Bohr-Ran Huang
王澤元
Tse-Yuan Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 80
中文關鍵詞: 氧化銦錫轉印法聚苯乙烯磺酸鈉聚乙烯吡咯烷酮
外文關鍵詞: Indium tin oxide, Transfer method, Polystyrene sulfonate(PSS), Polyvinyl pyrrolidone(PVP)
相關次數: 點閱:283下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在於改良薄膜轉印法之犧牲層,利用射頻磁控濺鍍氧化銦錫(ITO)薄膜於犧牲層基板上,並藉由轉印法將ITO薄膜轉印至有機光電元件的高分子主動層上,可得到可見光透明薄膜電晶體,亦可避免濺鍍過程及退火過程對高分子層的傷害。將polystyrene sulfonate (PSS) 用作犧牲層在轉印時能使ITO與玻璃基板分離,然而在薄膜 (100nm) 尺度下,ITO容易在轉印過程中碎裂。本研究發現將少量polyvinyl pyrrolidone (PVP) 摻入PSS犧牲層中,在轉印的同時能保有ITO薄膜的完整度及電性。接著藉由調整不同比例的PSS:PVP犧牲層以及不同退火溫度,並利用撈膜轉印法,做轉印前與轉印後的成功率及電性的比較。本研究將簡單探討犧牲層的機制,並嘗試利用二次轉印法去除殘留層。最後利用兩種轉印法將ITO轉印至薄膜電晶體元件上作為電極,其特性與鋁電極薄膜電晶體相比有更高的開關比、更低的漏電流及極佳的透明度。


    Indium tin oxide (ITO) is the most widely used material for transparent electrode due to its high electrical conductivity and optical transparency. Generally, high quality ITO films are fabricated by magnetron sputtering method. However, sputtering and annealing are harmful when deposit ITO on organic or polymer thin film.
    A non-destructive, transfer approach method to fabricate ITO thin film on another substrate was reported. Polystyrene sulfonate (PSS) is used as the sacrificial layer for its high water-solubility. However, ITO is easily broken during the transfer process. Therefore, a small amount of polyvinyl pyrrolidone (PVP) is added into the PSS sacrificial layer and successfully maintained the integrity of the ITO film after transferred.
    In this research, I optimize the ITO quality by tuning different ratio of PSS:PVP sacrificial layer and different annealing temperature. Next, using different ratios of PSS:PVP and annealing temperature, transferring thin film by “free-standing transfer method”, and take comparison of film quality before and after transfer method. Furthermore, I discuss about the mechanism of sacrificial layer and report another transfer method called “secondary transfer method” and trying remove the residual layer. Finally, the ITO was transferred to the organic thin film transistor (OTFT) as an electrode by transfer method, which has higher on/off ratio, lower leakage current and excellent transparency, in comparison of the aluminum electrode thin film transistor.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 4 第二章 文獻回顧與理論 5 2-1 銦錫氧化物 (Indium Tin Oxide, ITO) 5 2-1-1 ITO薄膜基本性質 6 2-1-2 ITO薄膜導電性質 6 2-1-3 ITO薄膜光學性質 7 2-2 薄膜製作技術 9 2-3 濺鍍原理 11 2-4 薄膜成長機制 14 2-5 透明電子元件 16 2-6 犧牲層與轉印法 18 第三章 實驗 21 3-1 實驗藥品及耗材 21 3-2 實驗設備 22 3-3 實驗步驟 23 3-3-1 溶液配置 23 3-3-2 基板清洗 23 3-3-3 旋轉塗佈 23 3-3-4 濺鍍ITO薄膜 23 3-3-5 熱處理 24 3-3-6 薄膜轉印法 24 3-3-7 實驗流程圖 26 3-4 分析儀器簡介 27 3-4-1 分析儀器 27 3-4-2 霍爾量測儀(Hall effect measurement) 27 3-4-3 場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope, FESEM) 30 3-4-4 X光繞射儀(X-ray diffractometer, XRD) 31 3-4-5 紫外光/可見光分光光譜儀(UV-visible Spectrometer) 32 3-4-6 原子力顯微鏡(Atomic Force Microscopy, AFM) 33 3-4-7 差示掃描量熱分析儀(Differential Scanning Calorimetry, DSC) 35 第四章 結果與討論 36 4-1 ITO薄膜基本參數調控 36 4-1-1 功率及時間對ITO膜厚的影響 36 4-1-2 功率對ITO電性及結晶性的影響 38 4-1-3 工作壓力對ITO電性及結晶性的影響 39 4-1-4 熱處理對ITO光電性質及結晶性的影響 41 4-2 以撈膜法轉印犧牲層及犧牲層的性質探討 43 4-2-1 以PSS做為犧牲層 43 4-2-2 以PVP做為犧牲層 45 4-2-3 混合PSS:PVP做為犧牲層 46 4-3 熱處理與比例對轉印之ITO薄膜的影響 48 4-4 犧牲層與ITO薄膜的機制探討 56 4-4-1 利用AFM探討混合犧牲層的表面型態 56 4-4-2 利用DSC探討混合犧牲層的相態 57 4-4-3 利用SEM探討混合犧牲層與ITO薄膜的截面積 58 4-5 殘留犧牲層的去除與二次轉印法 62 4-5-1 改變旋轉塗佈犧牲層轉速對撈膜ITO薄膜的影響 62 4-5-2 二次轉印法 64 4-6 應用 68 4-6-1 以撈膜轉印ITO薄膜作為有機薄膜電晶體之電極 68 4-6-2 以二次轉印ITO薄膜作為有機薄膜電晶體之電極 70 4-6-3 以撈膜轉印ITO薄膜作為無機薄膜電晶體之電極 71 第五章 結論與未來展望 74 5-1 結論 74 5-2 未來展望 74 參考文獻 76

    1. Kobayashi, H.; Ishida, T.; Nakamura, K.; Nakato, Y.; Tsubomura, H., Properties of indium tin oxide films prepared by the electron beam evaporation method in relation to characteristics of indium tin oxide/silicon oxide/silicon junction solar cells. Journal of applied physics 1992, 72 (11), 5288-5293.
    2. Djaoued, Y.; Phong, V. H.; Badilescu, S.; Ashrit, P.; Girouard, F. E.; Truong, V.-V., Sol-gel-prepared ITO films for electrochromic systems. Thin Solid Films 1997, 293 (1-2), 108-112.
    3. Lee, C.; Huang, C., Spray pyrolysis deposition for indium oxide doped with different impurities. Materials Science and Engineering: B 1994, 22 (2-3), 233-240.
    4. Salehi, A., The effects of deposition rate and substrate temperature of ITO thin films on electrical and optical properties. Thin solid films 1998, 324 (1-2), 214-218.
    5. Maruyama, T.; Tabata, K., Indium-tin oxide thin films prepared by chemical vapor deposition from metal acetates. Japanese journal of applied physics 1990, 29 (2A), L355.
    6. Wu, W.-F.; Chiou, B.-S., Effect of annealing on electrical and optical properties of RF magnetron sputtered indium tin oxide films. Applied Surface Science 1993, 68 (4), 497-504.
    7. Minami, T., Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor science and technology 2005, 20 (4), S35.
    8. Buchanan, M.; Webb, J.; Williams, D., Preparation of conducting and transparent thin films of tin‐doped indium oxide by magnetron sputtering. Applied Physics Letters 1980, 37 (2), 213-215.
    9. Steckl, A.; Mohammed, G., The effect of ambient atmosphere in the annealing of indium tin oxide films. Journal of Applied Physics 1980, 51 (7), 3890-3895.
    10. Nadaud, N.; Lequeux, N.; Nanot, M.; Jove, J.; Roisnel, T., Structural studies of tin-doped indium oxide (ITO) and In4Sn3O12. Journal of Solid State Chemistry 1998, 135 (1), 140-148.
    11. Thornton, J., Physical vapor deposition. Noyes Data Corporation, Noyes Publications, Semiconductor Materials and Process Technology Handbook for Very Large Scale Integration(VLSI) and Ultra Large Scale Integration(ULSI) 1988, 329-454.
    12. Hutchinson, I. H., Principles of plasma diagnostics. Plasma Physics and Controlled Fusion 2002, 44 (12), 2603.
    13. 張家豪; 魏鴻文; 翁政輝; 柳克強; 李安平; 寇崇善; 吳敏文; 曾錦清; 蔡文發; 鄭國川, 電漿源原理與應用之介紹. 物理雙月刊 2006, 28 (2), 440-451.
    14. Hasenkamp Carreira, W., Flexible Micro/Nanofabricated Systems for Medical Devices and Implants. 2013.
    15. Magnetron sputtering technology, from http://www.visual-science.com/projects/magnetron-sputtering/technical-illustration/. 2008.
    16. BARNA, P. B.; ADAMIK, M., Growth mechanisms of polycrystalline thin films. In Science and technology of thin films, World Scientific: 1995; pp 1-28.
    17. Hoffman, R.; Norris, B. J.; Wager, J., ZnO-based transparent thin-film transistors. Applied Physics Letters 2003, 82 (5), 733-735.
    18. Lavareda, G.; de Carvalho, C. N.; Fortunato, E.; Ramos, A.; Alves, E.; Conde, O.; Amaral, A., Transparent thin film transistors based on indium oxide semiconductor. Journal of non-crystalline solids 2006, 352 (23-25), 2311-2314.
    19. Kim, J. H.; Du Ahn, B.; Lee, C. H.; Jeon, K. A.; Kang, H. S.; Lee, S. Y., Characteristics of transparent ZnO based thin film transistors with amorphous HfO2 gate insulators and Ga doped ZnO electrodes. Thin Solid Films 2008, 516 (7), 1529-1532.
    20. Yoon, S. M.; Yang, S.; Byun, C.; Park, S. H. K.; Cho, D. H.; Jung, S. W.; Kwon, O. S.; Hwang, C. S., Fully transparent non‐volatile memory thin‐film transistors using an organic ferroelectric and oxide semiconductor below 200 C. Advanced Functional Materials 2010, 20 (6), 921-926.
    21. Fujisaki, Y.; Koga, H.; Nakajima, Y.; Nakata, M.; Tsuji, H.; Yamamoto, T.; Kurita, T.; Nogi, M.; Shimidzu, N., Transparent nanopaper‐based flexible organic thin‐film transistor array. Advanced Functional Materials 2014, 24 (12), 1657-1663.
    22. Turgut, C.; Sinha, G.; Lahtinen, J.; Nordlund, K.; Belmahi, M.; Philipp, P., Optimizing the sputter deposition process of polymers for the Storing Matter technique using PMMA. Journal of Mass Spectrometry 2016, 51 (10), 889-899.
    23. Hur, S.-H.; Khang, D.-Y.; Kocabas, C.; Rogers, J. A., Nanotransfer printing by use of noncovalent surface forces: Applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers. Applied Physics Letters 2004, 85 (23), 5730-5732.
    24. Meitl, M. A.; Zhu, Z.-T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G.; Rogers, J. A., Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature materials 2006, 5 (1), 33.
    25. Yim, K. H.; Zheng, Z.; Liang, Z.; Friend, R. H.; Huck, W. T.; Kim, J. S., Efficient Conjugated‐Polymer Optoelectronic Devices Fabricated by Thin‐Film Transfer‐Printing Technique. Advanced Functional Materials 2008, 18 (7), 1012-1019.
    26. Linder, V.; Gates, B. D.; Ryan, D.; Parviz, B. A.; Whitesides, G. M., Water‐Soluble Sacrificial Layers for Surface Micromachining. small 2005, 1 (7), 730-736.
    27. Wei, Q.; Miyanishi, S.; Tajima, K.; Hashimoto, K., Enhanced charge transport in polymer thin-film transistors prepared by contact film transfer method. ACS applied materials & interfaces 2009, 1 (11), 2660-2666.
    28. Wei, Q.; Tajima, K.; Hashimoto, K., Electrical instability of polymer thin-film transistors using contact film transfer methods. Applied Physics Letters 2010, 96 (24), 110.
    29. Tada, A.; Geng, Y.; Wei, Q.; Hashimoto, K.; Tajima, K., Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nature materials 2011, 10 (6), 450.
    30. Ji, D.; Donner, A. D.; Wilde, G.; Hu, W.; Fuchs, H., Poly (sodium-4-styrene sulfonate)(PSSNa)-assisted transferable flexible, top-contact high-resolution free-standing organic field-effect transistors. RSC Advances 2015, 5 (119), 98288-98292.
    31. Zhao, B.; Ji, G.; Gao, X., Transfer printing of magnetic structures with enhanced performance using a new type of water-soluble sacrificial layer. RSC Advances 2015, 5 (70), 56959-56966.
    32. Van der Pauw, L., A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips research reports 1958, 13, 1-9.
    33. Flegler, S. L.; Heckman, J. W.; Klomparens, K. L., Scanning and Transmission Electron Microscopy: An Introduction. Oxford University Press: 1993.
    34. 林麗娟, X 光繞射原理及其應用. X 光材料分析技術與應用專題 1994.
    35. Lee, S. H.; Cho, S. H.; Kim, H. J.; Kim, S. H.; Lee, S. G.; Song, K. H.; Song, P. K., Properties of ito (indium tin oxide) film deposited by ion-beam-assisted sputter. Molecular Crystals and Liquid Crystals 2012, 564 (1), 185-190.
    36. Amalathas, A. P.; Alkaisi, M. M., Effects of film thickness and sputtering power on properties of ITO thin films deposited by RF magnetron sputtering without oxygen. Journal of Materials Science: Materials in Electronics 2016, 27 (10), 11064-11071.
    37. Cho, J. S.; Koh, S. K.; Yoon, K. H., Microstructure and Electrical Properties of Indium Oxide Thin Films Prepared by Direct Oxygen Ion‐Assisted Deposition. Journal of the Electrochemical Society 2000, 147 (3), 1065-1070.
    38. 楊曉韻, 轉印氧化銦錫薄膜於有機電子材料之研究. 2016.
    39. Moss, T., The interpretation of the properties of indium antimonide. Proceedings of the Physical Society. Section B 1954, 67 (10), 775.
    40. Tanahatoe, J.; Kuil, M., Polyelectrolyte aggregates in solutions of sodium poly (styrenesulfonate). The Journal of Physical Chemistry B 1997, 101 (31), 5905-5908.
    41. Meinhold, D.; Schweiss, R.; Zschoche, S.; Janke, A.; Baier, A.; Simon, F.; Dorschner, H.; Werner, C., Hydrogel characteristics of electron-beam-immobilized poly (vinylpyrrolidone) films on poly (ethylene terephthalate) supports. Langmuir 2004, 20 (2), 396-401.
    42. Burkert, S.; Schmidt, T.; Gohs, U.; Dorschner, H.; Arndt, K.-F., Cross-linking of poly (N-vinyl pyrrolidone) films by electron beam irradiation. Radiation Physics and Chemistry 2007, 76 (8-9), 1324-1328.
    43. Guo, C. F.; Ren, Z., Flexible transparent conductors based on metal nanowire networks. Materials Today 2015, 18 (3), 143-154.
    44. Crespo-Quesada, M.; Andanson, J.-M.; Yarulin, A.; Lim, B.; Xia, Y.; Kiwi-Minsker, L., UV–ozone cleaning of supported poly (vinylpyrrolidone)-stabilized palladium nanocubes: effect of stabilizer removal on morphology and catalytic behavior. Langmuir 2011, 27 (12), 7909-7916.
    45. Hoogenboom, R.; Thijs, H. M.; Wouters, D.; Hoeppener, S.; Schubert, U. S., Tuning solution polymer properties by binary water–ethanol solvent mixtures. Soft Matter 2008, 4 (1), 103-107.

    QR CODE