簡易檢索 / 詳目顯示

研究生: 張景涵
Chang-han Chang
論文名稱: 以溶膠凝膠法製備PBAT/TiO2薄膜之熱性質與力學性質
Characterization and properties of PBAT/TiO2 hybrid membranes via a sol-gel process
指導教授: 楊銘乾
Min-chien Yang
口試委員: 李振綱
none
王大銘
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 83
中文關鍵詞: PBAT/ TiO2混成膜溶膠凝膠法結晶度力學性質
外文關鍵詞: PBAT/ TiO2 hybrids, sol-gel process, Crystallization, Mechanical properties
相關次數: 點閱:258下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究方向是以生物可分解性高分子薄膜與二氧化鈦poly(butyleneadipate co terephthalate)/titanium dioxide (PBAT/TiO2) ,以溶膠凝膠法將有機-無機材料以自我組成方式成膜,將不同比例的TiO2加入PBAT製成poly(butyleneadipateco\terephthalate)/titanium dioxide (PBAT/TiO2)混成薄膜,探討其熱穩定性質、結晶型態、結構、親水性,及其力學性質,由SEM結果顯示薄膜上的微孔洞轉變成類似泡綿體的結構,使用溶膠凝膠法製備有機-無機混成薄膜會使TiO2無機網狀結構與PBAT高分子鏈之間產生強大的作用力,以至於改善其親水性和熱性質。依據XRD的結果顯示,在PBAT中加入TiO2並不會改變PABT本身的結構,在小角X-ray的量測,TiO2的網狀結構,非呈現聚集狀態,而是整齊的排列在PABT的高分子基材上,因此,能在不改變PABT的結晶度與力學性質的情況下,得到有機-無機混成膜。其力學性質可由有機-無機基混成薄膜和未混成薄膜的應力-應變曲線得知,隨著TiO2溶液濃度增加,混成薄膜的應變和斷裂伸長量隨之增加,在25 wt% TiO2混摻薄膜中會有最大的斷裂伸長量,結果得知,呈透明狀的混成薄膜不會損失PBAT原有的結晶度與機械性質。


    Organic-inorganic hybrids based on poly(butyleneadipate-co-terephthalate)/titanium
    dioxide (PBAT/TiO2) hybrid films were prepared by an in situ sol-gel process. The PBAT/ TiO2 hybrid membranes were prepared in various PBAT to TiO2 ratios. Their crystallization and mechanical properties including the morphological features, structure, hydrophilicity, and thermal stability were investigated. The results showed that macrovoids underwent a transition to sponge like membrane structure. After sol-gel transition, the strong interaction between inorganic network and polymeric chains led to the improvement of hydrophilicity and thermal stability. According to X-ray diffraction measurements, the crystal structure of hybrids films revealed that the presence of TiO2 did not change the crystal structure of PBAT. TiO2 networks are uniformly dispersed into PBAT matrix and no aggregation of TiO2 networks in the hybrid films was observed in small angle X-ray scattering measurements. Thus, the hybrid membranes could be obtained without changing the crystallinity and mechanical properties of PBAT. The hybrid films, as well as pure PBAT film, showed in stress–strain relation. The strain and breaking elongation of the hybrids increased with increasing TiO2 content. It is interesting that the breaking elongation of the samples was the highest at 25 wt% TiO2, higher than that of pure PBAT film. Consequently, the transparent hybrid films could be obtained without any loss in either crystallinity of PBAT or mechanical properties.

    頁數 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖表索引 VI 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 2 第二章 文獻回顧 4 2-1 實驗材料簡介 4 2-1-1 生物分解性聚酯高子材料(PBAT) 4 2-1-2 二氧化鈦簡介 6 2-1-3 溶凝膠法 14 2-1-4 有機無機混成複合材料的演進歷史 26 第三章 實驗材料與方法 33 3-1 實驗項目流程圖 33 3-2 實驗原理 34 3-3 實驗材料 34 3-4 實驗設備 35 3-5 實驗步驟 36 3-5-1 PBAT薄膜製備 36 3-5-2 TiO2 溶液製備 36 3-5-3 PBAT/TiO2混成膜製備 37 3-6 表面性質測試 38 3-6-1 X 光繞射儀(X-Ray Diffraction,XRD) 38 3-6-2 接觸角(contact angle) 38 3-6-3 熱重量分析(Thermogravimetric Analyzer, TGA) 40 3-6-4 示差掃描熱量分析儀 (Differential Scanning Calorimetry, DSC) 41 3-6-5 原子力顯微鏡(atomic force microscope, AFM) 42 3-6-6 掃描式電子顯微鏡(SEM) 43 3-6-7 穿透式電子顯微鏡 (Transmission electron microscopy;TEM) 44 第四章 結果與討論 45 4-1 PBAT/ TiO2 hybrids 光學性質與構造特性 45 4-1-1 光學性質 45 4-1-2 Membrane structure image by scanning electron microscope(SEM) 47 4-1-2 Transmission electron microscopy(TEM) 47 4-1-3 純PBAT及混成膜的表面粗糙度 51 4-1-4 廣角X-ray繞射(WAXS) 52 4-1-5 小角X-ray散射(SAXS) 53 4-1-6 混成薄膜之親水性 54 4-1-7 混成薄膜之熱重量分析(TGA) 55 4-1-8 Thermal properties of the hybrid membranes(DSC) 57 4-1-9 混成薄膜之力學性質 59 第五章 結論(Conclusion) 61 第六章 參考文獻(Reference) 63 作者簡介 72

    [1] F. Le Digabel,1 N. Boquillon,2 P. Dole,3 B. Monties,3 L. Averous4
    [2] H. Imai, K. Awazu, M. Yasumori, H. Onuki, and H. Hirashima, ‘‘Densification of sol-gel thin films by ultraviolet and vacuum ultravilet irradiations,’’ J. Sol-Gel Sci. Tech., 8, 365–369 (1997).
    [3] C. Mueller-Mai, I. Kangasniemi, P. Li, A. Yli-Urpo, C. Voigt, K. Kandilakis, and U. Gross, ‘‘Sol-gel-produced Ti coatings on titanium implants in bone,’’ Bioceramics, 7, 159–162 (1994).
    [4] X. M. Du and R. M. Almeida, ‘‘Effects of thermal treatment on the structure and properties of SiO2-TiO2 gel films on silicon substrates,’’ J. Sol-Gel Sci. Tech., 8, 377–380 (1997).
    [5] R. M. Almeida and E. E. Christensen, ‘‘Crystallization behavior of SiO2-TiO2 sol-gel thin films,’’ J. Sol-Gel Sci. Tech., 8, 409–413 (1997).
    [6] D. B. Haddow, S. Kothari, P. F. James, R. D. Short, P. V. Hatton, and R. van Noort, ‘‘Synthetic implant surfaces. I. The formation and characterization of sol-gel titania films,’’ Biomaterials, 17, 501–507 (1996).
    [7] D. B. Haddow, P. F. James, and R. van Noort, ‘‘Characterization of sol-gel surfaces for biomedical applications,’’ J. Mater. Sci. Mater. Med., 7, 255–260 (1996).
    [8] Y. Takahashi and Y. Matsuoka, ‘‘Dip-coating of TiO2 films using a sol derived from Ti(O-i-Pr)4-diethanolamine-H2O-i-PrOH system,’’ J. Mater. Sci., 23, 2259–2266 (1988).
    [9] K. P. Kumar, V. T. Zaspalis, K. Keizer, and A. J. Burggraaf, ‘‘Drying process in the formation of sol-gel-derived TiO2 ceramic membrane,’’ J. Non-Cryst. Sol., 147/148, 375–381 (1992).
    [10] L. Hu, T. Yoko, H. Kozuka and S. Sakka, ‘‘Effect of solvent on properties of sol-gel-derived TiO2 coating films,’’ Thin Solid Films, 219, 18–23 (1992).
    [11] M. Langlet, D. Walz, P. Marage and J. C. Joubert, ‘‘Glass and ceramic thin films deposited by an ultrasonically assisted solgel technique,’’ Thin Solid Films, 221, 44–54 (1992).
    [12] M. Zaharescu, C. Pirlog, M. Crisan, M. Gartner and A. Vasilescu, ‘‘TiO2-based vitreous coatings obtained by sol-gel method,’’ J. Noncryst. Solids, 160, 162–166 (1993).
    [13] Y.-J. Kim and L. F. Francis, ‘‘Processing and characterization of porous TiO2 coatings,’’ J. Am. Ceram. Soc., 76, 737–742 (1993).
    [14] M. Anast, Å. Jamting, J. M. Bell, and B. Ben-Nissan, ‘‘Structural morphology examination of sol-gel-deposited TiO2 films,’’Thin Solid Films, 253, 303–307 (1994).
    [15] R. Zanini, G. Righini, A. Montenero, G. Gnappi, G. Montesperelli, E. Traversa, and G. Gusmano, ‘‘XPS analysis of sol-gel processed doped and undoped TiO2 films for sensors,’’ Surf. Interface Anal., 22, 376–379 (1994).
    [16] J. L. Keddie, P. V. Braun, and E. P. Giannelis, ‘‘New inorganic ultrafiltration membranes: Titania and zirconia membranes,’’ J. Am. Ceram. Soc., 77, 1592–1596 (1994).
    [17] M. Atik and J. Zarzycki, ‘‘Protective TiO2-SiO2 coatings on stainless steel sheets prepared by a dip-coating technique,’’ J.Mater. Sci. Lett., 13, 1301–1304 (1994).
    [18] W. E. Torruellas, L. A. Weller–Brophy, R. Zanoni, G. I. Stegeman, Z. Osborne, and B. J. J. Zelinski, ‘‘Thir-harmonic generation measurement of nonlinearities in SiO2-TiO2 sol-gel films,’’ Appl. Phys. Lett., 58, 1128–1130 (1991).
    [19] S. M. Melpolder, A. W. West, C. L. Barnes, and T. N. Blanton, ‘‘Phase transformations in TiO2/SiO2 sol-gel films as a function of composition and heat treatment,’’ J. Mater. Sci., 26, 3585–3592 (1991).
    [20] L. Armelao, P. Colombo, G. Granozzi, and M. Guglielmi,‘‘SiO2-TiO2 sol-gel coatings: A surface study by X-ray photoelectron spectroscopy,’’ J. Noncryst. Solids, 139, 198–204 (1992).
    [21] V. Kozhukharov, CH. Trapalis, B. Samuneva, and E. Kirilova, ‘‘Sol-gel processing of multilayer thin coatings,’’ J. Mater. Sci. Lett., 11, 1206–1208 (1992).
    [22] K. Ebert, D. Fritsch, J. Koll, C. Tjahjawiguna, Influence of inorganic fillers on the compaction behaviour of porous polymer based membrane, Journal of Membrane Science 233 (2004) 71–78
    [23] K.G. Neoh, K.K. Tan, P.L. Goh, S.W. Huang, E.T. Kang, K.L. Tan, Electroactive polymer–SiO2 nanocomposites for metal uptake, Polymer 40 (1999) 887.
    [24] U.Witt, T Einig, M Yamamoto, I Kleeberg, W-D.Deckwer, R-J. Muller, Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates Chemosphere 44, (2001) 289-299
    [25] K. Kato, A. Tsuzuki, H. Taoda, Y. Torii, T. Kato, and Y. Butsugan, ‘‘Crystal structures of TiO2 thin coatings prepared from the alkoxide solution via the dip-coating technique affecting the photocatalytic decomposition of aqueous acetic acid,’’ J. Mater. Sci., 29, 5911–5915 (1994).
    [26] D. Papoutsi, P. Lianos, P. Yianoulis, and P. Koutsoukos, ‘‘Solgel-derived TiO2 microemulsion gels and coatings,’’ Langmuir, 10, 1684–1689 (1994).
    [27] Hocking PJ,Marchessault RH. Biopolyester. In Chemistry and Technology of Biodegradable Polymers, Ed by Griffin GJL,New York:Blackie Academic & Professional, 1994,pp.48-96.
    [28] U.Witt ,T.Einig , M.Yamamoto , I.Kleeberg , W.-D.Deckwer , R.-j.Muller .Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotocxicological impact of degradation intermediates,Chemosphere 44(2001)289-299
    [29] Ulrike D. “The surface science of titanium dioxide” Surf. Sci. Rep. 48, 53, (2003).
    [30] 高濂、鄭珊、張青紅、陳憲偉,奈米光觸媒,五南,(2004).
    [31] Phase Diagrams for Ceramists Figure 4150~4999, The American Ceramic Society, Inc., 76 (1975)
    [32] 周禮君,田珮,「有機矽烷氧基前驅物衍生的有機-無機混成溶凝膠材30料」,化工技術,第8 卷第5 期,152-164 頁,2000 年5 月。
    [33] 丁原傑,「無機有機混合溶凝膠配製與應用」,化工,第46 卷第5 期,63-71 頁,1999 年10 月。
    [34] C. J. Brinker, Sol-gel science, Academic Press, 1990.
    [35] Y. A. Attia, Sol-gel processing and application, Plenum Press, 1994.
    [36] R. W. Jones, Fundamental principles of sol-gel technology, The Institute of Metals, 1989.
    [37] D. Avnir, V. R. Kaufman and R. Reisfeld, “Organic fluorescent dyestrapped in silica and silica-titania thin films by the sol-gel method.Photophysical, film and cage properties”, J. Non-Cryst. Solids, vol. 74, pp.395-406, 1985.
    [38] V. R. Kaufman, D. Levy and D. Avnir, “A photophysical study of thesol/gel transition in silica : structural dynamics and oscillations,room-temperature phosphorescence and photochromic gel glasses”, J.Non-Cryst. Solids, vol. 82, pp. 103-109, 1986.
    [39] D. Avnir et al., Sol-gel optics : processing and applications, Edited by L. C.Klein, Kluwer Academic Publishers, pp. 539-582, 1994.
    [40] T. Tani, H. Namikawa and K. Arai, “Photochemical hole-burning study of1,4-dihydroxyanthraquinone doped in amorphous silica prepared byalcoholate method”, J. Appl. Phys., vol. 58(9), pp. 3559-3565, 1985.
    [41] G. Philipp and H. Schmidt, “New materials for contact lenses preparedfrom Si- and Ti-alkoxides by the sol-gel process”, J. Non-Cryst. Solids, vol.63, pp. 283-292, 1984.
    [42] C. J. Brinker and G. W. Scherer, “Sol-gel science-the physics and chemistryof sol-gel processing”, Mat. Res. Soc. Symp. Proc., vol. 519, pp. 183-188,1998.
    [43] M. T. Reetz, “Entrapment of biocatalysts in hydrophobic sol-gel materialsfor use in organic chemistry”, Adv. Mater. , vol. 9, pp. 943-954, 1997.
    [44] L. Piveteau, B. Gasser and L. Schlapbach, “Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphatefor metal implant application”, Biomaterials, vol. 21, pp. 2193-2201, 2000.
    [45] 陳志平,林維新,「溶凝膠在製備固定化生物觸媒之應用」,化工技術,第8 卷第5 期,152-164 頁,2000 年5 月。
    [46] 朱一民,「薄膜反應器在生化與食品程序上之應用」,化工技術,第7卷第11 期,211-217 頁,1999 年11 月。
    [47] 陳慧英, 黃定加, 朱秦億, “溶膠凝膠法在薄膜製備上之應用”, 化工技術第七卷第十一期, 1999 年十一月號, pp. 152-166
    [48] C. J. Brinker, Sol-gel science, Academic Press, 1990.
    [49] R. W. Jones, Fundamental principles of sol-gel technology, The Institute of Metals, 1989.
    [50] A. C. Pierre, Introduction to sol-gel processing, Kluwer Academic Publishers, 1998.
    [51] J. Ballato, R. E. Rimen and E. Snitzer, “Sol-gel synthesis of fluoride optical materials for planar integrated photonic applications”, J. Non-Cryst. Solids, 213 & 214, 126-136, 1997.
    [52] H. Schmidt, Sol-gel optics : processing and applications, Edited by L. C. Klein, Kluwer Academic Publishers, pp. 451-482,1994
    [53] H.Dislich,Glastechn.Ber.,1971,44,1.
    [54] G.L.Wilkes,B.Orler and H.Hung,Polym.Bul.(Berlin)
    [55] M.W.Colby,J.D.Ma.Ckenzine,J.Non-cryst.Solids.,1986,82,37.
    [56] J.D.Mackenzie, Y.J. Chung and Y. Hu, J. Non-cryst.Solids.,1992,147,271
    [57] T. Saequsa, J. Macromol.Sci., Chem. A, 1991, 28, 817
    [58] B. Wang, G. L. Wilkes, J. C. Hedrick, S. C. Liptak and J. E. Mcgrath, Macromolecules, 1991,24,3449.
    [59] M.W.Ellsworth and B.M.Novak,J.Am.Chem.Soc.,1991,113,2756.
    [60] Y.G.Hsu and J.H.Huang,J. Non-cryst.Solids,1996,208,259.
    [61] 呂常興, 國立台灣工業技術院纖維及高分子研究所碩士論文:“Mechanical Properties of Acrylic Bone Cement Containing PMMA-SiO2 Hybrid Sol-gel Material”,1996 年
    [62] Y.Wei, D.Yang and L. Tng, J.Matr.Res.,1993,8(5),1143.
    [63] . Wen and J.E.Mark, Macromol.Reports, 1994, A31, 429.
    [64] Y. Wei and W. Wei, Am. Cem. Soc., ”Hybrid Organic-Inorgnic Composities”, 1995, 125.
    [65] T.Saegusa, Pure and Appl.Chem.,1995,67,1965.
    [66] B.Wang, A. Gungor, A.B. Brennan, D.E. Rodrignes, J.E. Mcgrath, G.L. Willkes, Polym. Prep., 1991, 32(3), 521.
    [67] Y.Wei, R. Bakthavatchalam, D.Yang and C.K.Whitecar, Polym. Prep., 1991, 32(3), 503.
    [68] C.J.T.Lanrry and B.K.Coltrain, Polym, Prep. Am. Chem. Soc., Div. Polym. Chem., 1991, 32(3),514.
    [69] L.A.David and G.W.Scherer,Polym.Prep.,1991,23(3),512.
    [70] Q. Hu, E. Marand, In situ formation of nanosized TiO2 domains within poly(amide–imide) by a sol–gel process, Polymer 40 (1999) 4833–4843
    [71] Kim SH, Kwak SY, Sohn BH, Park TH. Design of TiO2 nanoparticle self-
    assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci 2003;211:157–65.
    [72] Xiong SX, Wang Q, Xia HS. Template synthesis of polyaniline/TiO2 bilayer microtubes. Synth Met 2004;146:37–42.
    [73] Yang Y, Wang P. Preparation and characterizations of a new PS/TiO2 hybridmembranes by sol–gel process. Polymer 2006;47:2683–2688.
    [74] Cho JW, Sul KI. Characterization and properties of hybrid composites prepared frompoly(vinylidene fluoride–tetrafluoroethylene) and SiO2. Polymer 2001;42:727–7.

    無法下載圖示 全文公開日期 2012/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE