簡易檢索 / 詳目顯示

研究生: 廖塘文
Tang-Wen Liao
論文名稱: 鐵鎳以聚矽氮烷界面改質對磁性影響效應之研究
A study of interfacial modification by polysilazane and the effect on magnetic properties of NiFe.
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 陳建光
Jem-Kun Chen
邱智瑋
Chih-Wei Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 82
中文關鍵詞: 聚矽氮烷溶膠-凝膠法軟磁材料
外文關鍵詞: sol-gel, polysilazane, soft magnetic material
相關次數: 點閱:218下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將鐵鎳粉末由聚矽氮烷(PSZ)處理,於不同溫度與氣體熱處理後探討界面結構對磁性之影響。先以PSZ在鐵鎳上水解羥基為起始劑,經過模壓後加熱縮合,硬化形成界面阻絕層,接著在700°C與1100°C的氮氣與空氣中熱裂解,對最終混成複合材料界面結構的化學結構、型態觀察、磁性分析影響進行探討。
    傅立葉轉換紅外光譜儀(FTIR)觀測PSZ水解縮合變化,以及不同溫度與氣體熱裂解下PSZ化學結構的差異,進一步用化學分析影像能譜儀(XPS)分析矽與氧原子的鍵結。掃描式電子顯微鏡(SEM)觀察表面型態,並使用能量散佈能譜儀(EDX)進行表面分析,探討熱處理後元素的變化。以X光繞射儀(XRD)顯示樣品熱處理後鐵鎳原子的排列狀態。從超導量子干涉磁量儀(SQUID),探討熱處理後飽和磁化量與矯頑力,並使用阻抗分析儀(LCR)量測1~100MHz下電感特性。最後量測熱裂解PmPSZ之體積電阻、包覆前後之腐蝕效應與結晶型態,比較有無PSZ界面對鐵鎳粉末熱處理的差異。
    量測結果顯示,低黏度之PSZ分散於鐵鎳粉末中,水解後黏度上升能使鐵鎳粉末塑形,在界面上熱縮合形成網狀烷氧基矽化合物(alkoxysilane)改質金屬表面,包覆性隨著溫度上升與SiO2之析出而下降。在改質過之界面完整情況下,PmPSZ之磁性與矯頑力(Coercivity)隨溫度上升而增加,複合材料PmPSZ最大導磁率介於10~20MHz之間,於700/N2下熱處理可以使最大導磁率提高14%,飽和磁化量維持在95%以上。


    In this study, polysilazane(PSZ) was applied as polymer-derived ceramic (PDC) within NiFe(Pm) particles. The PmPSZ composites were modifying by controlled water hydrolysis to form interface capable of molding magnetic powder under 180°C. Different atmosphere, from nitrogen and air had been preparing for heat treatment at 700°C and 1100°C respectively.
    Spectroscopic techniques from XPS and FTIR have identified chemical exchanges during condensation and pyrolysis. The results from XRD and SEM show the crystallization behavior and the morphology of interface. And the ultimate magnetic properties of the metal-ceramic composites have been measured by SQUID and LCR.
    The results suggest an alkylsiloxane network interface could be derived after hydrolysis condensation by PSZ. The coverage networks provide insulator and corrosion resistance layers for NiFe during high temperature but are influenced by the atmosphere. By controlling the atmosphere and heat treatment temperature, it is possible to enhance the magnetic properties of PmPSZ composites. According to the analysis of LCR meter, PmPSZ composites have the maximum permeability within 10~20MHz. After the 700°C/N2 heat treatment process, the maximum value rises up 14%.

    摘要I AbstractIII 致謝V 目錄VI 圖目錄IX 表目錄XI 第1章 緒論1 1.1 前言1 1.2 研究背景1 1.3 研究方法3 第2章 文獻回顧4 2.1 磁性材料4 2.1.1 磁性材料種類4 2.1.2 軟磁材料7 2.1.3 鐵鎳合金10 2.2 磁性複合材料11 2.2.1 矽基鐵磁複合材料14 2.3 矽氮結構15 2.3.1 矽化合物15 2.3.2 聚矽氮烷16 2.3.3 有機聚矽氮烷18 2.3.4 溶膠-凝膠法21 第3章 實驗方法24 3.1 樣品製作24 3.2 實驗架構26 3.3 實驗27 3.3.1 熱重損失分析儀(TGA)27 3.3.2 阻抗分析儀(LCR)28 3.3.3 傅立葉轉換紅外線光譜儀(FTIR)29 3.3.4 掃描式電子顯微鏡(SEM)30 3.3.5 光繞射儀(XRD)31 3.3.6 化學分析影像能譜儀(XPS)32 3.3.7 超導量子干涉磁量儀(SQUID)33 第4章 結果與討論34 4.1 PSZ硬化分析34 4.1.1 熱重分析34 4.2 化學鍵結分析36 4.2.1 FTIR36 4.2.2 XPS40 4.3 微結構分析45 4.3.1 XRD45 4.3.2 SEM48 4.4 磁性分析53 4.4.1 阻抗分析儀53 4.4.2 SQUID56 第5章 結論59 參考文獻60

    1.Callister, W.D. and D.G. Rethwisch, Materials science and engineering: an introduction. Vol. 7. 2007: Wiley New York.
    2.McLyman, C.W.T., Transformer and inductor design handbook. Vol. 121. 2004: CRC press.
    3.Ma, Y. and C. Ong, Soft magnetic properties and high frequency permeability in [CoAlO/oxide] multilayer films. Journal of Physics D: Applied Physics, 2007. 40(11): p. 3286.
    4.Bekker, V., K. Seemann, and H. Leiste, Development and optimisation of thin soft ferromagnetic Fe–Co–Ta–N and Fe–Co–Al–N films with in-plane uniaxial anisotropy for HF applications. Journal of magnetism and magnetic materials, 2006. 296(1): p. 37-45.
    5.Colombo, P., et al., Polymer‐Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. Journal of the American Ceramic Society, 2010. 93(7): p. 1805-1837.
    6.Shokrollahi, H., et al., Investigation of magnetic properties, residual stress and densification in compacted iron powder specimens coated with polyepoxy. Materials Chemistry and Physics, 2009. 114(2): p. 588-594.
    7.Taghvaei, A., et al., Eddy current and total power loss separation in the iron–phosphate–polyepoxy soft magnetic composites. Materials & Design, 2009. 30(10): p. 3989-3995.
    8.Shokrollahi, H., The magnetic and structural properties of the most important alloys of iron produced by mechanical alloying. Materials & Design, 2009. 30(9): p. 3374-3387.
    9.Shokrollahi, H. and K. Janghorban, Soft magnetic composite materials (SMCs). Journal of Materials Processing Technology, 2007. 189(1): p. 1-12.
    10.Skarrie, H., Design of powder core inductors. 2001: Univ.
    11.Maeda, T., et al., Development of super low iron-loss P/M soft magnetic material. SEI TECHNICAL REVIEW-ENGLISH EDITION-, 2005. 60: p. 3.
    12.MacLachlan, M.J., et al., Ring‐Opening Polymerization of a [1] Silaferrocenophane Within the Channels of Mesoporous Silica: Poly (ferrocenylsilane)‐MCM‐41 Precursors to Magnetic Iron Nanostructures. Advanced Materials, 1998. 10(2): p. 144-149.
    13.MacLachlan, M.J., et al., Shaped ceramics with tunable magnetic properties from metal-containing polymers. Science, 2000. 287(5457): p. 1460-1463.
    14.Ginzburg, M., et al., Genesis of nanostructured, magnetically tunable ceramics from the pyrolysis of cross-linked polyferrocenylsilane networks and formation of shaped macroscopic objects and micron scale patterns by micromolding inside silicon wafers. Journal of the American Chemical Society, 2002. 124(11): p. 2625-2639.
    15.Hauser, R., et al., Processing and magnetic properties of metal-containing SiCN ceramic micro-and nano-composites. Journal of Materials Science, 2008. 43(12): p. 4042-4049.
    16.Francis, A., et al., Crystallization behavior and controlling mechanism of iron-containing Si− C− N ceramics. Inorganic chemistry, 2009. 48(21): p. 10078-10083.
    17.Biasetto, L., et al., Polymer-derived microcellular SiOC foams with magnetic functionality. Journal of Materials Science, 2008. 43(12): p. 4119-4126.
    18.Fessenden, R. and J.S. Fessenden, The Chemistry of Silicon-Nitrogen Compounds. Chemical Reviews, 1961. 61(4): p. 361-388.
    19.Noll, W., Chemistry and technology of silicones. 1968: Elsevier.
    20.Hoffmann, M. and G. Petzow. Microstructural design of Si3N4 based ceramics. in MRS Proceedings. 1992. Cambridge Univ Press.
    21.Becher, P.F., et al., Microstructural design of silicon nitride with improved fracture toughness: I, effects of grain shape and size. Journal of the American Ceramic Society, 1998. 81(11): p. 2821-2830.
    22.Riedel, R., et al., A silicoboron carbonitride ceramic stable to 2,000 C. Nature, 1996. 382(6594): p. 796-798.
    23.Allen, F.H., et al., Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc., Perkin Trans. 2, 1987(12): p. S1-S19.
    24.Bahloul, D., et al., Preparation of Silicon Carbonitrides from an Organosilicon Polymer: I, Thermal Decomposition of the Cross‐linked Polysilazane. Journal of the American Ceramic Society, 1993. 76(5): p. 1156-1162.
    25.Bauer, F., et al., Preparation of moisture curable polysilazane coatings: Part I. Elucidation of low temperature curing kinetics by FT-IR spectroscopy. Progress in organic coatings, 2005. 53(3): p. 183-190.
    26.Chen, Y., et al., Quantitative study on structural evolutions and associated energetics in polysilazane-derived amorphous silicon carbonitride ceramics. Acta Materialia, 2014. 72: p. 22-31.
    27.Shayed, M., et al., Carbon and glass fibers modified by polysilazane based thermal resistant coating. Textile Research Journal, 2010.
    28.Jones, R.G., W. Ando, and J. Chojnowski, Silicon-containing polymers: the science and technology of their synthesis and applications. 2001: Springer.
    29.Gregori, G., et al., Microstructure evolution of precursors-derived SiCN ceramics upon thermal treatment between 1000 and 1400 C. Journal of non-crystalline solids, 2005. 351(16): p. 1393-1402.
    30.Sanchez, C., et al., Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chemical Society Reviews, 2011. 40(2): p. 696-753.
    31.Chiu, H.T., et al., Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite. Applied Surface Science, 2013.
    32.Modena, S., et al., Passive Oxidation of an Effluent System: The Case of Polymer‐Derived SiCO. Journal of the American Ceramic Society, 2005. 88(2): p. 339-345.
    33.Wang, Y., W. Fei, and L. An, Oxidation/Corrosion of Polymer‐Derived SiAlCN Ceramics in Water Vapor. Journal of the American Ceramic Society, 2006. 89(3): p. 1079-1082.
    34.An, L., et al., Newtonian viscosity of amorphous silicon carbonitride at high temperature. Journal of the American Ceramic Society, 1998. 81(5): p. 1349-1352.
    35.Okamura, K., Ceramic fibres from polymer precursors. Composites, 1987. 18(2): p. 107-120.
    36.Shea, K.J. and D.A. Loy, Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials. Chemistry of materials, 2001. 13(10): p. 3306-3319.
    37.Metroke, T.L., R.L. Parkhill, and E.T. Knobbe, Passivation of metal alloys using sol–gel-derived materials—a review. Progress in Organic Coatings, 2001. 41(4): p. 233-238.
    38.De Sanctis, O., et al., Protective glass coatings on metallic substrates. Journal of Non-Crystalline Solids, 1990. 121(1): p. 338-343.
    39.Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 1990: Gulf Professional Publishing.
    40.Raman, N.K., M.T. Anderson, and C.J. Brinker, Template-based approaches to the preparation of amorphous, nanoporous silicas. Chemistry of Materials, 1996. 8(8): p. 1682-1701.
    41.Chavez, R., et al., Effect of ambient atmosphere on crosslinking of polysilazanes. Journal of Applied Polymer Science, 2011. 119(2): p. 794-802.
    42.Wan, J., M.J. Gasch, and A.K. Mukherjee, Effect of Ammonia Treatment on the Crystallization of Amorphous Silicon–Carbon–Nitrogen Ceramics Derived from Polymer Precursor Pyrolysis. Journal of the American Ceramic Society, 2002. 85(3): p. 554-564.
    43.Aguiar, H., et al., Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. Journal of Non-Crystalline Solids, 2009. 355(8): p. 475-480.
    44.Lin-Vien, D., et al., The handbook of infrared and Raman characteristic frequencies of organic molecules. 1991: Elsevier.
    45.Smith, A.L., Infrared spectra-structure correlations for organosilicon compounds. Spectrochimica Acta, 1960. 16(1): p. 87-105.
    46.Gu, B., et al., Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental Science & Technology, 1994. 28(1): p. 38-46.
    47.Moulder, J.F., et al., Handbook of x-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of. 1992: Perkin-Elmer: Boca Raton, FL.
    48.Wagner, C., X‐ray photoelectron spectroscopy with x‐ray photons of higher energy. Journal of Vacuum Science and Technology, 1978. 15(2): p. 518-523.
    49.Gross, T., et al., An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference. Surface and interface analysis, 1992. 18(1): p. 59-64.
    50.Soraru, G.D., G. D'Andrea, and A. Glisenti, XPS characterization of gel-derived silicon oxycarbide glasses. Materials Letters, 1996. 27(1): p. 1-5.
    51.Barr, T.L., The nature of the relative bonding chemistry in zeolites: an XPS study. Zeolites, 1990. 10(8): p. 760-765.
    52.Endo, K., et al., Spectra analysis of the XPS core and valence energy levels of polymers by an ab initio mo method using simple model molecules. Journal of Physics and Chemistry of Solids, 1994. 55(6): p. 471-478.
    53.Contarini, S., et al., XPS study on the dispersion of carbon additives in silicon carbide powders. Applied surface science, 1991. 51(3): p. 177-183.

    QR CODE