簡易檢索 / 詳目顯示

研究生: 陳景翔
Ching-Hsiang Chen
論文名稱: 以臨場同步輻射X光吸收光譜技術研究雙金屬奈米粒子之生成機制與原子結構鑑定
In-Situ Investigation of X-ray Absorption Spectroscopy on Formation Mechanism of Bimetallic Nanoparticles and Their Atomic Structure Identification
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
none
萬其超
none
吳乃立
none
陳貴賢
none
李志甫
none
杜景順
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 226
中文關鍵詞: 膠體法X光吸收光譜微乳化系統雙金屬奈米觸媒
外文關鍵詞: colloid method, X-ray absorption spectroscopy, Bimetallic nanoparticles, microemulsion system
相關次數: 點閱:268下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當粒子擁有奈米級之粒徑時,其往往表現出異於塊材之嶄新材料特性。另外,擁有雙成份之金屬奈米粒子,由於具有第二元金屬之配位效應及奈米粒子內之原子分佈效應,使雙金屬奈米粒子展現更豐富之新奇特性,如觸媒特性、光學特性等。本論文主要以X光收光譜分析技術探討雙金屬奈米粒子之生成機構,主要包含四個系統:(1) 膠體還原法製備Pt-Ru雙金屬奈米粒子之生成機制;(2) 逆微胞微乳化系統之Ag-Pt雙金屬奈米粒子之生成機構;(3) 逆微胞微乳化系統之Pd-Pt雙金屬奈米粒子之生成機構; (4)逆微胞乳化系統之Pd-Au雙金屬奈米粒子之生成機構。此外,更進一步以X光吸收光譜適配出來之參數,探討其雙金屬粒子內原子之合金程度與原子分佈情形。此研究將有助於雙金屬奈米粒子之設計與合成,並可提供奈米粒子生產製備程序放大之參考。

    在Pt-Ru雙金屬奈米粒子系統,主要是以X光吸收光譜,探討修飾後之Watanabe膠體還原法,在過程中之金屬離子配位環境與其氧化還原狀態之變化。由Pt LIII-edge之邊緣結構發現,當NaHSO3加入H2PtCl6溶液之後,其Pt化合物還原成二價之狀態,且與[Pt(SO3)4]6−化合物之型態相符合,當進一步將過氧化氫加入此溶液,Pt化合物呈現[Pt(OH)6]2−物種。另外、由Ru K-edge之邊緣結構發現,當NaHSO3加入RuIIICl3溶液,Ru化合物被還原成[RuII(OH)4]2−化合物,進一步加入過氧化氫,將使[RuII(OH)4]2−化合物轉化成RuOx物種。其後將[Pt(OH)6]2−物種與RuOx物種混合,並加熱至100℃持續8小時,發現所生成之膠體中包還有Pt與Ru等金屬及金屬氧化物之貢獻。最後,經氫氣還原之PtRu/C雙金屬奈米粒子呈現殼-核型態,而Pt則富於核層,而Ru則富於殼層,且Pt呈現聚集之現象,而Ru之分散性則較佳。

    對於Ag-Pd雙金屬奈米粒子系統,其Ag-Pd雙金屬奈米粒子乃於AOT微乳化系統下製備,反應之程序主要分為兩個步驟,首先為Ag奈米粒子之製備,另一步驟則是藉著Ag奈米粒子與Pd2+離子反應生成雙金屬奈米粒子,並以臨場X光吸收光譜探測其生成過程。由Ag與Pd之K-edge邊緣結構分析結果發現,所生成之Ag-Pd雙金屬奈米粒子之結構中,其Ag原子之配位大多是Pd原子,而Pd原子之配位則大多是Pd原子。

    對於Pd-Pt雙金屬奈米粒子系統,其主要是利用臨場X光吸收光譜技術研究在逆微胞乳化系統下之Pd-Pt雙金屬奈米粒子初始生成機制。分析結果發現,Pd與Pt離子之還原程序與其所生成之奈米粒子呈現與聯氨還原劑之劑量有一定之相依性。經由Pd K-edge與Pt之LIII-edge邊緣結構解析後,其結構呈現核點為Pd原子,但核層為Pd-Pt雙原子混合分佈,而殼層則是以出現聚集之Pt原子為主。依據X光吸收光譜建立Pd-Pt與Ag-Pd之生成機制探討結果,進一步在逆微胞乳化系統下合成三明治型態Pdnuclei–Aucore–Pdshell雙金屬奈米粒子,並以X光吸收光譜探測其生成機構。首先先成長Pd奈米粒子,而後再以自身氧化還原之置換程序將Au離子還原,結果發現,所生成之奈米粒子,其結構為Pd原子佔據著核點與殼層之部位,而Au原子則佔據著核層部位之三明治型態Pdnuclei–Aucore–Pdshell雙金屬奈米粒子。

    上述之結果顯示,在金屬奈米粒子合成程序中,其金屬離子間或金屬離子與還原劑間或奈米金屬粒子與金屬離子間之反應,對合成之金屬奈米粒子之結構及原子分佈扮演極重要之角色。控制製程中之化學反應與奈米粒子間之交互作用參數,便可有效的設計出理想的奈米粒子結構。


    Nanoparticles exhibit novel material properties which largely differ from the bulk properties due to their particle sizes at nano-level. Bimetallic nanoparticles can possess improved catalytic and optical properties due to the ensemble with ligand effects of second metal and also alloying extent or atomic distribution play a dominant role in deciding their catalytic activity. Consequently, it is notable that the understanding of formation mechanism of nanoparticles is essential for the successful nanoparticle design and scaling up process. In this context, the main four objectives of the present research work are to explore the X-ray absorption spectroscopy based methods to understand the formation mechanism of bimetallic nanoparticle systems. The first one is the formation mechanism of Pt–Ru bimetallic nanoparticles synthesized by colloidal reduction method. The second study describes the formation mechanism of Ag–Pd bimetallic nanoparticles in AOT reverse micelles. The third one is the formation mechanism of Pd-Pt bimetallic nanoparticles in AOT reverse micelles. And the final one is the formation mechanism of Pd-Au bimetallic nanoparticles in AOT reverse micelles. In all the systems studied the extent of alloying and atomic distribution of core atoms in bimetallic clusters are also discussed based on the calculated XAS structural parameters.

    For system of Pt–Ru nanoparticles, Watanabe’s colloidal reduction method is slightly modified to improve homogeneity and atomic distribution in the Pt–Ru nanoparticles and the in situ XAS is utilized to monitor the evolution of Pt and Ru environments and their chemical states. The Pt LIII-edge XAS indicates that when H2PtCl6 is treated with NaHSO3, the platinum compound is found to be reduced to a Pt(II) form corresponding to the anionic complex [Pt(SO3)4]6−. Further oxidation of this anionic complex with hydrogen peroxide forms dispersed [Pt(OH)6]2− species. Analysis of Ru K-edge XAS results confirms the reduction of RuIIICl3 to [RuII(OH)4]2− species upon addition of NaHSO3. Addition of hydrogen peroxide to [RuII(OH)4]2− causes dehydrogenation and forms RuOx species. Mixing of [Pt(OH)6]2− and RuOx species and heat treatment at 100 0C for 8 hrs produced a colloidal sol containing both Pt and Ru metallic as well as ionic contributions. The structural model of the final Pt–Ru/C nanoparticles shows that the structure is similar to Pt-rich core and Ru-rich shell with a considerable amount of segregation in Pt region and with a less segregation in Ru region.

    For the system of Ag–Pd bimetallic nanoparticles, a two-step sequential reduction method is employed for the synthesis of Ag–Pd bimetallic clusters within AOT reverse micelles and the formation mechanism probed by in situ XAS. The first step involves the preparation of Ag nanoparticles and the second one is the reaction between Ag nanoparticles and Pd2+ ions. Analysis of Ag and Pd K-edge XAS spectra reveal that in the final stage Ag–Pd clusters in which ‘Ag’ atoms prefer to be surrounded by ‘Pd’ and ‘Pd’ atoms prefer to be surrounded by ‘Pd’ were formed.

    For the system of Pd–Pt nanoparticles, the formation mechanism of Pd–Pt bimetallic clusters at the early stage within water-in-oil microemulsion system of water/AOT/n-heptane is investigated by in situ XAS. The reduction of Pd and Pt ions and the formation of corresponding clusters are monitored as a function of dosage of reducing agent, hydrazine. Analysis of both the Pd K-edge and Pt LIII-edge reveal that the Pt atoms are partially segregated and rich in the shell region and the Pd–Pt alloy atoms are preferentially located in the core region and the Pd acts as nuclei to form the bimetallic Pd–Pt clusters in reverse micelles.

    In situ X-ray absorption spectroscopy (XAS) investigations are also performed during the growth of Pdnuclei–Aucore–Pdshell sandwich-like bimetallic clusters at the early stage within water-in-oil microemulsion system of water/AOT/n-heptane. The Pdnuclei–Aucore–Pdshell clusters are designed based on knowledge obtained from formation mechanisms of both the Pd–Pt and Ag–Pd clusters as studied by XAS. The Pd nanocluster is grown first and then Au atoms are reduced by redox-transmetalation process. The formation of Pd clusters as nuclei and also in the shell region and Au atoms in the core region is monitored by successive addition of the reducing agent and Au precursor solution. Analysis of both the Pd K-edge and Au LIII-edge reveal that the structure of the Pd-Au bimetallic nanoparticle in reverse micelles is Pdnuclei–Aucore–Pdshell and only few of Au atoms are dispersed on the surface.

    Compilation of the studies performed in the present investigation reveals that XAS is an important tool to probe the formation mechanism and chemical states of bimetallic nanoparticles and also with XAS one can study the interaction between nanopaticles and metal ions during the formation of bimetallic nanoparticles. Such studies are of great importance during the synthesis of metal-based nano-engineered clusters. XAS studies during the nanoparticle formation allows judicious control of the nanoparticles interaction parameters and can open up the possibility of a new approach to design and synthesis of structured-controlled bimetallic nanoparticles in the future.

    Contents Abstract (Chinese) I Abstract (English) III Acknowledgement (Chinese) VI Contents VII List of Tables XIII List of Schemes XV List of Figures XVI List of Symbols XXII Chapter 1: Overview 1 1.1 Bimetallic nanoparticles (NPs) 1 1.1.1 Preparation of bimetallic nanoparticles 5 1.1.2 Characterization of bimetallic nanoparticles 10 1.1.3 Investigation on the formation mechanism of bimetallic nanoparticles 14 1.2 X-ray absorption spectroscopy: principle, analysis and its applications in nanoparticles 19 1.2.1 X-ray absorption near edge spectroscopy (XANES) 24 1.2.2 Extended X-ray absorption fine structure (EXAFS) 27 1.2.3 Identification of structural models and atomic distribution by X-ray absorption spectroscopy 31 Chapter 2: Motivation 40 Chapter 3: Experiment and Data Analysis 42 3.1 Chemicals list 42 3.2 Instrument 43 3.2.1 X-ray diffraction analysis (XRD) 43 3.2.2 Energy dispersive X-ray analysis (EDX) 44 3.2.3 Transmission electron microscopy analysis (TEM) 45 3.2.4 Soft x-ray absorption measurement 45 3.2.5 Hard x-ray absorption spectroscopy measurement 46 3.2.5.1 Data collection 46 3.2.5.2 Data treatment 47 3.2.5.2.1 Conversion of experimental variables 47 3.2.5.2.2 Background removal 48 3.2.5.2.3 Normalization and μ0 correction 50 3.2.5.2.4 Conversion of E to k 50 3.2.5.2.5 Weighting scheme 51 3.2.5.2.6 Deglitching 52 3.2.5.2.7 Fourier transformation 53 3.2.5.2.8 Fourier filtering (FF) and curve fitting (CF) 54 3.3 Probing the formation mechanism and chemical states of carbon-supported Pt–Ru nanoparticles by in situ X-ray absorption spectroscopy 57 3.3.1 Synthesis of Pt–Ru bimetallic nanoparticles 57 3.3.2 EXAFS data analysis 57 3.4 Formation of bimetallic Ag–Pd nanoclusters via the reaction between Ag nanoclusters and Pd2+ Ions 59 3.4.1 Synthesis of Ag nanoclusters 59 3.4.2 Synthesis of Ag–Pd clusters in AOT reverse microemulsion 60 3.4.3 XAS data analysis 60 3.5 Nucleation and growth mechanism of Pd/Pt bimetallic clusters in AOT reverse micelles as studied by in situ X-ray absorption spectroscopy 62 3.5.1 Preparation of mono metallic Pd clusters in AOT reverse micelles 62 3.5.2 Preparation of bimetallic Pd/Pt clusters in AOT reverse micelles 63 3.5.3 XAS data analysis 63 3.6 Growth of Pdneclei-Aucore-Pdshell sandwich-like bimetallic clusters in microemulsion system investigated by in situ X-ray absorption spectroscopy 65 3.6.1 Growing mono metallic Pd clusters in AOT reverse micelles 65 3.6.2 Preparation of Pd-Au clusters in AOT reverse micelles 66 3.6.3 XAS data analysis 66 Chapter 4: Probing the Formation Mechanism and Chemical States of Carbon-supported Pt–Ru Nanoparticles by in Situ X-ray Absorption Spectroscopy 68 4.1 Introduction 68 4.2 Results 70 4.2.1 In situ XANES and EXAFS of Pt-Ru nanoparticles preparation 70 4.3 Discussion 83 4.3.1 Formation mechanism of bimetallic Pt–Ru/C nanoparticles 83 4.3.2 Composition and atomic distribution of bimetallic Pt–Ru/C nanoparticles 86 4.4 Summary 90 Chapter 5: Formation of Bimetallic Ag–Pd Nanoclusters via the Reaction between Ag Nanoclusters and Pd2+ Ions 91 5.1 Introduction 91 5.2 Results 93 5.2.1 X-ray absorption near-edge spectroscopy 93 5.2.1.1 Formation of Ag nanoclusters 93 5.2.1.2 Formation of Ag–Pd clusters in AOT reverse microemulsions 95 5.2.2 Extended X-ray absorption fine structure spectroscopy 98 5.2.2.1 Formation of Ag nanoclusters 98 5.2.2.2 Ag nanoclusters reaction with Pd2+ ions during the formation of Ag–Pd bimetallic clusters 102 5.3 Discussion 112 5.3.1 Formation mechanism of Ag nanoclusters and corresponding Ag–Pd bimetallic clusters in reverse microemulsion 112 5.3.2 Composition and atomic distribution of Ag–Pd bimetallic clusters 115 5.4 Summary 117 Chapter 6: Nucleation and Growth Mechanism of Pd/Pt Bimetallic Clusters in AOT Reverse Micelles as Studied by in Situ X-ray Absorption Spectroscopy 118 6.1 Introduction 118 6.2 Results 119 6.2.1 In situ XANES and EXAFS at the Pd K-edge of Pd clusters 119 6.2.2 In situ XANES at the Pd K-edge and Pt LIII-edge of bimetallic Pd/Pt clusters 121 6.2.3 In situ EXAFS at the Pd K-edge and Pt LIII-edge of bimetallic Pd/Pt clusters 124 6.3 Discussion 131 6.3.1 Formation mechanism of monometallic Pd nanoclusters in reverse microemulsion 131 6.3.2 Reaction between monometallic Pd nanoclusters and Pt4+ ions in reverse micelles 133 6.3.3 Formation mechanism of Pd/Pt nanoclusters in reverse microemulsion 138 6.3.4 Composition, atomic distribution and nano-structure of Pd/Pt bimetallic clusters 141 6.4 Summary 145 Chapter 7: Growth of Pdnuclei-Aucore-Pdshell Sandwich-like Bimetallic Clusters in Microemulsion System Investigated by in Situ X-ray Absorption Spectroscopy 146 7.1 Introduction 146 7.2 Results 148 7.2.1 In situ XANES at the Pd K-edge and Au LIII-edge of bimetallic Pd-Au clusters 148 7.2.2 In situ EXAFS at the Pd K-edge and Au LIII-edge of bimetallic Pd-Au clusters 152 7.3 Discussion 158 7.3.1 Redox-transmetalation reaction between Au3+ ions and monometallic Pd nanoclusters in reverse micelles 158 7.3.2 Composition, atomic distribution and nano-structure of Pdnuclei-Aucore-Pdshell bimetallic clusters 169 7.4 Summary 172 Chapter 8: Conclusion 173 Reference 175 Curriculum vitae of author 194 List of research papers published 195 Conferences / Workshops attended 197

    Reference

    1. Lewis, L. N.; “Chemical catalysis by colloids and clusters.” Chem. Rev., 1993, 93, 2693.
    2. Schmid, G.; “An EXAFS study of some gold and palladium cluster compounds.” Polyhedron, 1988, 7, 2321.
    3. Toshima, N.; “Bimetallic nanoparticles–novel materials for chemical and physical applications.” Macromol. Symp. 1996, 105, 111.
    4. Zhou, B.; Hermans, S.; Somorjai, G. A.; “Nanotechnology in Catalysis; Kluwer Academic/Plenum Publishers,” New York, 2004.
    5. Sinfelt, J. H.; “Bimetallic Catalysts-Discoveries, Concepts, and Applications: Exxon Monograph.” Wiley, New York, 1983.
    6. Sinfelt, J. H.; “Supported bimetallic cluster catalysts.” J. Catal. 1973, 29, 308.
    7. Sinfelt, J. H.; “Structure of bimetallic clusters.” Acc. Chem. Res. 1989, 20, 134.
    8. Burch, R.; Garla, L. C.; “Platinum-tin reforming catalysts : II. Activity and selectivity in hydrocarbon reactions.” J. Catal. 1981, 71, 360.
    9. Hwang, B.-J.; Sarma, L. S.; Chen, J.-M.; Chen, C.-H.; Shih, S.-C.; Wang, G.-R.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T.; “Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy.” J. Am. Chem. Soc. 2005, 127, 11140.
    10. Meitzner, G.; Via, G. H.; Lytle, F. W.; Sinfelt, J. H.; “An examination of a rhodium/magnesium oxide catalyst using X-ray absorption spectroscopy.” J. Chem. Phys. 1983, 78, 882.
    11. Meitzner, G.; Via, G. H.; Lytle, F. W.; Sinfelt, J. H. ; “Structure of bimetallic clusters. Extended X-ray absorption fine structure (EXAFS) studies of Ir–Rh clusters.” J. Chem. Phys. 1983, 78, 2533.
    12. Meitzner, G.; Via, G. H.; Lytle, F. W.; Sinfelt, J. H.; “XANES analysis of catalytic systems under reaction conditions.” J. Chem. Phys. 1985, 83, 4793.
    13. Sinfelt, J. H.; Via, G. H.; Lytle, F. W.; “Structure of bimetallic clusters. Extended X-ray absorption fine structure (EXAFS) studies of Ru–Cu clusters.” J. Chem. Phys. 1980, 72, 4832.
    14. Sinfelt, J. H.; Via, G. H.; Lytle, F. W.; “Structure of bimetallic clusters. Extended X-ray absorption fine structure (EXAFS) studies of Os–Cu clusters.” J. Chem. Phys. 1981, 75, 5527.
    15. Sinfelt, J. H.; Via, G. H.; Lytle, F. W.; “Structure of bimetallic clusters. Extended X-ray absorption fine structure (EXAFS) studies of Pt–Ir clusters.” J. Chem. Phys. 1982, 76, 2779.
    16. Watanabe, M.; Motto, S.; “Thermodynamic modeling calculation of phase equilibria.” J. Electroanal. Chem. 1975, 60, 267.
    17. Lu, C.; Rice, C.; Masel, M. I.; Babu, P. K.; Waszczuk, P.; Kim, H. S.; Oldfield, E.; Wieckowski, A.; “UHV, electrochemical NMR, and electrochemical studies of platinum/ruthenium fuel cell catalysts.” J. Phys. Chem. B 2002, 106, 9581.
    18. Waszczuk, P.; Lu, G. U.; Wieckowski, A.; Lu, C.; Rice, C.; Masel, M. I.; “Modern aspects of electrochemistry.” Electrochim. Acta 2002, 47, 36.
    19. Lu, L.; Sun, G.; Zhang, H.; Wang, H.; Xi, S.; Hu, J.; Tian, E.; Chen, R.; “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis.” J. Mater. Chem. 2004, 14, 1005.
    20. Lu, G.-Q.; Crown, A.; Wieckowski, A.; “Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes.” J. Phys. Chem. B 1999, 103, 9700.
    21. Jiang, J.; Kucernak, A.; “Nanostructural platinum as an electrocatalyst for the electrooxidation of formic acid.” J. Electroanal. Chem. 2002, 520, 64.
    22. Chang, S. C.; Ho, Y.; Weaver, M. J.; “Potential dependent dynamics of methanol electrooxidation on Pt(111).” Surf. Sci. 1992, 265, 81.
    23. Iwasita, T.; Xia, X.; Herrero, E.; Liess, H. D.; “Early stages during the oxidation of HCOOH on single-crystal Pt electrodes as characterized by infrared spectroscopy.” Langmuir 1996, 12, 4260.
    24. Arenz, M.; Stamenkovic, V.; Schmidt, T. J.; Wandelt, K.; Ross, P. N.; Markovic, N. M.; “The electro-oxidation of formic acid on Pt–Pd single crystal bimetallic surfaces.” Phys. Chem. Chem. Phys. 2003, 5, 4242.
    25. Pavese, A. G.; Solis, V. M.; Giordano, M. C. Electrochem. Acta 1997, 42, 3399.
    26. Stonehart, P.; “Synthetic routes to high surface area non-oxide materials.” J. Hydrogen Energy 1984, 9, 921.
    27. Gaseieger, H. A.; Marvokic, N. M.; Ross, P. N.; “Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface.” J. Phys. Chem. 1995, 99, 8945.
    28. McBreen, J.; Mulcerjee, S.; “An in situ X-ray absorption spectroscopy investigation of the effect of Sn additions to carbon-supported Pt electrocatalysts: Part I.” J. Electrochem. Soc. 1999, 146, 600.
    29. Grgur, B. N.; Zhuang, G.; Marvokic, N. M.; “Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface.” J. Phys. Chem. B 1991, 101, 3910.
    30. Park, K. W.; Choi, J. H.; Kwon, B. K.; Lee, S. A.; Sung, Y. E.; “Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation.” J. Phys. Chem. B. 2002, 106, 1869.
    31. (a) Okada, T.; Suzuki, Y.; Hirose, T.; Ozawa, T.; “Novel system of electro-catalysts for methanol oxidation based on platinum and organic metal complexes.” Electrochem, Acta 2004, 49, 385. (b) Mukerjee, S.; Srinviasan, S.; Soriaga, M. P.; McBreen, J.; “Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalystic activities for oxygen reduction- XRD, XAS, and electrochemical studies.” J. Phys. Chem. 1995, 99, 4577. (c) Shim, J.; Yoo, D. Y.; Lee, J. S.; “The electroluminescence of organic materials.” Electrochem, Acta 2000, 45, 1943.
    32. Page, T.; Johnson, R.; Houmes, J.; Nodimg, S.; Rambabu, B.; “A study of methanol electro-oxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electro-catalysts by EXAFS.” J. Electroanal. Chem. 2000, 485, 34.
    33. Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R.; “Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles.” J. Phys. Chem. B 2004, 108, 10955.
    34. Marinkovic, N. S.; Wang, J. X.; Marinkovic, J. S.; Adzic, R. R.; “Unusual adsorption properties of silver adlayers on the Pt(111) electrode surface.” J. Phys. Chem. B. 1999, 103, 139.
    35. Nem,G.; Visco, A.M.; Galvagno, S.; Donato, A.; Panzalorto, M.; “Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization.” Thermochim, Acta 1999, 329, 39.
    36. Toshima, N.; Harada, M.; Yamazalci, Y.; Asakura, K.; “Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride.” J. Phys. Chem. 1992, 96, 9927.
    37. Chen, T., Barton, S. C.; Binyamin, G.; Gao, E.; Zhang, Y.; Kim, H. H.; Heller, A.; “A miniature biofuel cell. ” J. Am. Chem. Soc. 2001, 123, 8630.
    38. Matsumiya, M.; Qiu, F.; Shin, W.; Izu, N.; Matsubara, I.; Murayama, N.; Kanzaki, S.;“Thermoelectric CO gas sensor using tin-film catalyst of Au and Co3O4.” J. Electrochem. Soc. 2004, 151, H7.
    39. Lee, S. -I.; Vohs, J. M.; Gorte, R. J.; “A study of SOFC anodes based on Cu-Ni and Cu-Co bimeatllics in CeO2-YSZ.” J. Electrochem. Soc. 2004, 151, A1319.
    40. Lee, K.; Savadogo, O.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K.; “Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3D transition metal alloys for direct methanol fuel cells.” J. Electrochem. Soc. 2006, 153, A20.
    41. Nabae, Y.; Yamanaka, I.; Hatano, M.; Otsuka, K.; “Catalytic behavior of Pd-Ni/composite anode for direct oxidation of methane in SOFCs.” J. Electrochem. Soc. 2006, 153, A140.
    43. Prabhuram, J.; Zhao, T. S.; Liang, Z. X.; Yang, H.; Wong, C. W.; “Pd and Pd-Cu alloy deposited Nafion membranes for reduction of methanol crossover in direct methanol fuel cells.” J. Electrochem. Soc. 2005, 152, A1390.
    44. (a) Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm, R. J.; Britz, P.; Brijouz, W.; Bönnemann, H.; “Electrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation: Stripping voltammetry and rotating disk measurements.” Langmuir 1997, 13, 2591. (b) Vogel, W.; Britz, P.; Bönnemann, H.; Rothe, J.; “Structure and chemical composition of surfactant-stabilized PtRu alloy colloids.” J. Phys. Chem. B 1997, 101, 11029. (c) Bönnemann, H.; Brinkmann, R.; Britz, P.; Endruschat, U.; Mortel, R.; Paulus, U. A.; Feldmeyer, G. J.; Schmidt, T. J. J. New Mater. Electrochem. Syst. 2000, 3, 199.
    45. (a) Zhang, X.; Chan, K.-Y.; “Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties.” Chem. Mater. 2003, 15, 451. (b) Liu, Y.; Qiu, X.; Chen, Z.; Zhu, W. Electrochem. Commun. 2002, 4, 550. (c) Martino, A.; Yamanaka, S. A.; Kawola, J. S.; Loy, D. A.; “Encapsulation of gold nanoclusters in silica materials via an inverse micelle/sol-gel synthesis.” Chem. Mater. 1997, 9, 423.
    46. (a) Tsai, W. Y.; Tseng, Y. L.; Sarma, L. S.; Liu, D. G.; Lee, J. F.; Hwang, B. J.; “Genesis of Pt clusters in reverse micelles investigated by in situ X-ray absorption spectroscopy.” J. Phys. Chem. B 2004, 108, 8148. (b) Hwang, B. J.; Tsai, Y. W.; Sarma, L. S.; Tseng, Y. L.; Liu, D. G.; Lee, J. F.; “Genesis of bimetallic Pt-Cu clusters in reverse micelles investigated by in situ X-ray absorption spectroscopy.” J. Phys. Chem. B 2004, 108, 20427. (c) Chen, C. H.; Hwang, B. J.; Wang, G. R.; Sarma, L. S.; Tang, M. T.; Liu, D. G.; Lee, J. F.; “Nucleation and growth mechanism of Pd/Pt bimetallic clusters in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles as studied by in situ X-ray absorption spectroscopy.” J. Phys. Chem. B 2005, 109, 21566.
    47. Boxall, D. L.; Deluga, G. A.; Kenik, E. A.; King, W. D.; Lukehart, C. M.; “Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation: A DMFC anode catalyst of high relative performance.” Chem. Mater. 2001, 13, 891.
    48. Liu, Z.; Lee, J. Y.; Chen, W.; Han, M.; Gan, L. M.; “Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles.” Langmuir 2004, 20, 181.
    49. Yu, W.; Tu, W.; Liu, H.; “Synthesis of nanoscale platinum colloids by microwave dielectric heating.” Langmuir 1999, 15, 6.
    50. Wang, X.; Hsing, I.-M.; “Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells.” Electrochim. Acta 2002, 47, 2981.
    51. Sarma, L. S.; Lin, T.-D.; Tsai, Y.-W.; Chen, J.-M.; Hwang, B.-J.; “Carbon-supportted Pt-Ru catalysts prepared by the Nafion stabilized alcohol-reduction method for application in direct methanol fuel cell.” J. Power Sources 2005, 139, 44.
    52. Shen, P. K.; Tian, Z. ; “Performance of highly disoersed Pt/C catalysts for low temperature fuel cells.” Electrochim. Atca 2004, 49, 3107.
    53. Doudna, C. M.; Bertino, M. F.; Tokuhiro, A. T.; “Structural investigation of Ag-Pd clusters synthesized with the radiolysis method.” Langmuir 2002, 18, 2434.
    54. Christina, B.; Chantal, P; Martin. C; Gianluigi, A. B.; Barry, R. M.; “Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism.” J. Am. Chem. Soc. 2004, 126, 8028.
    55. Toshima, N.; Hirakawa, K. Polym. J. 1999, 31, 1127.
    56. Duff, D.; Mallat, T.; Schneider, M.; Baiker, A.; “Entrapment of nanostructured palladium clusters in hydrophobic sol–gel materials.” Appl. Catalysis A: General 1995, 133, 133.
    57. Toshima, N.; Kuriyama, M.; Yamada, Y.; Hirai, H.; “Colloidal platiaum catalyst for light-induced hydrogen evolution from water. A particle size effect.” Chem. Lett. 1981, 793.
    58. Toshima, N.; Kuriyama, M.; Yamada, Y.; Hirai, H.; “Colloidal dispersions of palladium–platinum bimetallic clusters protected by polymers. Preparation and application to catalysis.” Chem. Lett. 1989, 1769.
    59. Zhao, B.; Toshima, N.; Chem. Express 1995, 5, 721.
    60. Toshima, N. J. Macromol. Sci. Chem. 1990, A27, 1225.
    61. Wang, X.; Hsing, I. M.; “Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells.” Electrochimica Acta. 2002, 47, 2981.
    62. (a) Belloni, J.; Mostafavi, M.; Remita, H.; Marignier, J. L.; Delcourt, M. O.; “Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids.” New J. Chem. 1998, 1239. (b) Treguer, M.; Cointet, C.; Remita, S.; Khuatouri, M.; Mostafavi, M.; Amblard, J.; Belloni, J.; “Dose rate effects on radiolytic synthesis of gold-silver bimetallic clusters in solution.” J. Phys. Chem. B 1998, 102, 4310.
    63. Doudna, C. M.; Bertino, M. F.; Tokuhiro, A. T.; “Structural investigation of Ag-Pd clusters synthesized with the Radiolysis method.” Langmuir 2002, 18, 2434.
    64. Toshima, N.; Yonezawa, T.; “Bimetallic nanoparticles – novel materials for chemical and physical application.” New J. Chem. 1998, 22, 1179.
    65. Via, G. H.; Sinfelt, J. H. in: Y. Iwasawa (Ed,); “X-ray Absorption Fine Structure for Catalysts and Surfaces.” World Scientific, London, 1996.
    66. Bazin, D.; Sayers, D.; Rehr, J. J. J. Phys. Chem., 1997, 101, 11040.
    67. Park, S.; Wieckowski, A.; Weaver, M. J.; “Electrochemical Infrared characterization of CO domains on ruthenium-decorated platinum nanoparticles.” J. Am. Chem. Soc. 2003, 125, 2282.
    68. Toshima, N.; Yonezawa, T.; Harada, M.; Asakura, K.; Iwasawa, Y.; “The polymer-protected Pd–Pt bimetallic clusters having catalytic activity for selective hydrogenation of diene. Preparation and EXAFS investigation on the structure.” Chem. Lett. 1990, 815.
    69. (a) Huifang, L.; Stephen, M.; Keith, J. S.; Chandler, B. D. ; “Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles.” J. Am. Chem. Soc. 2004, 126, 12949. (b) Bardley, J. S.; Hill, E. W.; Klein, C.; Chaudret, B.; Duteil, A.; “Preparation of organic solutions or solid films of small particles of ruthenium, palladium, and platinum from organometallic precursors in the presence of cellulose derivatives.” Chem. Mater., 1992, 5, 341.
    70. Lu, L; Sun, G. Zhang, H.; Wang, H.; Xi, S.; Hu, J.; Tian, Z.; Chen, R.; “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate.” J. Mater. Chem., 2004, 14, 1005.
    71. Polak, M.; Rubinovich, L.; “Equilibration processes in surfaces of the binary alloy Fe-Al.” Surf. Sci. Rep. 2000, 38, 127.
    72. (a) Touroude, R.; Girard, P.; Maire, G.; Kizling, J.; Boutonnet-Kizling, M.; Stenius, P.; “Preparation of colloidal platinum/palladium alloy particles from non-ionic microemulsions: Characterization and catalytic behaviour.” Colloids Surf. 1992, 67, 9. (b) Harada, M.; Asakura, K.; Uerk, Y.; Toshima, N.; “Structure of polymer-protected palladium-platinum bimetallic clusters at the oxidized state: Extended X-ray absorption fine structure analysis.” J. Phys. Chem. 1992, 96, 9730.
    73. Waseda, Y.; “Novel Application of Anomalous X-ray Scattering for Structural Characterization of Disordered Material.” Springer-Verlag: New York, 1984.
    74. Bazin, D.; Sayers, D. Jpn. J. Appl. Phys. 1993, 32, 251.
    75. Shido, T.; Prins, R.; “Application of time-resolved in-situ X-ray absorption spectroscopy in solid-state chemistry.” Curr. Opin. Solid State Mater. Sci. 1998, 3, 330.
    76. Bucher, J. P.; van der Klink, J. J.; “Electronic properties of small supported Pt particles: NMR study of 195Pt hyperfine parameters.” Phys. Rev. B, 1988, 38, 11038.
    77. Tong, Y. Y.; Martin, G. A.; van der Klink, J. J. J. Phys. D 1994, 6, L533.
    78. Rolison, D. R.; Hagans, P. L.; Swider, K. E.; Long, J. W.; “Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: The importance of mixed electron/proton conductivity.” Langmuir 1999, 15, 774.
    79. Koningsberger, D. C.; and Prins, R.; “X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES.” Wiley, New York, 1988, P126.
    80. Camara, G. A.; Giz, M. J.; Paganin, V. A.; Ticianelli, E. A.; “Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel cells.” J. Electroanal. Chem. 2002, 537, 21.
    81. Russell, A. E.; Rose, A.; “X-ray absorption spectroscopy of low temperature fuel cell catalysts.” Chem. Rev. 2004, 104, 4613.
    82. Hills, C. W.; Nashner, M. S.; Frenkel, A. I.; Shapley, J. R.; Nuzzo, R. G.; “Carbon support effects on bimetallic Pt-Ru nanoparticles formed from molecular precursors.” Langmuir 1999, 15, 690.
    83. Bian, C.-R.; Suzuki, S.; Asakura, K.; Ping, L.; Toshima, N.; “Extended X-ray absorption fine structure studies on the structure of the poly(vinylpyrrolidone)-stabilized Cu/Pd nanoclusters colloidally dispersed in solution.” J. Phys. Chem. B 2002, 106, 8587.
    84. Kumar, M.; “Study of formation of aqueous Tl/Ag bimetallic clusters by gamma and electron irradiation.” Radiat. Phys. Chem. 2003, 66, 403.
    85. Remita, S.; Mostafavi, M.; Delcourt, M. O.; “Bimetallic Ag---Pt and Au---Pt aggregates synthesized by radiolysis.” Radiat. Phys. Chem. 1996, 47, 275.
    86. Grunwaldt, J. D.; Kiener, C.; Wogerbauer, C.; Baiker, A.; “Preparation of supported gold catalysts for low-temperature CO oxidation via "size-controlled" gold colloids.” J. Catal. 1999, 181, 223.
    87. Eiser, E.; Bouchama, F.; Thathagar, M. B.; Rothenberg, G.; “Trapping Metal Nanoclusters in “Soap and Water” Soft Crystals.” ChemPhysChem 2003, 4, 526.
    88. Ingelsten, H. H.; Bagwe, R.; Palmqvist, A.; Skoglundh, M.; Svanberg, C.; Holmberg, K.; Shah, D. O.; “Kinetics of the formation of nano-sized platinum particles in water-in-oil microemulsions.” J. Colloid Interface Sci. 2001, 241, 104.
    89. Chen, C. W.; Serizawa, T.; Akashi, M.; “In situ formation of Au/Pt bimetallic colloids on polystyrene microspheres: control of particle growth and morphology.” Chem. Mater. 2004, 14, 2232.
    90. Nashner, M. S.; Frenkel, A. I.; Somerville, D. Hills, C. W.; Shapley, J. R.; Nuzzo, R. G.; “Core shell inversion during nucleation and growth of bimetallic Pt/Ru nanoparticles.” J. Am. Chem. Soc. 1998, 120, 8093.
    91. Rehr, J. J.; Albers, R. C.; “Theoretical approaches to X-ray absorption fine structure.” Rev. Mod. Phys., 2000, 2, 621.
    92. Messiah, A.; “Quantum Mechanics.” Wiley, New York, 1966.
    93. Prins, J.; “Physics of Non-Crystalline Solids.” North Holland, Amsterdam, 1965, P. 12.
    94. Lytle, F.; “Absorption techniques in X-ray spectrometry.” J. Synchrotron Radiat. 1999, 6, 123.
    95. Ankudinov, A. L.; Rehr, J. J.; Low, J. J.; Bare, S. R. Top. Catal. 2002, 18, 3.
    96. Bazin, D.; Sayers, D.; Rehr, J. J.; Mottet, C.; “Numerical simulation of the platinum LIII-edge white line relative to nanometer scale clusters.” J. Phys. Chem. B 1977, 101, 5332.
    97. Ankudinov, A. L.; Rehr, J. J.; Low, J. J.; Bare, S. R.; “Sensitivity of Pt X-ray absorption near edge structure to the morphology of small Pt clusters.” J. Chem. Phys. 2002, 116, 1911.
    98. Bazin, D.; Rehr, J. J.; “Limits and advantages of X-ray absorption near edge structure for nanometer scale metallic clusters.” J. Phys. Chem. B 2003, 107, 12398.
    99. Horsely, J.A.; J. Chem. Phys. 1982, 76, 451.
    100. Mansour, A. N.; Cook, J. W.; Sayers, D. E.; “Quantitative technique for the determination of the number of unoccupied d-electron states in a platinum catalyst using the L2,3 x-ray absorption edge spectra.” J. Phys. Chem. 1984, 88, 2330.
    101. Sayers, D. E.; Stern, E. A.; Lytle, F. W.; “New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray—absorption fine structure.” Phys. Rev. Lett. 1971, 27, 1204.
    102. Teo, B. K.; Lee, P. A.; “Ab initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy.” J. Am. Chem. Soc. 1979, 101, 2815.
    103. Teo, B. K.; “EXAFS: Basic Principles and Data Analysis.” Springer, Berlin, 1986.
    104. Lee, P. A.; Beni, G.; “New method for the calculation of atomic phase shifts: Application to extended X-ray absorption fine structure (EXAFS) in molecules and crystals.” Phys. Rev. B, 1977, 15, 2862.
    105. Russell, A. E.; Rose, A.; “X-ray absorption spectroscopy of low temperature fuel cell catalyst.” Chem. Rev. 2004, 104, 4613.
    106. Ankudinov, A. L.; Rehr, J. J.; Low, J.; Bare, S. R.; “Effect of hydrogen adsorption on the X-ray absorption spectra of small Pt clusters.” Phys. Rev. Lett. 2001, 86, 1642.
    107. Hwang, B.-J.; Tsai, Y.-W.; Sarma, L. S.; Chen, C.-H.; Lee, J.-F.; Strehblow, H. H.; “In situ XAS investigation of transformation of Co monolayer on carbon-supported platinum clusters underpotential control.” J. Phys. Chem. B 2004, 108, 15096.
    108. Nashner, M. S.; Frenkel, A. I.; Adler, D. L.; Shapley, J. R.; Nuzzo, R. G.; “Structural characterization of carbon-supported platinum-ruthenium nanoparticles from the molecular cluster presursor PtRu5C(CO)16.” J. Am. Chem. Soc. 1997, 119, 7760.
    109. Hills, C. W.; Nashner, M. S.; Frenkel, A. I.; Shapley, J. R.; Nuzzo, R. G.; “Carbon support effects on bimetallic Pt-Ru nanoparticles formed from molecular precursors.” Langmuir 1999, 15, 690.
    110. Toshima, N.; Harada, M.; Yonezawa, T.; Kushihashi, K.; Asakura, K.; “Structural analysis of polymer-protected palladium/platinum bimetallic clusters as dispersed catalysts by using extended X-ray absorption fine structure spectroscopy.” J. Phys. Chem. 1991, 95, 7448.
    111. Toshima, N. “Nanoscale Materials.”; Liz-Marza´n, L. M., Kamat, P. Eds.; Kluwer: Norwell, M. A, 2003; p 79.
    112. Pileni, M. P.; (Feldheim, D. L., Foss, C. A. Jr. Eds.); “Metal Nanoparticles: Synthesis, Characterization, and Applications” Marcel Dekker, New York, 2001, p 207.
    113. Sinfelt, J. H.; “Structure of bimetallic clusters.” Acc. Chem. Res. 1987, 20, 134.
    114. Link, S.; El-Sayed, M. A.; “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods.” J. Phys. Chem B 1999, 103, 8410.
    115. Petit, C.; Taleb, A.; Pileni, M. P.; “Self-organization of magnetic nanosized cobalt particles.” Adv. Mater. 1998, 10, 259.
    116.Lytle, F. W.; Sayers, D. E.; Stern, E. A.; “Extended X-ray-absorption fine-structure technique. II. Experimental practice and selected results.” Phys. Rev. B, 1975, 11, 4825.
    117. Stern, E. A.; “Theory of the extended X-ray-absorption fine structure.” Phys. Rev. B, 1974, 10, 3027.
    118. Watanabe, M.; Uchida, M.; Motoo, S.; “Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol.” J. Electroanal. Chem. 1987, 229, 395.
    119. Stern, E. A.; Newville, M.; Ravel, B.; Yacoby, Y.; Haskel, D.; “The UWXAFS analysis package: Philosophy and details.” Physica B 1995, 208–209, 117.
    120. Zabinsky, S. I.; Rehr, J. J.; Anukodinov, A. L.; Albers, R. C.; Eller, M. J. Phys. Rev. B 1995, 52, 2995.
    121. Lytle, F. W.; Sayers, D. E.; Stern, E. A. Physica B, 1989, 158, 701.
    122. Bevington, P. R.; “Data Reduction and Error Analysis for the Physical Science.” McGraw-Hill, New York, 1992, p 205.
    123. Ankudinov, A. L.; Rehr, J. J.; Simon, R. B.; “Hybridization peaks in Pt–Cl XANES .” Chem. Phys. Lett. 2000, 316, 495.
    124. Ayala, R.; Sánchez Marcos, E.; Díaz-Moreno, S.; Armando Solé, V.; Muñoz-Páez, A.; “Understanding modern molecular dynamics: Techniques and applications.” J. Phys. Chem. B 2001, 105, 7598.
    125. Herron, M. E.; Doyle, S. E.; Pizzini, S.; Roberts, K. J.; Robinson, J.; Hards, G.; Walsh, F. C. J. Electroanal. Chem. 1992, 324, 243.
    126. Petrow, H. G.; Allen, R. J.; “Finely particulated colloidal platinum compound and sol for production of fuel cell.” US Patent No: 4044193, 1977.
    127. Pârvulescu, V. I.; Coman, S.; Palade, P.; Macovei, D.; Teodorescu, C. M.; Filoti, G.; Molina, R.; Poncelet, G.; Wagner, F. E.; “Reducibility of ruthenium in relation with zeolite structure.” Appl. Surf. Sci. 1999, 141, 164.
    128. Aricò, A. S.; Creti, P.; Kim, H.; Mantegna, R.; Giordano, N.; Antonucci, V. J. Electrochem. Soc. 1996, 143, 3047.
    129. Warren, B. E. “X-ray Diffraction.” Addison-Wesley: Reading, MA, 1996.
    130. Frenkel, A. I.; Hill, C. W.; Nuzzo, R. G.; “A view from the inside: Complexity in the atomic scale ordering of supported metal nanoparticles.” J. Phys. Chem. B 2001, 105, 12689.
    131. Zhang, Z. Q.; Patel, R. C.; Kothari, R.; Johnson, C. P.; Friberg, S. E.; Aikens, P. A.; “Stable silver clusters and nanoparticles prepared in polyacrylate and inverse micellar solutions.” J. Phys. Chem. B 2000, 104, 1176.
    132. Allen, P. G.; Gash, A. E.; Dorhout, P. K.; Strauss, S. H.; “XAFS studies of soft-heavy-metal-ion-intercalated MxMoS2 (M = Hg2+, Ag+) solids.” Chem. Mater. 2001, 13, 2257.
    133. Coulthard, I.; Sham, T. K. Phys. Rev. Lett. 1996, 77, 4842.
    134. Lide, D. R. Ed.; “CRC Hand Book of Chemistry and Physics.” 80th edition, CRC Press: Boca Raton, FL, 1999–2000, p 8.
    135. Choi, S. J.; Kang, S. K.; “Structural transformation of PdPt nanoparticles probed with X-ray absorption near edge structure.” Catal. Today 2004, 93–95, 561.
    136. Okamoto, K.; Akiyama, R.; Yoshida, H.; Yoshida, T.; Kobayashi, S.; “Formation of nanoarchitectures including subnanometer palladium clusters and their use as highly active catalysts.” J. Am. Chem. Soc. 2005, 127, 2125.
    137. Chen, D. H.; Yeh, J. J.; Huang, T. C.; “Synthesis of platinum ultrafine particles in AOT reverse micelles.” J. Collid Inter. Sci. 1999, 215, 159.
    138. Wu, M. L.; Chen, D. H.; Hwang, T. C.; “Preparation of Au/Pt bimetallic nanoparticles in water-in-oil microemulsions.” Chem. Mater. 2001, 13, 599.
    139. Wu, M. L.; Chen, D. H.; Hwang, T. C.; “Preparation of Pd/Pt bimetallic nanoparticles in water/AOT/isooctane microemulsions.” J. Colloid Inter. Sci. 2001, 243, 102.
    140. Shibata, T.; Bunker, B. A.; Zhang, Z.; Meisel, D.; Vardeman II, C. F.; Gezelter, D.; “Size-dependent spontaneous alloying of Au-Ag nanoparticles.” J. Am. Chem. Soc. 2002, 124, 11989.
    141. Via, G. H.; Sinfelt, J. H.; Lytle, F. W.; “Extended X-ray absorption fine structure (EXAFS) of dispersed metal catalysts.” J. Chem. Phys. 1979, 71, 690.
    142 Greegor, R. B.; Lytle, F. W.; “Morphology of supported metal clusters: Determination by EXAFS and chemisorption.” J. Catal. 1980, 63, 476.
    143. Sun, Y.; Mayers, B. T.; Xia, Y.; “Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors.” Nano Lett. 2002, 2, 481.
    144. Sun, Y.; Mayers, B. T; Xia, Y.; “Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence.” Adv. Mater. 2003, 15, 641.
    145. Selvakannan, P. R.; Sastry, M.; “Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution.” Chem. Commn. 2005, 13, 1684.
    146. Maudos, I.; Chimenon, J. M.; Segama, M.; Espiell, F. Hydrometallurgy 1996, 40, 153.
    147. Hirai, T.; Sato, H.; Komasawa, I.; “Mechanism of formation of CdS and ZnS ultrafine particles in reverse micelles.” Ind. Eng. Chem. Res. 1994, 33, 3262.
    148. Bagwe, R. P.; Khilar, K. C.; “Effects of the intermicellar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micelles of AOT.” Langmuir 1997, 13, 6432.
    149. Petit, C.; Jain, T. K.; Billoudet, F.; Pileni, M. P.; “Oil in water micellar solution used to synthesize CdS particles: Structural study and photoelectron transfer reaction.” Langmuir 1994, 10, 4446.
    150. Towey, T. F.; Khan-Lodhi, A.; Robinson, B. H. J. Chem. Soc. Faraday Trans. 1990, 86, 3757.
    151. Joshi, S. S.; Patil, S. F.; Iyer, V.; Mahumuni, S. Nanostruct. Mater. 1998, 10, 1135.
    152. Purans, J.; Fourest, B.; Cannes, C.; Sladkov, V.; David, F. ; Venanlt, L.; Lecomte, M.; “Structural investigtion of Pd(II) in concentrated nitric and perchloric acid solutions by XAFS.” J. Phys. Chem. B 2005, 109, 11074.
    153. Natarajan, U.; Handique, K.; Mehra, A.; Bellare, J. R.; Khilar, K. C.; “Ultrafine metal particle formation in reverse micellar systems: Effects of intermicellar exchange on the formation of particles.” Langmuir 1996, 12, 2670.
    154. Moonen, J.; Slot, J.; Lefferts, L.; Bazin, D.; Dexpert, H.; “The influence of polydispersity and inhomogeneity on EXAFS of bimetallic catalysts.” Physica B 1995, 208–209, 689.
    155. Materlik, M.; Muller, J. E.; Wilkins, J. W.; “L-edge absorption spectra of the rare earths: Assessment of the single-particle picture.” Phys. Rev. Lett. 1983, 50, 267.
    156. Lee, W. -R.; Kim, M. G.; Cho, J. -R.; Park, J. -I.; Ko, S. J.; Oh, S. J.; Cheon, J.; “Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles.” J. Am. Chem. Soc. 2005, 127, 16090.

    QR CODE