簡易檢索 / 詳目顯示

研究生: 黃顯鈞
Hsien-chun Huang
論文名稱: 三元奈米金屬觸媒Pt/Ru/Ir,Pt/Ru/Sn, Pt/Sn/Ti 於甲醇燃料電池之陽極的應用
Applications of Trimetallic Nanoparticles for Anode of Direct Methanol Fuel Cell.
指導教授: 黃炳照
Bing Joe Hwang
口試委員: 鄭銘堯
Ming-Yao Cheng
周澤川
Tse-Chuan Chou
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 145
中文關鍵詞: 直接甲醇燃料電池陽極觸媒三元金屬觸媒X光吸收光譜甲醇氧化反應
外文關鍵詞: direct methanol fuel cell (DMFC), Anode catalyst, Trimetallic Nanoparticle, X-ray absorption spectroscopy (XAS), methanol oxidation reaction(MOR)
相關次數: 點閱:298下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為合成以碳為基材之三元金屬奈米觸媒,再以同步輻射X光吸收光譜分析觸媒之結構,並探討其電化學反應之活性。
    由X光吸收光譜量測結果顯示,本研究成功合成Pt/Ru/Ir三元金屬觸媒,並由XRD及TEM得知,觸媒之晶粒及顆粒大小約為3~5 nm。在此三金屬觸媒之電化學特性部分,得到優於商業化觸媒Pt50Ru50的結果。Pt/Ru/Sn的系列中隨著Sn的加入修飾CO脫附的起始電位便會降低,整體電化學特性發現有優於商業化觸媒Pt50Ru50的組成比例存在。


    The trimetallic catalysts were synthesized by the modified Watanabe method developed from our lab. The structural parameters of the catalyst are investigated by X-ray Aborption Spectroscopy (XAS) technique. Their correlations between structures and electrochemical activity of methanol oxidation reaction (MOR) and CO stripping are explored.
    The XAS data indicate the PtRuIr catalysts were in alloy state. XRD and TEM showed that the average size were about 3~5 nm. The MOR activity of the catalyst is improved due to smaller size and higher alloy extent, and CO stripping capability is. It is found that in the PtRuIr series catalysts have better electrochemical performance than the commercial Pt50Ru50 catalyst. In PtRuSn series catalysts, the onset potential of CO stripping decreases when Sn is introduced. It is also found that in the PtRuSn series catalysts have better electrochemical performance than the commercial Pt50Ru50 catalyst.

    摘要 I 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論及文獻回顧 1 1.1 前言 1 1.2 直接甲醇燃料電池(DMFC) 5 1.2.1. DMFC陽極觸媒 7 1.2.2. DMFC電解質 11 1.2.3. DMFC陰極材料 12 1.3 直接甲醇燃料電池性能之衰退 16 1.3.1. 陽極觸媒之衰退 17 1.3.2. 陰極觸媒之衰退 19 1.4 直接甲醇燃料電池電極穩定性之改進 21 1.4.1. 陽極觸媒之改進 21 1.4.2. 陰極觸媒之改進 25 1.5 研究動機與目的 28 第二章 原理 29 2.1 XRD分析原理 29 2.2 掃描式電子顯微鏡及X射線能譜儀(SEM/EDX) 30 2.3 X光吸收光譜原理 32 2.3.1 EXAFS 33 2.3.2 XANES 37 2.3.3 數據分析 38 2.4 電化學原理 43 2.4.1 循環伏安法 43 2.4.2 極化曲線 47 2.4.3 旋轉盤電極(Rotating Disc Electrode, RDE) 48 2.4.4 旋轉環盤電極(Rotating Ring-Disc Electrode, RRDE) 50 第三章 實驗設備與方法 55 3.1 實驗藥品及設備 55 3.1.1 實驗藥品 55 3.1.2 儀器設備 56 3.2 實驗方法 57 3.2.1 陽極觸媒製備 57 3.2.1.1 碳黑之前處理 57 3.2.1.2 修飾Watanabe方法合成PtRuIr/C 觸媒 58 3.2.1.3 修飾Watanabe方法合成PtRuSn/C觸媒 59 3.2.1.4 修飾Watanabe方法合成PtSnTi/C觸媒 61 3.2.2 材料鑑定與分析 62 3.2.2.1 SEM/EDX分析 62 3.2.2.2 XRD分析 63 3.2.2.3 TEM分析 64 3.2.2.4 ICP-AES感應偶合電漿放射光譜儀 64 3.2.2.5 電化學特性測試 64 3.2.2.5.1 電極片製備 65 3.2.2.5.2 電化學特性量測 65 3.2.2.6 X光吸收光譜 67 3.2.2.6.1 EXAFS之曲線適配 67 3.2.2.6.2 以X光吸收光譜分析觸媒結構 68 第四章 結果與討論 73 4.1 PtRuIr系列 73 4.1.1 元素分析 73 4.1.2 材料之晶相與形態之分析 73 4.1.3 觸媒之結構鑑定 76 4.1.3.1 X光吸收進邊緣結構(XANES) 76 4.1.3.2 延伸X光吸收微細結構(EXAFS) 80 4.1.4 電化學特性量測結果 90 4.1.4.1 觸媒在硫酸水溶液中之循環伏安分析 90 4.1.4.2 CO 剝除 92 4.1.4.3 電催化甲醇氧化循環伏安分析 94 4.1.4.4 甲醇氧化極化曲線 95 4.1.4.5 電化學穩定性測試 97 4.2 PtRuSn 系列 101 4.2.1 元素分析 101 4.2.2 材料之晶相與形態之分析 101 4.2.3 電化學特性量測結果 104 4.2.3.1 觸媒在硫酸水溶液中之循環伏安分析 104 4.2.3.2 CO 剝除 106 4.2.3.3 電催化甲醇氧化循環伏安分析 108 4.2.3.4 甲醇氧化極化曲線 109 4.2.3.5 電化學穩定性測試 111 4.3 PtSnTi 系列 115 4.3.1 元素分析 115 4.3.2 材料之晶相與形態之分析 115 4.3.3 電化學特性量測結果 118 4.3.3.1 觸媒在硫酸水溶液中之循環伏安分析 118 4.3.3.2 CO 剝除 120 4.3.3.3 電催化甲醇氧化循環伏安分析 123 4.3.3.4 甲醇氧化極化曲線 123 4.3.3.5 電化學穩定性測試 125 第五章 討論 129 5.1. PtRuIr 系列合金觸媒之探討 129 5.2. PtRuSn 系列合金觸媒之探討 133 5.3. PtSnTi 系列合金觸媒之探討 136 第六章 結論 139 6.1. PtRuIr 系列 139 6.2. PtRuSn 系列 139 6.3. PtSnTi 系列 140 參考文獻 141

    1. Carrette, L., K.A. Friedrich, and U. Stimming, Fuel Cells - Fundamentals and Applications. Fuel Cells, 2001. 1(1): p. 5-39.
    2. Sundmacher, K., et al., Dynamics of the direct methanol fuel cell (DMFC):experiments and model-based analysis. Chemical Engineering Science, 2001. 56: p. 333.
    3. Frelink, T., W. Visscher, and J.A.R. van Veen, On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surface Science, 1995. 335: p. 353-360.
    4. Gasteiger, H.A., et al., Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. Journal of Physical Chemistry, 1993. 97(46): p. 12020-12029.
    5. Rauhe, J.B.R., F.R. McLarnon, and E.J. Cairns, Direct Anodic Oxidation of Methanol on Supported Platinum/Ruthenium Catalyst in Aqueous Cesium Carbonate. Journal of The Electrochemical Society, 1995. 142(4): p. 1073-1084.
    6. Brankovic, S.R., et al., Carbon monoxide oxidation on bare and Pt-modified and Ru(0001) single crystal electrodes. Journal of Electroanalytical Chemistry, 2002. 532(1-2): p. 57-66.
    7. Lu, C., et al., UHV, Electrochemical NMR, and Electrochemical Studies of Platinum/Ruthenium Fuel Cell Catalysts. The Journal of Physical Chemistry B, 2002. 106(37): p. 9581-9589.
    8. Beden, B., et al., Electrocatalytic oxidation of methanol on platinum-based binary electrodes. Journal of Electroanalytical Chemistry, 1981. 127(1-3): p. 75-85.
    9. Hamnett, A., Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today, 1997. 38(4): p. 445-457.
    10. Lin, W.F., et al., Electrocatalytic activity of Ru-modified Pt(111) electrodes toward CO oxidation. Journal of Physical Chemistry B, 1999. 103(33): p. 6968-6977.
    11. Smotkin, E.S., Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes. Journal of Physical Chemistry B, 2000. 104(15): p. 3518-3531.
    12. Zhong, C.J. and M.M. Maye, Core-shell assembled nanoparticles as catalysts. Advanced Materials, 2001. 13(19): p. 1507-1511.
    13. Shukla, A.K., et al., Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells. Journal of Electroanalytical Chemistry, 2004. 563(2): p. 181-190.
    14. Watanabe, M., Y. Furuuchi, and S. Motoo, Electrocatalysis by ad-atoms. Part XIII. Preparation of ad-electrodes with tin ad-atoms for methanol, formaldehyde and formic acid fuel cells. Journal of Electroanalytical Chemistry, 1985. 191(2): p. 367-375.
    15. Ledjeff-Hey, K. and A. Heinzel, Critical issues and future prospects for solid polymer fuel cells. Journal of Power Sources, 1996. 61(1-2): p. 125-127.
    16. Carrette, L., K.A. Friedrich, and U. Stimming, Fuel cells: Principles, types, fuels, and applications. ChemPhysChem, 2000. 1(4): p. 163-193.
    17. Watanabe, M., M. Uchida, and S. Motoo, Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. Journal of Electroanalytical Chemistry, 1987. 229(1-2): p. 395-406.
    18. Chu, D. and S. Gilman, Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures. Journal of The Electrochemical Society, 1996. 143(5): p. 1685-1690.
    19. Ley, K.L., et al., Methanol oxidation on single-phase Pt-Ru-Os ternary alloys. Journal of The Electrochemical Society, 1997. 144(5): p. 1543-1548.
    20. Venkataraman, R., H.R. Kunz, and J.M. Fenton, Development of new CO tolerant ternary anode catalysts for proton exchange membrane fuel cells. Journal of The Electrochemical Society, 2003. 150(3): p. A278-A284.
    21. Reddington, E., et al., Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998. 280(5370): p. 1735-1737.
    22. Arico, A.S., et al., Investigation of a carbon-supported quaternary PtRuSnW catalyst for direct methanol fuel cells. Journal of Power Sources, 1995. 55(2): p. 159-166.
    23. Choi, W.C., J.D. Kim, and S.I. Woo, Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry. Catalysis Today, 2002. 74(3-4): p. 235-240.
    24. Ramesh, K.V., et al., Preparation and characterization of carbon-based fuel-cell electrodes with platinum-group bimetallic catalysts. Journal of Electroanalytical Chemistry, 1987. 223(1-2): p. 91-106.
    25. Couturier, G., et al., Electrocatalysis of the hydrogen oxidation and of the oxygen reduction reactions of Pt and some alloys in alkaline medium. Electrochimica Acta, 1987. 32(7): p. 995-1005.
    26. 呂崇銘, 白金-合金/Nafion觸媒電極之製備與其氣固氣-固相氧氣還原反應之動力探討, in 化學工程系. 1992, 東海大學.
    27. Mukerjee, S., S. Srinivasan, and M.P. Soriaga, Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. Journal of The Electrochemical Society, 1995. 142(5): p. 1409-1422.
    28. Hamann, C.H., A. Hammnett, and W. Vielstich, Electrochemistry, ed. 1st. 1998: Wiley-VCH, Weinheim.
    29. Wroblowa, H.S., P. Yen Chi, and G. Razumney, Electroreduction of oxygen a new mechanistic criterion. Journal of Electroanalytical Chemistry, 1976. 69(2): p. 195-201.
    30. Tarasevich, M.R., A. Sadkowski, and E. Yeager, Comprehensive Treatise of Electrochemistry. Oxygen Electrochemistry, ed. J.O. Bockris, et al. 1983, New York. 301.
    31. Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Journal of Molecular Catalysis, 1986. 38(1-2): p. 5-25.
    32. 林冠男, 密度泛涵理論在Pt15, Pt11Fe4和Pt11Co4團簇上對氧氣還原之研究, in 化學工程所. 2006, 台灣科技大學.
    33. Damjanovic, A. and V. Brusic, Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochimica Acta, 1967. 12(6): p. 615-628.
    34. E. Yeager, M.R., D. Gervasio, A. Razaq, Structural Effects in Electrocatalysis and Oxygen Electrochemistry, ed. D. Scheerson, et al. Vol. 92-11. 1992: The Electrochemical Society Inc., Pennington, NJ, 40
    35. Brosha, E., et al., eds. Direct Methanol Fuel Cells. Hydrogen, Fuel Cells & Infrastructure Technologies Program 2004 Annual Review. 2004.
    36. Liu, J., et al., Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test. Phys. Chem. Chem. Phys., 2004. 6: p. 4.
    37. PIELA, et al., Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. Vol. 151. 2004, Pennington, NJ, ETATS-UNIS: Electrochemical Society.
    38. Sarma, L.S., et al., Investigations of direct methanol fuel cell (DMFC) fading mechanisms. Journal of Power Sources, 2007. 167(2): p. 358-365.
    39. FERREIRA, et al., Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells : A mechanistic investigation. Vol. 152. 2005, Pennington, NJ, ETATS-UNIS: Electrochemical Society.
    40. Cao, D. and S.H. Bergens, Pt-Ruadatom nanoparticles as anode catalysts for direct methanol fuel cells. Journal of Power Sources, 2004. 134(2): p. 170-180.
    41. Shimazaki, Y., et al., Preparation and characterization of long-lived anode catalyst for direct methanol fuel cells. Journal of Colloid and Interface Science, 2006. 300(1): p. 253-258.
    42. Chen, J.-M., et al., Multi-scale dispersion in fuel cell anode catalysts: Role of TiO2 towards achieving nanostructured materials. Journal of Power Sources, 2006. 159(1): p. 29-33.
    43. Tian, J., et al., Highly stable PtRuTiOx/C anode electrocatalyst for direct methanol fuel cells. Electrochemistry Communications, 2007. 9(4): p. 563-568.
    44. Zhang, J., et al., Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science, 2007. 315(5809): p. 220-222.
    45. Liu, G., et al., Pt4ZrO2/C cathode catalyst for improved durability in high temperature PEMFC based on H3PO4 doped PBI. Electrochemistry Communications, 2007. 9(1): p. 135-141.
    46. 陳力俊, 材料電子顯微鏡學. 1994: 儀器科技研究中心.
    47. 彭文權, 以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒, in 化學工程學系. 1997, 元智工學院 
    48. Tran, T.D. and S.H. Langer, Electrochemical measurement of platinum surface areas on particulate conductive supports. Analytical Chemistry, 1993. 65(13): p. 1805-1807.
    49. Markovic, N.M., et al., Electrooxidation of CO and H2/CO mixtures on Pt(111) in acid solutions. Journal of Physical Chemistry B, 1999. 103(3): p. 487-495.
    50. 胡啟章, 電化學原理與方法. 2002: 五南圖書出版公司.
    51. Hwang, B.J., et al., Structural Models and Atomic Distribution of Bimetallic Nanoparticles as Investigated by X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2005. 127(31): p. 11140-11145.
    52. Lin, Y.-C., et al., Combined Experimental and Theoretical Investigation of Nanosized Effects of Pt Catalyst on Their Underlying Methanol Electro-Oxidation Activity. The Journal of Physical Chemistry C, 2009. 113(21): p. 9197-9205.

    QR CODE