簡易檢索 / 詳目顯示

研究生: 謝維隆
Wei-Long Xie
論文名稱: 修飾溶液製程氧化鋅以抑制有機金屬鹵化物鈣鈦礦薄膜的分解之研究
Study on Solution-processed ZnO Modification for Suppressing Decomposition of Organometal Halide Perovskite Film
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陶雨台
Yu-Tai Tao
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 142
中文關鍵詞: 鈣鈦礦太陽能電池自組裝單分子薄膜氧化鋅溶膠-凝膠
外文關鍵詞: Perovskite solar cells, Self-assembled monolayer, ZnO Sol-gel
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究以溶液製程氧化鋅薄膜為電子傳輸層之鈣鈦礦太陽能電池,進而提升鈣鈦礦元件的光電轉換效率與再現性。
    因其前驅物沉積與轉化過程都具有較好的可控性,順序沉積法已廣泛用於鈣鈦礦太陽能電池的製造。然而碘化鉛緻密的薄膜型態會降低鈣鈦礦轉化程度,使產生碘化鉛的殘留而導致元件對於光的穩定性降低。在實驗設計中,我們將未進行熱退火處理的碘化鉛薄膜與甲基碘化胺進行反應,並透過調整不同的參數,如旋塗轉速、濃度與溫度等,獲得轉化完全的鈣鈦礦薄膜。
    鈣鈦礦元件的穩定性除了受到主動層的結晶程度影響,基材的選擇也是至關重要。對於以溶液製程氧化鋅為電子傳輸層的鈣鈦礦太陽能元件,其製備中的熱退火處理易受氧化鋅內殘留的缺氧物質與有機副產物影響,造成鈣鈦礦的降解。因此,我們利用自組裝單分子薄膜修飾的方法隔絕氧化鋅與鈣鈦礦的直接接觸而減緩鈣鈦礦的降解;後續亦利用增加氧化鋅溶膠-凝膠法中的水解程度,來降低氧化鋅內導致鈣鈦礦降解的物質,使得鈣鈦礦可以在較高的溫度下進行熱退火處理,以達到更好的結晶品質。


    The present thesis aims to develop stable photoelectric conversion efficiency and reproducibility perovskite solar cells based on solution-processed ZnO film as the electron transport layer.
    Due to the better controllability in the process of both precursor deposition and transform, sequential deposition method has been widely applied in the fabrication of perovskite solar cells. The presence of a small amount of excess PbI2, which stemmed from the dense PbI2 film, results in the degradation of the perovskite film under illumination even when stored in an inert atmosphere compared to the perovskite film without excess PbI2. So, we make PbI2 film without thermal annealing react with MAI. By adjusting different parameters, such as spin coating speed, concentration, and temperature, etc., to obtain a fully converted perovskite film.
    For solution-processed ZnO film as the electron transport layer in perovskite solar cells, both the residual oxygen-deficient matters and organic by-products in the ZnO film lead to the degradation of the perovskite during thermal annealing. Therefore, we apply a self-assembled monolayer between ZnO film and perovskite film for suppressing the degradation. Besides, we also increase the hydrolysis of the zinc oxide sol-gel precursor to reduce the materials, which cause the degradation of perovskite, in the zinc oxide film for obtaining the better crystallinity of perovskite.

    摘要 II Abstract III 致謝 IV 圖目錄 XIII 表目錄 XX 第一章 介紹與文獻回顧 1 1.1全球能源需求與太陽能 1 1.2空氣質量與太陽能分佈 3 1.2.1大氣質量 3 1.2.2太陽能分佈 6 1.3光伏電池的潛力 7 1.3.1太陽能電池的種類 7 1.3.2建築整合太陽能 9 1.4鈣鈦礦太陽能電池的性能與進程 10 1.4.1材料性質與元件結構 10 1.4.1.1常規n-i-p結構 13 1.4.1.2反式p-i-n結構 15 1.4.2元件製備方法 16 1.4.2.1單步溶液沉積法 16 1.4.2.2兩步溶液沉積法 18 1.4.2.3蒸氣輔助溶液沉積法 19 1.4.2.4熱蒸氣沉積法 19 1.4.3薄膜與元件的修飾工程 19 1.4.3.1溶劑修飾工程 20 1.4.3.2製程修飾工程 21 1.4.3.3能隙修飾工程 23 1.4.3.4界面修飾工程 24 1.4.4議題與挑戰 27 1.4.4.1元件的穩定性 28 1.4.4.2遲滯現象 29 1.4.4.2毒性與污染 32 1.4.5鈣鈦礦光伏電池中的載子產生與傳輸 33 1.4.5.1光子的吸收 34 1.4.5.2激子的擴散 35 1.4.5.3載子的分離 35 1.4.4.4載子的傳輸 36 1.4.4.5載子的收集 36 1.4.4.7費米能階 37 1.4.4.8肖特基能障 40 1.4.4.9歐姆接觸 42 1.5自組裝單分子薄膜 43 1.5.1材料結構與種類 43 1.5.2薄膜製備方法 45 1.5.3 自組裝單分子的應用 46 1.6光伏電池效率的測定 47 第二章 研究動機與目的 53 2.1光伏電池的當前趨勢 53 2.2研究動機 54 第三章 實驗研究 56 3.1實驗藥品與耗材 56 3.1.1基材與容器 56 3.1.2藥品 56 3.1.3氣體 57 3.2實驗器材與設備 57 3.3實驗步驟 58 3.3.1鈣鈦礦光伏元件的製備 58 3.3.2自組裝單分子薄膜的製備 61 3.4分析儀器與簡介 62 3.4.1分析儀器 62 3.4.2儀器簡介 62 第四章 實驗結果與討論 70 4.1順序沉積法所製備的鈣鈦礦薄膜分析 70 4.1.1碘化鉛表面形態對於鈣鈦礦薄膜的影響 70 4.1.2鈣鈦礦厚度與甲基碘化胺濃度的關係 74 4.1.3溫度對於鈣鈦礦薄膜的影響 77 4.2以三烷氧基矽烷自組裝單分子薄膜修飾氧化鋅 80 4.2.1以NH2尾端基的三乙氧基矽烷修飾氧化鋅 81 4.2.2以SH尾端基的三甲氧基矽烷修飾氧化鋅 84 4.2.3以CH3尾端基的三乙氧基矽烷修飾氧化鋅 88 4.3以溶膠-凝膠法製備的氧化鋅薄膜 93 4.3.1以溶膠-凝膠法製備薄膜的機制 94 4.3.2含水量對於氧化鋅薄膜的影響 96 4.3.3鈣鈦礦於不同含水量氧化鋅上的薄膜性質 99 第五章 結論與未來展望 102 參考文獻 104

    1. Darling, S. B.; You, F., The case for organic photovoltaics. RSC Advances 2013, 3 (39), 17633-17648.
    2. MSc, S. M. E., Characteristics, origin, applications and effects of fossil fuels, Fossil fuels. 2018.
    3. Administration, U. S. E. I., Monthly Energy Review. 2020.
    4. Shockley, W.; Queisser, H. J., Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics 1961, 32 (3), 510-519.
    5. C. Brabec, U. S., V. Dyakonov, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies. Wiley-VCH Verlag GmbH & Co. KGaA, Germany 2014.
    6. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992, 258 (5087), 1474.
    7. Camaioni, N.; Ridolfi, G.; Casalbore-Miceli, G.; Possamai, G.; Maggini, M., The Effect of a Mild Thermal Treatment on the Performance of Poly(3-alkylthiophene)/Fullerene Solar Cells. Advanced Materials 2002, 14 (23), 1735-1738.
    8. Du, J.; Huang, L.; Min, Q.; Zhu, L., The influence of water vapor absorption in the 290–350 nm region on solar radiance: Laboratory studies and model simulation. Geophysical Research Letters 2013, 40 (17), 4788-4792.
    9. Dufresne, J.-L.; Gautier, C.; Ricchiazzi, P.; Fouquart, Y., Longwave Scattering Effects of Mineral Aerosols. Journal of the Atmospheric Sciences 2002, 59 (12), 1959-1966.
    10. T. K. Ghosh, M. A. P., Energy Resources and Systems: Volume 2: Renewable Resources. Springer, New York 2011.
    11. Wang, G., Technology, Manufacturing and Grid Connection of Photovoltaic Solar Cells. John Wiley & Sons 2018.
    12. Mecherikunnel, A. T.; Gatlin, J. A.; Richmond, J. C., Data on total and spectral solar irradiance. Appl. Opt. 1983, 22 (9), 1354-1359.
    13. Gueymard, C. A.; Myers, D.; Emery, K., Proposed reference irradiance spectra for solar energy systems testing. Solar Energy 2002, 73 (6), 443-467.
    14. Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A. A.; Kim, K.-H., Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews 2018, 82, 894-900.
    15. Parida, B.; Iniyan, S.; Goic, R., A review of solar photovoltaic technologies. Renewable and Sustainable Energy Reviews 2011, 15 (3), 1625-1636.
    16. Che, X.; Li, Y.; Qu, Y.; Forrest, S. R., High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nature Energy 2018, 3 (5), 422-427.
    17. Andersen, T. R.; Larsen-Olsen, T. T.; Andreasen, B.; Böttiger, A. P. L.; Carlé, J. E.; Helgesen, M.; Bundgaard, E.; Norrman, K.; Andreasen, J. W.; Jørgensen, M.; Krebs, F. C., Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methods. ACS Nano 2011, 5 (5), 4188-4196.
    18. Lu, S.; Lin, J.; Liu, K.; Yue, S.; Ren, K.; Tan, F.; Wang, Z.; Jin, P.; Qu, S.; Wang, Z., Large area flexible polymer solar cells with high efficiency enabled by imprinted Ag grid and modified buffer layer. Acta Materialia 2017, 130, 208-214.
    19. Ballif, C.; Perret-Aebi, L.-E.; Lufkin, S.; Rey, E., Integrated thinking for photovoltaics in buildings. Nature Energy 2018, 3 (6), 438-442.
    20. BIPV Technologies and Markets: 2017-2026. n-tech Research 2017.
    21. Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25 (5), 676-677.
    22. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
    23. Shi, E.; Gao, Y.; Finkenauer, B. P.; Akriti; Coffey, A. H.; Dou, L., Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews 2018, 47 (16), 6046-6072.
    24. Sgourou, E. N.; Panayiotatos, Y.; Davazoglou, K.; Solovjov, A. L.; Vovk, R. V.; Chroneos, A., Self-Diffusion in Perovskite and Perovskite Related Oxides: Insights from Modelling. Applied Sciences 2020, 10 (7).
    25. Zhaoning, S.; Suneth, C. W.; Adam, B. P.; Michael, J. H., Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy 2016, 6 (2), 1-23.
    26. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports 2012, 2 (1), 591.
    27. Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics 2013, 7 (6), 486-491.
    28. Choi, J. J.; Yang, X.; Norman, Z. M.; Billinge, S. J. L.; Owen, J. S., Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells. Nano Letters 2014, 14 (1), 127-133.
    29. Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nature Communications 2013, 4 (1), 2885.
    30. Leijtens, T.; Lauber, B.; Eperon, G. E.; Stranks, S. D.; Snaith, H. J., The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. The Journal of Physical Chemistry Letters 2014, 5 (7), 1096-1102.
    31. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234.
    32. Edri, E.; Kirmayer, S.; Henning, A.; Mukhopadhyay, S.; Gartsman, K.; Rosenwaks, Y.; Hodes, G.; Cahen, D., Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor). Nano Letters 2014, 14 (2), 1000-1004.
    33. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Interface engineering of highly efficient perovskite solar cells. Science 2014, 345 (6196), 542.
    34. Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C., CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Advanced Materials 2013, 25 (27), 3727-3732.
    35. Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J., Perovskite solar cells employing organic charge-transport layers. Nature Photonics 2014, 8 (2), 128-132.
    36. Zheng, X.; Hou, Y.; Bao, C.; Yin, J.; Yuan, F.; Huang, Z.; Song, K.; Liu, J.; Troughton, J.; Gasparini, N.; Zhou, C.; Lin, Y.; Xue, D.-J.; Chen, B.; Johnston, A. K.; Wei, N.; Hedhili, M. N.; Wei, M.; Alsalloum, A. Y.; Maity, P.; Turedi, B.; Yang, C.; Baran, D.; Anthopoulos, T. D.; Han, Y.; Lu, Z.-H.; Mohammed, O. F.; Gao, F.; Sargent, E. H.; Bakr, O. M., Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy 2020, 5 (2), 131-140.
    37. Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Grätzel, M.; Han, L., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350 (6263), 944.
    38. Yin, X.; Zhai, J.; Song, L.; Du, P.; Li, N.; Yang, Y.; Xiong, J.; Ko, F., Novel NiO Nanoforest Architecture for Efficient Inverted Mesoporous Perovskite Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (47), 44308-44314.
    39. Barrows, A. T.; Pearson, A. J.; Kwak, C. K.; Dunbar, A. D. F.; Buckley, A. R.; Lidzey, D. G., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science 2014, 7 (9), 2944-2950.
    40. Deng, Y.; Peng, E.; Shao, Y.; Xiao, Z.; Dong, Q.; Huang, J., Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science 2015, 8 (5), 1544-1550.
    41. Li, S.-G.; Jiang, K.-J.; Su, M.-J.; Cui, X.-P.; Huang, J.-H.; Zhang, Q.-Q.; Zhou, X.-Q.; Yang, L.-M.; Song, Y.-L., Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (17), 9092-9097.
    42. Hwang, K.; Jung, Y.-S.; Heo, Y.-J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D. J.; Kim, D.-Y.; Vak, D., Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells. Advanced Materials 2015, 27 (7), 1241-1247.
    43. Zhou, D.; Zhou, T.; Tian, Y.; Zhu, X.; Tu, Y., Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. Journal of Nanomaterials 2018, 2018, 8148072.
    44. Liang, K.; Mitzi, D. B.; Prikas, M. T., Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique. Chemistry of Materials 1998, 10 (1), 403-411.
    45. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319.
    46. Im, J.-H.; Jang, I.-H.; Pellet, N.; Grätzel, M.; Park, N.-G., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology 2014, 9 (11), 927-932.
    47. Zhang, T.; Yang, M.; Zhao, Y.; Zhu, K., Controllable Sequential Deposition of Planar CH3NH3PbI3 Perovskite Films via Adjustable Volume Expansion. Nano Letters 2015, 15 (6), 3959-3963.
    48. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials 2014, 13 (9), 897-903.
    49. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N., Liquid Exfoliation of Layered Materials. Science 2013, 340 (6139), 1226419.
    50. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society 2014, 136 (2), 622-625.
    51. Hao, F.; Stoumpos, C. C.; Liu, Z.; Chang, R. P. H.; Kanatzidis, M. G., Controllable Perovskite Crystallization at a Gas–Solid Interface for Hole Conductor-Free Solar Cells with Steady Power Conversion Efficiency over 10%. Journal of the American Chemical Society 2014, 136 (46), 16411-16419.
    52. Mitzi, D. B.; Prikas, M. T.; Chondroudis, K., Thin Film Deposition of Organic−Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique. Chemistry of Materials 1999, 11 (3), 542-544.
    53. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395-398.
    54. Chen, C.-W.; Kang, H.-W.; Hsiao, S.-Y.; Yang, P.-F.; Chiang, K.-M.; Lin, H.-W., Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition. Advanced Materials 2014, 26 (38), 6647-6652.
    55. Tavakoli, M. M.; Gu, L.; Gao, Y.; Reckmeier, C.; He, J.; Rogach, A. L.; Yao, Y.; Fan, Z., Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Scientific Reports 2015, 5 (1), 14083.
    56. Stranks, S. D.; Snaith, H. J., Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology 2015, 10 (5), 391-402.
    57. Salim, T.; Sun, S.; Abe, Y.; Krishna, A.; Grimsdale, A. C.; Lam, Y. M., Perovskite-based solar cells: impact of morphology and device architecture on device performance. Journal of Materials Chemistry A 2015, 3 (17), 8943-8969.
    58. Zhao, Y.; Zhu, K., Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2014, 5 (23), 4175-4186.
    59. Yan, K.; Long, M.; Zhang, T.; Wei, Z.; Chen, H.; Yang, S.; Xu, J., Hybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering behind Device Processing for High Efficiency. Journal of the American Chemical Society 2015, 137 (13), 4460-4468.
    60. Li, W.; Fan, J.; Li, J.; Mai, Y.; Wang, L., Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. Journal of the American Chemical Society 2015, 137 (32), 10399-10405.
    61. Zhao, Y.; Zhu, K., Efficient Planar Perovskite Solar Cells Based on 1.8 eV Band Gap CH3NH3PbI2Br Nanosheets via Thermal Decomposition. Journal of the American Chemical Society 2014, 136 (35), 12241-12244.
    62. Heo, J. H.; Song, D. H.; Han, H. J.; Kim, S. Y.; Kim, J. H.; Kim, D.; Shin, H. W.; Ahn, T. K.; Wolf, C.; Lee, T.-W.; Im, S. H., Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate. Advanced Materials 2015, 27 (22), 3424-3430.
    63. Tsai, H.; Nie, W.; Cheruku, P.; Mack, N. H.; Xu, P.; Gupta, G.; Mohite, A. D.; Wang, H.-L., Optimizing Composition and Morphology for Large-Grain Perovskite Solar Cells via Chemical Control. Chemistry of Materials 2015, 27 (16), 5570-5576.
    64. Chen, Y.; Zhao, Y.; Liang, Z., Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH4Cl. Chemistry of Materials 2015, 27 (5), 1448-1451.
    65. Heo, J. H.; Song, D. H.; Im, S. H., Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin-Coating Process. Advanced Materials 2014, 26 (48), 8179-8183.
    66. Liang, P.-W.; Liao, C.-Y.; Chueh, C.-C.; Zuo, F.; Williams, S. T.; Xin, X.-K.; Lin, J.; Jen, A. K. Y., Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells. Advanced Materials 2014, 26 (22), 3748-3754.
    67. Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Grätzel, M.; Han, H., A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345 (6194), 295.
    68. Li, X.; Ibrahim Dar, M.; Yi, C.; Luo, J.; Tschumi, M.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Han, H.; Grätzel, M., Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nature Chemistry 2015, 7 (9), 703-711.
    69. Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L., Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy & Environmental Science 2014, 7 (9), 2934-2938.
    70. Wu, C.-G.; Chiang, C.-H.; Tseng, Z.-L.; Nazeeruddin, M. K.; Hagfeldt, A.; Grätzel, M., High efficiency stable inverted perovskite solar cells without current hysteresis. Energy & Environmental Science 2015, 8 (9), 2725-2733.
    71. Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H.-L.; Mohite, A. D., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347 (6221), 522.
    72. Zheng, Y. C.; Yang, S.; Chen, X.; Chen, Y.; Hou, Y.; Yang, H. G., Thermal-Induced Volmer–Weber Growth Behavior for Planar Heterojunction Perovskites Solar Cells. Chemistry of Materials 2015, 27 (14), 5116-5121.
    73. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G., Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. Journal of the American Chemical Society 2015, 137 (27), 8696-8699.
    74. Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y.-B.; Spiccia, L., A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells. Angewandte Chemie International Edition 2014, 53 (37), 9898-9903.
    75. Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J., Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Advanced Materials 2014, 26 (37), 6503-6509.
    76. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J., Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials 2014, 24 (1), 151-157.
    77. Song, Z.; Watthage, S. C.; Phillips, A. B.; Tompkins, B. L.; Ellingson, R. J.; Heben, M. J., Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites. Chemistry of Materials 2015, 27 (13), 4612-4619.
    78. de Quilettes, D. W.; Vorpahl, S. M.; Stranks, S. D.; Nagaoka, H.; Eperon, G. E.; Ziffer, M. E.; Snaith, H. J.; Ginger, D. S., Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 2015, 348 (6235), 683.
    79. Tosun, B. S.; Hillhouse, H. W., Enhanced Carrier Lifetimes of Pure Iodide Hybrid Perovskite via Vapor-Equilibrated Re-Growth (VERG). The Journal of Physical Chemistry Letters 2015, 6 (13), 2503-2508.
    80. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters 2013, 13 (4), 1764-1769.
    81. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 2014, 7 (3), 982-988.
    82. Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M., Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angewandte Chemie International Edition 2014, 53 (12), 3151-3157.
    83. Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science 2014, 7 (9), 3061-3068.
    84. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics 2014, 8 (6), 489-494.
    85. Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T.; Hayase, S., CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm. The Journal of Physical Chemistry Letters 2014, 5 (6), 1004-1011.
    86. Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang, R. P. H.; Kanatzidis, M. G., Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. Journal of the American Chemical Society 2015, 137 (35), 11445-11452.
    87. Kim, H.-S.; Mora-Sero, I.; Gonzalez-Pedro, V.; Fabregat-Santiago, F.; Juarez-Perez, E. J.; Park, N.-G.; Bisquert, J., Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nature Communications 2013, 4 (1), 2242.
    88. Son, D.-Y.; Im, J.-H.; Kim, H.-S.; Park, N.-G., 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System. The Journal of Physical Chemistry C 2014, 118 (30), 16567-16573.
    89. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338 (6107), 643.
    90. Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J., Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 2013, 6 (6), 1739-1743.
    91. Bera, A.; Wu, K.; Sheikh, A.; Alarousu, E.; Mohammed, O. F.; Wu, T., Perovskite Oxide SrTiO3 as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells. The Journal of Physical Chemistry C 2014, 118 (49), 28494-28501.
    92. Bi, D.; Moon, S.-J.; Häggman, L.; Boschloo, G.; Yang, L.; Johansson, E. M. J.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A., Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances 2013, 3 (41), 18762-18766.
    93. Liu, D.; Kelly, T. L., Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics 2014, 8 (2), 133-138.
    94. Correa Baena, J. P.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T. J.; Srimath Kandada, A. R.; Zakeeruddin, S. M.; Petrozza, A.; Abate, A.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A., Highly efficient planar perovskite solar cells through band alignment engineering. Energy & Environmental Science 2015, 8 (10), 2928-2934.
    95. Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; Yang, G.; Yan, Y., Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. Journal of the American Chemical Society 2015, 137 (21), 6730-6733.
    96. Wang, L.; Fu, W.; Gu, Z.; Fan, C.; Yang, X.; Li, H.; Chen, H., Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer. Journal of Materials Chemistry C 2014, 2 (43), 9087-9090.
    97. Liu, J.; Gao, C.; Luo, L.; Ye, Q.; He, X.; Ouyang, L.; Guo, X.; Zhuang, D.; Liao, C.; Mei, J.; Lau, W., Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (22), 11750-11755.
    98. Wang, J. T.-W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J.; Nicholas, R. J., Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano Letters 2014, 14 (2), 724-730.
    99. Yu, Z.; Sun, L., Recent Progress on Hole-Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells. Advanced Energy Materials 2015, 5 (12), 1500213.
    100. Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M. K.; Grätzel, M., Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature Communications 2014, 5 (1), 3834.
    101. Ye, S.; Sun, W.; Li, Y.; Yan, W.; Peng, H.; Bian, Z.; Liu, Z.; Huang, C., CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Nano Letters 2015, 15 (6), 3723-3728.
    102. Christians, J. A.; Fung, R. C. M.; Kamat, P. V., An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. Journal of the American Chemical Society 2014, 136 (2), 758-764.
    103. Xu, X.; Liu, Z.; Zuo, Z.; Zhang, M.; Zhao, Z.; Shen, Y.; Zhou, H.; Chen, Q.; Yang, Y.; Wang, M., Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode. Nano Letters 2015, 15 (4), 2402-2408.
    104. Jung, J. W.; Chueh, C.-C.; Jen, A. K. Y., A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. Advanced Materials 2015, 27 (47), 7874-7880.
    105. Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. Journal of the American Chemical Society 2012, 134 (42), 17396-17399.
    106. Laban, W. A.; Etgar, L., Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy & Environmental Science 2013, 6 (11), 3249-3253.
    107. Shi, J.; Dong, J.; Lv, S.; Xu, Y.; Zhu, L.; Xiao, J.; Xu, X.; Wu, H.; Li, D.; Luo, Y.; Meng, Q., Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Applied Physics Letters 2014, 104 (6), 063901.
    108. Ke, W.; Fang, G.; Wan, J.; Tao, H.; Liu, Q.; Xiong, L.; Qin, P.; Wang, J.; Lei, H.; Yang, G.; Qin, M.; Zhao, X.; Yan, Y., Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nature Communications 2015, 6 (1), 6700.
    109. Liu, D.; Yang, J.; Kelly, T. L., Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency. Journal of the American Chemical Society 2014, 136 (49), 17116-17122.
    110. Leijtens, T.; Eperon, G. E.; Noel, N. K.; Habisreutinger, S. N.; Petrozza, A.; Snaith, H. J., Stability of Metal Halide Perovskite Solar Cells. Advanced Energy Materials 2015, 5 (20), 1500963.
    111. Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A., Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Letters 2014, 14 (5), 2584-2590.
    112. Habisreutinger, S. N.; Leijtens, T.; Eperon, G. E.; Stranks, S. D.; Nicholas, R. J.; Snaith, H. J., Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells. Nano Letters 2014, 14 (10), 5561-5568.
    113. Zhaoning, S.; Suneth, C. W.; Adam, B. P.; Geethika, K. L.; Rajendra, R. K.; Brandon, L. T.; Randy, J. E.; Michael, J. H. In Investigation of degradation mechanisms of perovskite-based photovoltaic devices using laser beam induced current mapping, Proc.SPIE, 2015.
    114. Li, X.; Tschumi, M.; Han, H.; Babkair, S. S.; Alzubaydi, R. A.; Ansari, A. A.; Habib, S. S.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Grätzel, M., Outdoor Performance and Stability under Elevated Temperatures and Long-Term Light Soaking of Triple-Layer Mesoporous Perovskite Photovoltaics. Energy Technology 2015, 3 (6), 551-555.
    115. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517 (7535), 476-480.
    116. Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.-W.; Wojciechowski, K.; Zhang, W., Anomalous Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2014, 5 (9), 1511-1515.
    117. Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M., Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science 2015, 8 (3), 995-1004.
    118. Unger, E. L.; Hoke, E. T.; Bailie, C. D.; Nguyen, W. H.; Bowring, A. R.; Heumüller, T.; Christoforo, M. G.; McGehee, M. D., Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science 2014, 7 (11), 3690-3698.
    119. Kim, H.-S.; Park, N.-G., Parameters Affecting I–V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. The Journal of Physical Chemistry Letters 2014, 5 (17), 2927-2934.
    120. Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J., Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications 2014, 5 (1), 5784.
    121. Wei, J.; Zhao, Y.; Li, H.; Li, G.; Pan, J.; Xu, D.; Zhao, Q.; Yu, D., Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2014, 5 (21), 3937-3945.
    122. Frost, J. M.; Butler, K. T.; Walsh, A., Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Materials 2014, 2 (8), 081506.
    123. Eames, C.; Frost, J. M.; Barnes, P. R. F.; O’Regan, B. C.; Walsh, A.; Islam, M. S., Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications 2015, 6 (1), 7497.
    124. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science 2015, 8 (5), 1602-1608.
    125. Bergmann, V. W.; Weber, S. A. L.; Javier Ramos, F.; Nazeeruddin, M. K.; Grätzel, M.; Li, D.; Domanski, A. L.; Lieberwirth, I.; Ahmad, S.; Berger, R., Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nature Communications 2014, 5 (1), 5001.
    126. van Reenen, S.; Kemerink, M.; Snaith, H. J., Modeling Anomalous Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2015, 6 (19), 3808-3814.
    127. Beilsten-Edmands, J.; Eperon, G. E.; Johnson, R. D.; Snaith, H. J.; Radaelli, P. G., Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices. Applied Physics Letters 2015, 106 (17), 173502.
    128. Chen, B.; Shi, J.; Zheng, X.; Zhou, Y.; Zhu, K.; Priya, S., Ferroelectric solar cells based on inorganic–organic hybrid perovskites. Journal of Materials Chemistry A 2015, 3 (15), 7699-7705.
    129. Fan, Z.; Xiao, J.; Sun, K.; Chen, L.; Hu, Y.; Ouyang, J.; Ong, K. P.; Zeng, K.; Wang, J., Ferroelectricity of CH3NH3PbI3 Perovskite. The Journal of Physical Chemistry Letters 2015, 6 (7), 1155-1161.
    130. Coll, M.; Gomez, A.; Mas-Marza, E.; Almora, O.; Garcia-Belmonte, G.; Campoy-Quiles, M.; Bisquert, J., Polarization Switching and Light-Enhanced Piezoelectricity in Lead Halide Perovskites. The Journal of Physical Chemistry Letters 2015, 6 (8), 1408-1413.
    131. Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J., Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Materials 2015, 14 (2), 193-198.
    132. Bryant, D.; Wheeler, S.; O’Regan, B. C.; Watson, T.; Barnes, P. R. F.; Worsley, D.; Durrant, J., Observable Hysteresis at Low Temperature in “Hysteresis Free” Organic–Inorganic Lead Halide Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2015, 6 (16), 3190-3194.
    133. Gong, J.; Darling, S. B.; You, F., Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy & Environmental Science 2015, 8 (7), 1953-1968.
    134. Espinosa, N.; Serrano-Luján, L.; Urbina, A.; Krebs, F. C., Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective. Solar Energy Materials and Solar Cells 2015, 137, 303-310.
    135. Hailegnaw, B.; Kirmayer, S.; Edri, E.; Hodes, G.; Cahen, D., Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2015, 6 (9), 1543-1547.
    136. Chen, P.-Y.; Qi, J.; Klug, M. T.; Dang, X.; Hammond, P. T.; Belcher, A. M., Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries. Energy & Environmental Science 2014, 7 (11), 3659-3665.
    137. Gao, P.; Konrad, D.; Aghazada, S.; Nazeeruddin, M. K., Molecular Engineering of Functional Materials for Energy and Opto-Electronic Applications. CHIMIA International Journal for Chemistry 2015, 69 (5), 253-263.
    138. Petritsch, D. I. K., Organic Solar Cell Architectures, PhD Thesis. Technisch-Naturwissenschaftliche Fakult¨at der Technischen Universit¨at Graz, Austria 2000.
    139. Zeghbroeck, B. V., Principles of semiconductor devices. University of Colorado 2007.
    140. Ohmic Contact. Department of Physics, WARWICK 2011.
    141. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chemical Reviews 1996, 96 (4), 1533-1554.
    142. de Boer, B.; Hadipour, A.; Mandoc, M. M.; van Woudenbergh, T.; Blom, P. W. M., Tuning of Metal Work Functions with Self-Assembled Monolayers. Advanced Materials 2005, 17 (5), 621-625.
    143. Chiechi, R. C.; Havenith, R. W. A.; Hummelen, J. C.; Koster, L. J. A.; Loi, M. A., Modern plastic solar cells: materials, mechanisms and modeling. Materials Today 2013, 16 (7), 281-289.
    144. Lin, C.-F.; Zhang, M.; Liu, S.-W.; Chiu, T.-L.; Lee, J.-H., High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device. International Journal of Molecular Sciences 2011, 12 (1).
    145. National Renewable Energy Laboratory, N., Best Research-Cell Efficiency Chart, Photovoltaic Research. 2020.
    146. CHAPTER 2, CHARACTERIZATION TECHNIQUES
    147. Dkhissi, Y.; Meyer, S.; Chen, D.; Weerasinghe, H. C.; Spiccia, L.; Cheng, Y.-B.; Caruso, R. A., Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates. ChemSusChem 2016, 9 (7), 687-695.
    148. Znaidi, L., Sol–gel-deposited ZnO thin films: A review. Materials Science and Engineering: B 2010, 174 (1), 18-30.
    149. Iannaccone, G.; Bernardi, A.; Suriano, R.; Bianchi, C. L.; Levi, M.; Turri, S.; Griffini, G., The role of sol–gel chemistry in the low-temperature formation of ZnO buffer layers for polymer solar cells with improved performance. RSC Advances 2016, 6 (52), 46915-46924.

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 2070/08/26 (校外網路)
    全文公開日期 2070/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE