簡易檢索 / 詳目顯示

研究生: 郭芷昀
Chih-Yun Kuo
論文名稱: 以原子層沉積法於一維氮化銦奈米結構上的鉑觸媒沉積之研究
Atomic layer deposition of Pt catalysts on one dimensional InN nanostructures
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 林麗瓊
Li-Chiung Lin
江志強
Jyh-Chiang Jiang
胡銘顯
Ming-Shian Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 152
中文關鍵詞: 氮化銦奈米結構原子層沉積直接甲醇燃料電池
外文關鍵詞: InN nanostructure, atomic layer deposition, DMFC
相關次數: 點閱:350下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用具有大表面積及特殊晶面的氮化銦奈米結構為基材以原子層沉積法沉積鉑(Pt)金屬觸媒,探討觸媒沉積後的組成及表面形貌,期待可作為直接甲醇燃料電池陽極觸媒方面的應用。首先,以二氧化矽為基板,探討在不同溫度下鉑的先驅物三甲基環戊二烯基鉑在基材表面的成長模式,發現可區分成三個區域:(1) 當基材溫度(Ts)小於2500C時,原料裂解成二甲基鉑以致於吸附態產生立體阻礙而無法達到單層飽和吸附;(2) 基材溫度介於2500C到3000C時,原料裂解成單甲基鉑吸附至基材,自我限制成長機制在此區域成立。(3) 基材溫度大於3500C:甲基已完全解離,剩下裸露的Pt原子以致於在表面上產生多層吸附。在3000C 、[O2] = 28.6%的條件下沉積Pt金屬於氮化銦奈米結構上,由TEM電鏡圖可知約15個沉積週期後金屬層顆粒粒徑約9-11nm,且為多晶成長,在循環伏安測量發現具有高的電流密度但抗毒化的能力較差。當溫度降至2800C、[O2] = 28.6%時,金屬粒徑分布主要介於4-5nm之間,透過循環伏安圖顯示在0.34V的低驅動電位便可有效進行甲醇的催化反應,並得到較高的正逆掃電流值,擁有較好的抗毒化能力。


    One-dimensional InN nanostructures with large surface area and high conductivity were used as templates for the deposition Pt catalyst by using atomic layer deposition (ALD) method. The chemical composition, morphology and electrochemical characteristics which were applicable for the anode electrode for direct methanol fuel cell (DMFC) were also investigated. First, the growth mechanism in a ALD system using CpPtMe3 as the precursor was investigated. The growth could be separeted into three regions:(1) Ts < 2500C, a part of precursor was decomposed to form dimethyl platinum which causes steric hindrance on the substrate surface. (2) 2500C < Ts < 3000C:precursor was decomposed to form methyl platinum and matched self-limiting mechanism. (3) Ts > 3500C:precursor was decomposed to form platinum atom and multilayer-adsorption occurred on the surface. Then, a typical ALD Pt deposition condition that applied 5.71×10-4 torr Pt precursor for 3 seconds exposure and [O2] = 28.6% for 2 seconds exposure at 3000C was used for Pt deposition on InN nanostructures. TEM results showed that the deposition of Pt catalyst on InN was polycrystalline and the average diameter of Pt cluster was about 9-11 nm. Decreasing the growth temperature to 2800C showed a better Pt coverage result of slightly (111) oriented on InN nanostructures. A cyclic voltammetry measurement with respect to methanol showed quite a small onset potential at 0.34V, coincident with the value (0.35V) for single crystalline Pt(111).

    摘 要 I 英文摘要 II 致謝 IV 目錄 V 圖索引 VIII 表索引 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 燃料電池簡介 3 1.3原子層磊晶法的薄膜成長機制及特點 9 1.4 特殊晶面的形態控制 13 1.5 實驗動機與目的 15 第二章 實驗方法及分析儀器 18 2.1 實驗材料及藥品 18 2.2 實驗設備 25 2.3 分析儀器 29 2.3.1 場發射掃描式電子顯微鏡 29 2.3.2 穿透式電子顯微鏡 29 2.3.3 化學分析電子能譜儀 / X-光 光電子能譜儀 30 2.3.4 X光繞射分析儀 31 2.3.5 電化學分析儀器 32 2.4 實驗流程 34 2.4.1 鉑觸媒沉積步驟 35 2.4.2 試片特性分析 35 2.4.3 製備Pt /InN奈米結構電極 36 2.4.4 循環伏安法燃料測試 36 第三章 結果與討論 38 3.1 以ALD法成長Pt觸媒層之特性分析 38 3.1.1 基材溫度與成長速率的關係 38 3.1.2 氧氣百分率對Pt金屬層的影響 55 3.1.3 金屬層厚度的探討 59 3.1.4 以氫氣為反應氣體成長Pt於SiO2基材上 63 3.2 原子層沉積Pt金屬觸媒於InN奈米結構 67 3.2.1 不同溫度沉積的影響 67 3.2.2 在3000C下不同氧氣濃度百分比的ALD供給對沉積Pt於InN奈米結構上的影響 77 3.2.3 在2800C下不同氧氣濃度百分比的ALD供給對沉積Pt於InN奈米結構上的影響 88 3.2.4 電化學分析 100 第四章 結論 104 第五章 參考文獻 106 附錄 112

    1. 陳振源,「未來的綠色能源─燃料電池」,科學發展雜誌391期,2005年
    2. B.C.H. Steele and A. Heinzel, Nature, 414, 345-352 (2001)
    3. B.C.H. Steele, J. Mater. Sci., 36,1053-1068 (2001)
    4. 陳陵援、林修正,「燃料電池中的觸媒」,科學發展雜誌, 370期,2003年
    5. 楊志忠、林頌恩、韋文誠,「燃料電池的發展現況」,科學發展雜誌367期,2003年
    6. A.K. Shukla, R.K. Raman, Annu. Rev. Mater. Res., 33, 155-168 (2003)
    7. 譚小金,「直接甲醇燃料電池關鍵材料-正負極觸媒的技術發展現況」, ITIS專欄, 2004年
    8. S.D. Lin, T.C. Hsiao, J.R. Chang, A.S. Lin, J. Phys. Chem. B, 103, 97-103 (1999).
    9. W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras, Q. Xin, Appl. Cat. B: Environmental, 46, 273-285 (2003).
    10. Y.J. Zhang , A. Maroto-Valiente, I. Rodriguez-Ramos, Q. Xin, A. Guerrero-Ruiz, Cat. Today, 93, 619-626 (2004).
    11. L.X. Yang, R.G. Allen, K. Scott, P. Christensen, S. Roy, J. Fuel Cell Sci. Technol., 2, 104-110 (2005).
    12. H.B. Suffredini, V. Tricoli b, L.A. Avaca a, N. Vatistas, Electrochem. Commun., 6, 1025-1028 (2004).
    13. Dianxue Cao, Steven H. Bergens, J. Power Sources, 134, 170-180 (2004).
    14. H. Mercedes Villullas, Flora I. Mattos-Costa, Luis O. S. Bulhoes, J. Phys. Chem. B, 108, 12898-12903 (2004).
    15. Z.U. Chen, X.P. Qiu, B. Lu, S.H. Zhang, W.T. Zhu, L.Q. Chen, Electrochem. Commun., 7, 593-596 (2005).
    16. N. Takezawa, N. Iwasa, Catal. Today 36, 45-56 (1997).
    17. F.J. Marino, E.G. Cerrela, S. Duhalde, M. Jobbagy, M.A. Laborde, Int. J. Hydrogen Energy, 23, 1095-1101 (1998).
    18. F.J. Marino, M. Boveri, G. Baronetti, M. Laborde, Int. J. Hydrogen Energy, 26 665-668 (2001).
    19. E.Y. Garcia, M.A. Laborde, Int. J. Hydrogen Energy, 16, 307-312 (1991).
    20. S. Freni, N. Mondello, S. Cavallaro, G. Cacciola, V.N. Parmon, V.A. Sobyanin, React. Kinet. Catal. Lett., 71, 143-152 (2000).
    21. W. Galvita, G.L. Semin, V.D. Belyaev, V.A. Semikolenov, P. Tsiakaras, V.A. Sobyanin, Appl. Catal. A: Gen., 220, 123-127 (2001).
    22. A.N. Fatsikostas, D.I. Kondarides, X.E. Verykios, Chem. Commun. 851-852 (2001).
    23. S. Cavallaro, N. Mondello, S. Freni, J. Power Sources, 102, 198-204 (2001).
    24. A.N. Fatsikostas, D.I. Kondarides, X.E. Verykios, Catal. Today, 75, 145-155 (2002).
    25. J.P. Breen, R. Burch, H.M. Coleman, Appl. Catal. B: Environ. 39, 65-74 (2002).
    26. J. Llorca, N. Homs, J. Sales, P.R. de la Piscina, J. Catal., 209, 306-317 (2002).
    27. M.A. Goula, S.K. Kontou, P.E. Tsiakaras, Appl. Catal. B: Environ. 49, 135-144 (2004).
    28. G. A. Deluga, J. R. Salge, Schmidt, L. D., Verkios, X. E. Sicence, 303, 993-997 (2004).
    29. A. Yee, S. J. Morrison, H. Idriss, Catal. Today, 63, 327-335 (2000).
    30. L.V. Mattos, F.B. Noronha, J. Catal., 233, 453-463 (2005).
    31. F.K. Chong, J.A. Anderson, C.H. Rochester, J. Catal., 190, 327-337 (2000).
    32. D.K. Liguras, D.I. Kondarides, X.E. Verkios, Appl. Catal. B: Environ. 43, 345-354 (2003).
    33. F. Frusteri, S. Greni, L. Spadaro, V. Chiodo, G. Bonura, S. Donato, Catal. Commun. 5, 611-615 (2004).
    34. E.S. Ranganathan, S.K. Bej, L.T. Thompson, Appl. Catal. A: Gen. 289, 153-162 (2005).
    35. J.M. Guil, N. Homs, J. Llorca, P.R. Piscina, J. Phys. Chem. B, 109, 10813-10819 (2005).
    36. M. Ni, Dennis Y.C. Leung, M.K.H. Leung, Int. J. Hydrogen Energy, 32, 3238-3247 (2007).
    37. N. Homs, J. Llorca, P. Ramirez de la Piscina, Cat. Today, 116, 361-366 (2006).
    38. T. Suntola, J. Hyvarinen, Annu. Rev. Mater. Sci. , 15, 171-195 (1985).
    39. T. Suntola, Acta Polytech. Scand., Elect. Eng. Ser., 64, 242-270 (1989).
    40. T. Suntola, Thin Solid Films, 216, 84-89 (1992).
    41. T. Suntola, M.J. Antson, U. S. Patent No. 4058430(1997).
    42. T. Suntola, Mat. Sci. Rep., 4, 261-265 (1989).
    43. J. Nishizawa, H. Abe and T. Kurabayashi, J. Electrochem. Soc., 132, 1197-1200 (1985).
    44. A. Usui, H. Sunakawa, F.J. Stutzler and K. Ishida, Appl. Phys. Lett., 56, 289-291 (1990).
    45. T. Meguro, S. Iwai, Y. Aoyagi, K. Ozaki and Y. Yamamoto, J. Crystal Growth, 99, 540-544 (1990).
    46. H. Ohno, S. Ohtsuka, A. Ohuchi, T. Mashita and H. Hasegawa, J. Crystal Growth, 93, 342-346 (1988).
    47. A. Koukitsu, H. Nakai, A. Saegusa, T. Suzuki, O. Nomura and H. Sski, Jpn. J. Appl. Phys., 27, L744-L749 (1988).
    48. B.T. McDermott and N.A. EI-Masry, Appl. Phys. Lett., 51, 1830-1832 (1987).
    49. Y. Sun, Y. Xia, Science, 298, 2176-2179 (2002).
    50. H. Song, F. Kim, S. Connor, G. A. Somorjai, P. Yang, J. Phys. Chem. B, 109, 188-193 (2005).
    51. K.M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G.A. Somorjai, Nano Lett., 7, 3097-3101 (2007).
    52. J.C. Hierso, R. Feurer, P.Kalck, Chem. Mater., 12, 390-399 (2000).
    53. P. Serp, J.C. Hierso, R. Feurer, Y. Kihn, P. Kalck, J.L. Faria, A.E. Aksoylu, A.M.T. Pacheco, J.L. Figueiredo, Carbon, 37, 527-530 (1999).
    54. P. Serp, R. Feurer, Y. Kihn, P. Kalck, J.L. Faria, J. L. Figueiredo, J. Mater. Chem., 11, 1980-1981 (2001).
    55. G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Nature, 393, 346-348 (1998).
    56. K. Jiang, A. Eitan, L.S. Schadler, P.M. Ajayan, R.W. Siegel, N. Grobert, M. Mayne, M. Reyes-Reyes, H. Terrones, M. Terrones, Nano Lett., 3, 275-277 (2003).
    57. M. Endo, Y.A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, M. Terrones, M.S. Dresselhaus, Nano Let., 3, 723-726 (2003).
    58. Y. Zhang, N.W. Franklin, R.J. Chen, H.Dai, Chem. Phys. Lett., 77, 35-39 (2000).
    59. J. Kong, M. G. Chapline, H. Dai, Adv. Mater., 18, 1384-1386 (2000).
    60. C.L. Sun, L.C. Chen, M.C. Su, L.S. Hong, O.Chyan, C.Y. Hsu, K.H. Chen, T.F. Chang, and L. Chang, Chem. Mater. 17, 3749-3753 (2005).
    61. 胡銘顯,「低維光電晶體的合成與特性分析」,台灣科技大學化學工程研究所博士論文,中華民國95年4月。
    62. M.S. Hu, W.M. Wang, T.T. Chen, L.S. Hong, C.W. Chen, C.C. Chen, Y.F. Chen, K.H. Chen, and L.C. Chen, Adv. Funct. Mater., 16, 537-541 (2006).
    63. T. Aaltonen, A. Rahtu, M. Ritala, M. Leskela, Electrochem. Solid-State Lett. 6, C130-133 (2003).
    64. T. Aaltonen, M. Ritala, T. Sajavaara, J. Keinonen, M. Leskela, Chem. Mater. 15, 1924-1928 (2003).
    65. M. Hiratani, T. Nabatame, Y. Matsui, K. Imagawa, S. Kimura, J. Electrochem. Soc. 148, C524-527 (2001).
    66. A.J. Bard and L.R. Faulkner, “electrochemical methods fundamentals and applications, 2nd edition”, WILEY, pp.226.
    67. 林政明,「以有機金屬化學氣相沉積法共沉積鉑-釕觸媒於一維氮化銦奈米帶上之研究」,台灣科技大學化學工程研究所碩士論文,九十六年七月。
    68. H.J. Sun, E.S. Choi, S.Y. Kweon, N.K. Kim, S.J. Yeom, J.S. Roh, H.C. Sohn, J.W. Kim, Jpn. J. Appl. Phys. 43, L624-l627 (2004).
    69. J. Clavilier, R. Parsons, R. Durand, C. Lamy, J.M. Leger, J. Electroanal. Chem. 124, 321-326 (1981).
    70. M.P. Hogarth, T.R. Ralph, Platinum Met. Rev., 46, 146-164 (2002).

    QR CODE