簡易檢索 / 詳目顯示

研究生: Desalegn Manayeh Zena
Desalegn - Manayeh Zena
論文名稱: Hybrid Polymer Solar Cells: Self-Assembled Monolayer Assisted Fabrication of ZnO Nanostructures, Surface Modification and Device Fabrication
Hybrid Polymer Solar Cells: Self-Assembled Monolayer Assisted Fabrication of ZnO Nanostructures, Surface Modification and Device Fabrication
指導教授: 戴龑
Yian Tai
口試委員: Jinn-Hsuan Ho
Jinn-Hsuan Ho
Jyh-Chiang Jiang
Jyh-Chiang Jiang
Bohr-Ran Huang
Bohr-Ran Huang
Chih-Chien Chu
Chih-Chien Chu
Jih-Shang Hwang
Jih-Shang Hwang
Olivier Wang
Olivier Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 148
中文關鍵詞: hybrid polymer solar cellsself-assembled monolayersZinc oxide nanorods
外文關鍵詞: Zinc oxide nanorods, self-assembled monolayers, hybrid polymer solar cells
相關次數: 點閱:301下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this study, zinc oxide (ZnO) nano-rods were fabricated on self-assembled monolayer (SAM) modified ZnO seeded indium oxide (ITO) substrates. By changing the tail group and growth time of SAM, the nano-rod thickness, diameter as well as optical properties can be controlled effectively. X-ray diffraction patterns confirmed that, with the optimized growth conditions, the nano-rods are highly crystalline with (002) preferred orientation, which are desirable for solar cell application.
    With optimized nano-rods, hybrid polymer solar cells based on ZnO nano-rod/ poly (3-hexylthiophene) (P3HT) were fabricated. We employed benzoic acid (BA) and C60-propandioic acid (CPA) individually as modifier in the interface of ZnO nano-rod/ P3HT. It is revealed that the short-circuit current (Jsc) of the device can be improved significantly by applying the CPA-SAM, while the BA-SAM enhanced the open circuit voltage (Voc). Mixing-SAMs of CPA and BA in different compositions can improve the Jsc and Voc simultaneously. The power conversion efficiency improved from 0.31% for the device without SAM modification to 0.73% with the interfacial modification using mixing-SAMs in optimized ratio. We attribute the improvement in conversion efficiency to higher charge separation ability and carrier mobility of CPA-SAM and the work function modulation of ZnO surface by the BA-SAM.


    In this study, zinc oxide (ZnO) nano-rods were fabricated on self-assembled monolayer (SAM) modified ZnO seeded indium oxide (ITO) substrates. By changing the tail group and growth time of SAM, the nano-rod thickness, diameter as well as optical properties can be controlled effectively. X-ray diffraction patterns confirmed that, with the optimized growth conditions, the nano-rods are highly crystalline with (002) preferred orientation, which are desirable for solar cell application.
    With optimized nano-rods, hybrid polymer solar cells based on ZnO nano-rod/ poly (3-hexylthiophene) (P3HT) were fabricated. We employed benzoic acid (BA) and C60-propandioic acid (CPA) individually as modifier in the interface of ZnO nano-rod/ P3HT. It is revealed that the short-circuit current (Jsc) of the device can be improved significantly by applying the CPA-SAM, while the BA-SAM enhanced the open circuit voltage (Voc). Mixing-SAMs of CPA and BA in different compositions can improve the Jsc and Voc simultaneously. The power conversion efficiency improved from 0.31% for the device without SAM modification to 0.73% with the interfacial modification using mixing-SAMs in optimized ratio. We attribute the improvement in conversion efficiency to higher charge separation ability and carrier mobility of CPA-SAM and the work function modulation of ZnO surface by the BA-SAM.

    ABSTRACTII ACKNOWLEDGMENTSIII CONTENTSIV LIST OF FIGURESVII LIST OF TABLEXII LIST OF SYMBOLS AND ABREVATIONSXIII CHAPTER 1INTRODUCTION1 CHAPTER 210 LITERATURE REVIEW10 2.1 Overview of Organic Solar Cells10 2.2 History of Hybrid Solar Cells24 2.2.1 Zinc Oxide (ZnO)/P3HT Photovoltaics26 2.3 Organic Solar Cell Materials31 2.3.1 Poly (3- hexylthiophene) (P3HT)40 2.4 General Working Principles47 2.4.1 Basic steps in energy conversion47 2.4.2. Characterization of Solar Cell Devices52 CHAPTER 356 EXPERIMENTAL SECTION56 3.1 Materials and Methods56 3.2ZnO Nanorod Synthesis and Device Fabrication57 3.3 Characterization Techniques62 3.4 Instrumental setup64 3.4.1 Spray Pyrrolysis Setup64 3.4.2. Ultraviolet-visible spectrophotometer65 3.4.3 Field Emission Scanning Electron Microscopy67 3.4.4 X-Ray Diffractometer69 3.4.5 Photoluminescence71 3.4.6 X-ray Photoelectron Spectroscopy72 3.4.7 Measurements of Quantum Efficiency74 3.4.8 Current-Voltage Characterization76 3.4.9 AC-2 Measurement77 CHAPTER 480 RESULTS AND DISCUSSION80 4.1 Self-Assembled Monolayer Assisted Fabrication of Zinc Oxide Nano-rod80 4.1.1 Morphology Analysis81 4.1.2 Structural Analysis92 4.1.3 UV-Vis and Photoluminescence Analysis93 4.2 Surface Modification and Device Fabrication98 4.2.1 Results and Discussion103 4.2.2 Device with New Designed Molecule (BPDBCA)115 Chapter 5 Conclusions118 REFERNCES120 Curriculum Vitae 134 Authorization 135

    1.Sista S, Hong Z, Chen L.-M, and Yang Y., Energy Environ. Sci. 2011, 4,1606.
    2.U.S. International Energy Outlook, 2005.
    3.Intergovernmental Panel on Climate Change (IPCC). Third assessment report, 2001.
    4.Wigley T.M.L., and Raper S.C.B., Science 2001, 293,451.
    5.Orr J.C., Fabry V.J., Aumont O., Bopp L., Doney S.C., Feely R.A., Gnanadesikan A., Gruber N., Ishida A., and Joos F., Nature 2005, 437,681.
    6.Anderson A.J., Global Biogeochem. Cycles 2006, 20,GB1S92.
    7.Karl T.R., and Trenberth K.E., Science 2003, 302,1719.
    8.Becquerel E., Compt. Rend. 1839, 9,561.
    9.Wallace A.R., Lett. Nat. 1873,7; 303.
    10.Johnston W.D., Solar Voltaic Cells, Dekker, New York, 1980.
    11.Einstein A.,"The Nobel Prize in Physics 1921". Nobelprize.org. , 1921.
    12.Nelson J., The Physics of Solar Cells: Imperial College Press. 2003,vol. 8.
    13.Chapin D.M., Fuller C.S., and Pearson G.L., J. App. Phys. 1954, 25,676.
    14.Knier G., How do Photovoltaics Work, NASA Science News, 2002.
    15.Sun S.-S., Organic Photovoltaics: mechanisms, materials, and devices, Boca Raton, Florida: CRC Press, 2005.
    16.Günes S., and Sariciftci N.S., Inorg. Chim. Acta 2008, 361,581.
    17.Wöhrle D., and Meissner D., Adv. Mater. 1991, 3,129.
    18.Li G., Zhu R., and Yang Y., Nat. Photon. 2012, 6,153.
    19.Jang J.-M., Kim C.-R., Ryu H., Razeghi M., and Jung W.-G., J. Alloys Compd. 2008, 463,503.
    20.Ko Y.-D., Moon P., Kim C.E., Ham M.-H., Myoung J.-M., and Yun I., Expert Syst. Appl. 2009, 36, 4061.
    21.Ravirajan P., Peiró A.M., Nazeeruddin M.K., Graetzel M., Bradley D.D.C., Durrant J.R., and Nelson J., J. Phys. Chem. B 2006, 110,7635.
    22.Wu X., Qu F., Zhang X., Cai W., and Shen G., J. Alloys Compd. 2009, 486, L13.
    23.Beek W.J.E., Wienk M.M., Kemerink M., Yang X., and Janssen R.A.J., J. Phys. Chem. B 2005, 109,9505.
    24.Lin Y.-Y., Lee Y.-Y., Chang L., Wu J.-J., and Chen C.-W., Appl. Phys. Lett. 2009, 94, 063308.
    25.Kroeze J.E., and Savenije T.J., J. Phys. Chem. B 2003, 107, 7696.
    26.Goh C., Scully S.R., and McGehee M.D., J. Appl. Phys. 2007, 101, 114503.
    27.Piris J., Kopidakis N., Olson D.C., Shaheen S.E., Ginley D.S., and Rumbles G., Adv. Funct. Mater. 2007, 17, 3849.
    28.Hau S.K., Yip H.-L., Ma H., and Jen A.K.Y., Appl. Phys. Lett. 2008, 93,233304.
    29.Monson T.C., Lloyd M.T., Olson D.C., Lee Y.-J., and Hsu J.W.P., Adv. Mater. 2008, 20,4755.
    30.Liu J., Wang S., Bian Z., Shan M., and Huang C., Appl. Phys. Lett. 2009, 94, 173107.
    31.Ruankham P., Macaraig L., Sagawa T., Nakazumi H., and Yoshikawa S., J. Phys. Chem. C 2011, 115,23809.
    32.Krüger J., Bach U., and Grätzel M., Adv. Mater. 2000, 12, 447.
    33.Law M., Greene L.E., Radenovic A., Kuykendall T., Liphardt J., and Yang P., J. Phys. Chem. B 2006, 110,22652.
    34.Greene L.E., Law M., Yuhas B.D., and Yang P., J. Phys. Chem. C 2007, 111,18451.
    35.Lin Y.-Y., Chen C.-W., Chu T.-H., Su W.-F., Lin C.-C., Ku C.-H., Wu J.-J., and Chen C-H., J. Mater. Chem. 2007, 17,4571.
    36.AbdulAlmohsin S., and Cui J.B., J. Phys. Chem. C 2012, 116,9433.
    37.Wang J., Wang Y., He D., Liu Z., Wu H., Wang H., Zhou P., and Fu M., Sol. Energy Mater. Sol. Cells 2012, 96,58.
    38.Senadeera G.K.R., Kitamura T., Wada Y., and Yanagida S., J. Photochem. Photobiol., A 2006, 184,234.
    39.Kudo N., Honda S., Shimazaki Y., Ohkita H., Ito S., and Benten H., Appl. Phys. Lett. 2007, 90,183513.
    40.Kudo N., Shimazaki Y., Ohkita H., Ohoka M., and Ito S., Sol. Energy Mater. Sol. Cells 2007, 91,1243.
    41.Lao C., Li Y., Wong C.P., and Wang Z.L., Nano Lett. 2007, 7, 1323.
    42.Allen C.G., Baker D.J., Albin J.M., Oertli H.E., Gillaspie D.T., Olson D.C., Furtak T.E., and Collins R.T., Langmuir 2008, 24,13393.
    43.Lin Y.-Y., Chu T.-H., Chen C.-W., and Su W.-F., Appl. Phys. Lett. 2008, 92,053312.
    44.Lin Y.-Y., Chu T.-H, Li S.-S., Chuang C.-H., Chang C.-H., Su W.-F., Chang C.-P., Chu M.-W., and Chen C.-W., J. Am. Chem.Soc. 2009, 131,3644.
    45.Geng H., Qu Q., Chen C., Wu H., and Wang M., J. Electron. Mater. 2010, 39,1.
    46.Steim R., Kogler F.R., and Brabec C.J., J.Mater. Chem. 2010, 20.
    47.Shao S., Liu F., Fang G., Zhang B., Xie Z., and Wang L., Org. Electron. 2011, 12,641.
    48.Zhang L., Zhong M., and Ge H., Appl.Surf. Sci. 2011, 258,1551.
    49.Park B., Lee J.-H., Chang M., and Reichmanis E., J. Phys. Chem. C 2012, 116,4252.
    50.Saarenpää H., Sariola-Leikas E., Pyymaki P. A., Kontio J.M., Efimov A., Hayashi H., Lipsanen H., Imahori H., Lemmetyinen H., and Tkachenko N.V., J. Phys. Chem. C 2011, 116,2336.
    51.Love J.C., Estroff L.A., Kriebel J.K., Nuzzo R.G., and Whitesides G.M., Chem. Rev. 2005, 105,1103.
    52.Liu Y., Scully S.R., McGehee M.D., Liu J., Luscombe C.K., Fréchet J.M.J., Shaheen S.E., and Ginley D.S., J. Phys. Chem. B 2006, 110,3257.
    53.Vaynzof Y., Kabra D., Zhao L., Ho P.K.H., Wee A.T.S., and Friend R.H., Appl. Phys. Lett. 2010, 97,033309.
    54.Bulliard X., Ihn S.-G., Yun S., Kim Y., Choi D., Choi J.-Y., Kim M., Sim M., Park J.-H., and Choi W., Adv. Funct. Mater. 2010, 20,4381.
    55.Nesher G., Shpaisman H., and Cahen D., J. Am. Chem. Soc. 2007, 129,734.
    56.Olson D.C., Piris J., Collins R.T., Shaheen S.E., and Ginley D.S., Thin Solid Films 2006, 496,26.
    57.Hummelen J.C., Knight B.W., LePeq F., Wudl F., Yao J., and Wilkins C.L., J. Org. Chem. 1995, 60,532.
    58.Kennedy R.D., Ayzner A.L., Wanger D.D., Day C.T., Halim M., Khan S.I., Tolbert S.H., Schwartz B.J., and Rubin Y., J. Am. Chem. Soc. 2008, 130,17290.
    59.Singh T.B., Sariciftci N.S., Yang H., Yang L., Plochberger B., and Sitter H., Appl. Phys. Lett. 2007, 90,213512.
    60.Breslow R., and Foss F.W., J. Phys.: Condens. Matter 2008, 20,374104.
    61.Corporation E., The outlook for energy, 2012: A view to 2040.
    62. Kafafi, Rand B.P., Lee K., and Janssen R., IEEE J. Sel. Top. Quant. 2010, 16,1512.
    63.The 1973 oil Crisis, website: http://en.wikipedia.org/wiki/1973_oil_crisis.
    64.Internationl Energy Outlook, EIA U.S. Washington, DC, 2011, website: www.eia.gov./ieo.
    65.Bagnall D.M., and Boreland M., Energ. Policy 2008, 36,4390.
    66.Katsnelson M.I., Mater.Today 2007, 10,20.
    67.Yang Z., Liu Q.-H., and Yang L., Mater. Res. Bull. 2007, 42,221.
    68.Shirota Y., and Kageyama H., Chem. Rev. 2007, 107,953.
    69.Günes S., Neugebauer H., and Sariciftci N.S., Chem. Rev. 2007, 107,1324.
    70.Riede M., Mueller T., Tress W., Schueppel R., and Leo K., Nanotechnology 2008, 19,424001.
    71.Erb T., Zhokhavets U., Gobsch G., Raleva S., Stühn B., Schilinsky P., Waldauf C., and Brabec C.J., Adv. Funct.Mater. 2005, 15,1193.
    72.Kageyama H., Ohishi H., Tanaka M., Ohmori Y., and Shirota Y., IEEE J. Sel. Top. Quant. 2010, 16,1528.
    73.Roncali J., Chem. Rev. 1997, 97,173.
    74.Hoppe H., Sariciftci N.S., and Meissner D., Mol. Cryst. Liq. Cryst. 2002, 385,113.
    75.Zhu W., Minami N., Kazaoui S., and Kim Y., J. Mater. Chem. 2004, 14,1924.
    76.Sze S.M., Physics of Semiconductor Devices, New York, J. Wiley and Sons, 2005.
    77.Kohler A., and Bassler H., J. Mater. Chem. 2011, 21,4003.
    78.Scholes G.D., and Rumbles G., Nat. Mater. 2006, 5,683.
    79.Brutting W., Physics of Organic Semiconductors, Weinheim,Germany, Wiley-VCH, 2005.
    80.Sophie E., and Gledhilla B., J. Mater. Res. 2005, 20,3167.
    81.Giebink N.C., Wiederrecht G.P., Wasielewski M.R., and Forrest S.R., Phys.Rev. B 2011, 83,195326.
    82.Pope M., Electronic processes in Organic Crystals and Polymers , New York, Oxford University Press; 1999.
    83.Zhu X.Y., Yang Q., and Muntwiler M., Acc. Chem. Res. 2009, 42,1779.
    84.Tang C.W., Appl. Phys. Lett. 1986, 48,183.
    85.Yu G., Gao J., Hummelen J.C., Wudl F., and Heeger A.J., Science 1995, 270,1789.
    86.Yim K.-H., Zheng Z., Liang Z., Friend R.H., Huck W.T.S., and Kim J.-S., Adv.Funct. Mater. 2008, 18,1012.
    87.Spanggaard H., and Krebs F.C., Sol. Energy Mater. Sol. Cells 2004, 83,125.
    88.Xu T., and Qiao Q., Energy Environ. Sci. 2011, 4, 2700.
    89.Polyera, World-Record Organic Solar Cell Performance,2012.
    90.http://en.wikipedia.org/wiki/Solar_cell_efficiency
    91.Hoppea H., and Sariciftci N. S., J.Mater. Res.2004, 19,1924.
    92.Nelson J., Curr. Opin. Solid State Mater. Sci. 2002, 6,87.
    93.Kearns D., and Calvin M., J. Chem. Phys. 1958, 29,950.
    94.Kim J.Y., Lee K., Coates N.E., Moses D., Nguyen T-Q., Dante M., and Heeger A.J., Science 2007, 317,222.
    95.Sista S., Park M.-H., Hong Z., Wu Y., Hou J., Kwan W.L., Li G., and Yang Y., Adv. Mater. 2010, 22,380.
    96.Dennler G., Scharber M.C., Ameri T., Denk P., Forberich K., Waldauf C., and Brabec C.J., Adv. Mater. 2008, 20,579.
    97.King R.R., Law D.C., Edmondson K.M., Fetzer C.M., Kinsey G.S., Yoon H., Sherif R.A., and Karam N.H., Appl. Phys. Lett. 2007, 90,183516.
    98.Hau S.K., Yip H.-L., Baek N.S., Zou J., O'Malley K., and Jen A.K.Y., Appl. Phys.Lett. 2008, 92,253301.
    99.Krebs F.C., Sol. Energy Mater. Sol. Cells 2008, 92,715.
    100. Li C.-Y., Wen T.-C., Lee T.-H., Guo T.-F., Huang J.-C., Lin Y.-C., and Hsu Y.-J., J.Mater. Chem. 2009, 19,1643.
    101.Lloyd M.T., Olson D.C., Lu P., Fang E., Moore D.L., White M.S., Reese M.O., Ginley D.S., and Hsu J.W.P., J. Mater. Chem. 2009, 19,7638.
    102.Olson D.C., Shaheen S.E., White M.S., Mitchell W.J., Collins R.T., and Ginley D.S., Adv. Funct. Mater. 2007, 17,264.
    103.Lloyd M.T., Lee Y.-J., Davis R.J., Fang E., Fleming R.M., Hsu J.W.P., and Kline R.J., J. Phys. Chem. C 2009, 113,17608.
    104. Tsai S.H., Wang H.H., Chen S.Y., Lin C.A., Chen S.A., Chueh Y.L., and He J.H., ACS Nano 2011, 5,9501.
    105.Guo M., Diao P., Wang X., and Cai S., J. Solid State Chem. 2005, 178,3210.
    106. Baeten L., Conings B., Boyen H.-G., D'Haen J., Hardy A., D'Olieslaeger M., Manca J.V., and Van Bael M.K., Adv. Mater. 2011, 23,2802.
    107. Peiro A.M., Ravirajan P., Govender K., Boyle D.S., O'Brien P., Bradley D.D.C., Nelson J., and Durrant J.R., J.Mater. Chem. 2006, 16,2088.
    108.Saito M., and Fujihara S., Energy Environ. Sci. 2008, 1,280.
    109.Park H.-Y., Kim K., Kim D.Y., Choi S.-K., Jo S.M., and Jang S.-Y., J. Mater.Chem. 2011, 21,4457.
    110.Brédas J.-L., Norton J.E., Cornil J., and Coropceanu V., Acc. Chem. Res. 2009, 42,1691.
    111.Coakley K.M., and McGehee M.D, Appl. Phys. Lett. 2003, 83,3380.
    112.Hardin B.E., Hoke E.T., Armstrong P.B., Yum J.-H., Comte P., Torres T., Frechet J.M.J., Nazeeruddin M.K., Gratzel M., and McGehee M.D., Nat. Photon. 2009, 3,406.
    113.Jiang K.-J., Manseki K., Yu Y.-H., Masaki N., Suzuki K., Song Y., and Yanagida S., Adv.Funct.Mater. 2009, 19,2481.
    114.Baeten L., Conings B., D'Haen J., De Dobbelaere C., Hardy A., Manca J.V., and Van Bael M.K., ChemPhysChem 2012,13,2777.
    115.Conings B., Baeten L., Boyen H.-G., Spoltore D., D’Haen J., Grieten L., Wagner P., Van Bael M.K., and Manca J.V., J. Phys. Chem. C 2011, 115,16695.
    116.Espinosa N., Hosel M., Angmo D., and Krebs F.C., Energy Environ. Sci. 2012, 5,5117.
    117.Po R., Maggini M., and Camaioni N., J. Phys. Chem. C 2009, 114,695.
    118.Boucle J., Ravirajan P., and Nelson J., J.Mater. Chem. 2007, 17,3141.
    119.Weickert J., Dunbar R.B., Hesse H.C., Wiedemann W., and Schmidt-Mende L., Adv. Mater. 2011, 23,1810.
    120.Grancini G., Santosh K. R.S., Abrusci A., Yip H.-L., Li C.-Z., Jen A.-K.Y., Lanzani G., and Snaith H.J., Adv. Funct. Mater. 2012, 22,2160.
    121.Greene L.E., Law M., Goldberger J., Kim F., Johnson J.C., Zhang Y., Saykally R.J., and Yang P., Angew. Chem. Int. Ed. 2003, 42,3031.
    122.Vayssieres L., Adv. Mater. 2003, 15,464.
    123.Song J., and Lim S., J. Phys. Chem. C 2006, 111,596.
    124.Law M., Greene L.E., Johnson J.C., Saykally R., and Yang P., Nat. Mater. 2005, 4,455.
    125.Hara K., Horiguchi T., Kinoshita T., Sayama K., Sugihara H., and Arakawa H., Sol. Energy Mater. Sol. Cells 2000, 64,115.
    126.Kislyuk V.V., and Dimitriev O.P., J. Nanosci. Nanotechnol. 2008, 8,131.
    127.Heo Y.W., Norton D.P., Tien L.C., Kwon Y., Kang B.S., Ren F., Pearton S.J., and LaRoche J.R., Mater. Sci. Eng., R 2004, 47,1.
    128.Huang J., Yin Z., and Zheng Q., Energy Environ. Sci. 2011, 4,3861.
    129.Beek W.J.E., Wienk M.M., and Janssen R.A.J., J. Mater. Chem. 2005, 15,2985.
    130.Baxter J.B., Walker A.M., Ommering K., and Aydil E.S., Nanotechnology 2006, 17,S304.
    131.Lloyd M.T., Prasankumar R.P., Sinclair M.B., Mayer A.C., Olson D.C., and Hsu J.W.P., J. Mater. Chem. 2009, 19,4609.
    132.Lloyd J., Mater. Res. Bull. 2010, 35,422.
    133.McGehee M.D., Mater. Res. Bull. 2009, 34,95.
    134.Zuidema J., Pharm. World Sci. 1985, 7,134.
    135.Helgesen M., Sondergaard R., and Krebs F.C., J. Mater. Chem. 2010, 20,36.
    136.Nalwa H.S., ed., Handbook of Conductive Molecules and Polymers, Chichester, J. Wiley & Sons Ltd., 1997.
    137.Lane P.A., Rostalski J., Giebeler C., Martin S.J., Bradley D.D.C., and Meissner D., Sol. Energy Mater. Sol. Cells 2000, 63,3.
    138.Brabec C.J., Poortmans J., and Slaoui A., Thin Solid Films 2004, 451–452,1.
    139.Brabec C.J., Cravino A., Meissner D., Sariciftci N.S., Fromherz T., Rispens M.T., Sanchez L., and Hummelen J.C., Adv. Funct. Mater. 2001, 11,374.
    140.Thompson B.C., and Fréchet J.M.J., Angew. Chem. Int. Ed. 2008, 47,58.
    141.Miller N.C., Sweetnam S., Hoke E.T., Gysel R., Miller C.E., Bartelt J.A., Xie X., Toney M.F., and McGehee M.D., Nano Lett. 2012, 12,1566.
    142.Allemand P.M., Koch A., Wudl F., Rubin Y., Diederich F., Alvarez M.M., Anz S.J., and Whetten R.L., J. Am. Chem. Soc. 1991, 113,1050.
    143.Imahori H., and Fukuzumi S., Adv. Funct. Mater. 2004, 14,525.
    144.Singh T.B., Marjanović N., Matt G.J., Günes S., Sariciftci N.S., Montaigne R. A., Andreev A., Sitter H., Schwödiauer R., and Bauer S., Org. Electron. 2005, 6,105.
    145.Rispens M.T., Meetsma A., Rittberger R., Brabec C.J., Sariciftci N.S., and Hummelen J.C., Chem. Commun. 2003,17,2116.
    146.Keshavarz K. M., Knight B., Haddon R.C., Wudl F., Tetrahedron 1996, 52,5149.
    147.Kooistra F.B., Knol J., Kastenberg F., Popescu L.M., Verhees W.J.H., Kroon J.M., and Hummelen J.C., Org. Lett. 2007, 9,551.
    148.Lenes M., Wetzelaer G.J.A.H., Kooistra F.B., Veenstra S.C., Hummelen J.C., and Blom P.W.M., Adv. Mater. 2008, 20, 2116.
    149.Lenes M., Shelton S.W., Sieval A.B., Kronholm D.F., Hummelen J.C., and Blom P.W.M., Adv. Funct. Mater. 2009, 19,3002.
    150.He Y., Chen H.-Y., Hou J., and Li Y., J. Am. Chem. Soc. 2010, 132,1377.
    151.He Y., and Li Y., Phys. Chem. Chem. Phys. 2011, 13,1970.
    152.Yang C., Kim J.Y., Cho S., Lee J.K., Heeger A.J., and Wudl F., J..Am. Chem. Soc. 2008, 130,6444.
    153.Zhang Y., Yip H.-L., Acton O., Hau S.K., Huang F., and Jen A.K.Y., Chem. Mater. 2009, 21,2598.
    154.Faist M.A., Keivanidis P.E., Foster S., Wöbkenberg P.H., Anthopoulos T.D., Bradley D.D.C., Durrant J.R., and Nelson J., J. Polym. Sci., Part B: Polym. Phys. 2011, 49,45.
    155.Zhao G., He Y., and Li Y., Adv. Mater. 2010, 22,4355.
    156.Choi J.H., Son K.-I., Kim T., Kim K., Ohkubo K., and Fukuzumi S., J. Mater.Chem. 2010, 20,475.
    157.Frost J.M., Faist M.A., and Nelson J., Adv. Mater. 2010, 22,4881.
    158.Kim J.Y., Cho H., Noh S., Lee Y., Nam Y.M., Lee C., and Jo W.H., J. Appl. Phys. 2012, 111,043710.
    159.Bredas J.-L., and Durrant J.R., Acc. Chem. Res. 2009, 42,1689.
    160.Diener M.D., Fullerenes for Photovoltaic and Bioscience Applications, Wheat Ridge: TDA Research.
    161.Goh C., Kline R.J., McGehee M.D., Kadnikova E.N., and Frechet J.M.J., Appl. Phys. Lett. 2005, 86,122110.
    162.Sirringhaus H., Brown P.J., Friend R.H., Nielsen M.M., Bechgaard K., Langeveld-Voss B.M.W., Spiering A.J.H., Janssen R.A.J., Meijer E.W., and Herwig P.; Nature 1999, 401,685.
    163.Wang G., Swensen J., Moses D., and Heeger A.J., J. Appl. Phys. 2003, 93, 6137.
    164.Sahu S., and Pal A.J., J. Appl. Phys. 2006, 99,114503.
    165.Savenije T.J., Organic Solar Cells, Delft University of Technology ,Chap. 8.
    166.Kietzke T., Adv. OptoElectron. 2007, 2007.
    167.Bao Z., Dodabalapur A., and Lovinger A.J., Appl. Phys. Lett. 1996, 69,4108.
    168.Sirringhaus H., Tessler N., and Friend R.H., Science 1998, 280,1741.
    169.Beljonne D., Cornil J., Sirringhaus H., Brown P.J., Shkunov M., Friend R.H., and Brédas J.L., Adv. Funct. Mater. 2001, 11,229.
    170.Chabinyc M.L., J. Vac. Sci. Technol., B 2008, 26,445.
    171.van Haare J. A. E. H., Havinga E. E., van Dongen J. L. J., Janssen R. A. J., Cornil J., and Brédas J.L., Chem. Eur. J. 1998, 4,1509.
    172.Guo T.-F., Wen T.-C., L'Vovich Pakhomov G., Chin X.-G., Liou S.-H., Yeh P.-H., and Yang C.-H., Thin Solid Films 2008, 516,3138.
    173.Knaapila M., Stepanyan R., Lyons B.P., Torkkeli M., and Monkman A.P., Adv. Funct. Mater. 2006, 16,599.
    174.Donald A.W., and Hanna S., Liquid Crystalline Polymers, 2nd ed., 2006.
    175.Brabec C.J., Sol. Energy Mater. Sol. Cells 2004, 83,273.
    176.Siddiki M.K., Li J., Galipeau D., and Qiao Q., Energy Environ. Sci. 2010, 3,867.
    177.http://en.wikipedia.org/wiki/Sunlight.
    178.Shrotriya V., Li G., Yao Y., Moriarty T., Emery K., and Yang Y., Adv. Funct. Mater. 2006, 16,2016.
    179.Emery K., Handbook of Photovoltaic Science and Engineering, J. Wiley and Sons, Ltd., 2005.
    180.Luque A., and Hegedus S., Handbook of Photovoltaic Science and Engineering,2nd ed., J. Wiley and Sons, Ltd. , 2011.
    181.Standard IEC 60904-1, Photovoltaic devices Part 1:Measurement of PV I-V Characteristics, International Electrotechnical Commission, Geneva, Switzerland, 2006.
    182.Myers D.R., and Emery K., Revising and Validating Spectral Irradiance Reference Standars for Photovoltaic Performance, Solar Conference Reno, Nevada , 2002..
    183.Rostalski J., and Meissner D., Sol. Energy Mater. Sol. Cells 2000, 61,87.
    184.Li W.-J., Shi E.-W., Zhong W.-Z., and Yin Z.-W., J. Cryst. Growth 1999, 203,186.
    185.Wang Z., Qian X.-f., Yin J., and Zhu Z.-K., J. Solid State Chem. 2004, 177,2144.
    186.Brooks T., Principles of Instrumental Analysis, 6th ed., 2007.
    187.Kirihata H., and Uda M., Rev. Sci. Instrum. 1981, 52,68.
    188.Heimel G., Romaner L., Zojer E., and Bredas J.-L., Acc. Chem. Res. 2008, 41,721.
    189. Greene L.E., Law M., Tan D.H., Montano M., Goldberger J., Somorjai G., Yang P., Nano Lett. 2005, 5, 1231.
    190. Baeten L., Conings B., D'Haen J., De Dobbelaere C., Hardy A., Manca J.V., ChemPhysChem 2012, 13,2777.
    191.Cheng B., Shi W., Zhang L., Samulski E.T., Ino. Chem. 2006, 45,1208.
    192.Fan L., Song H., Li T., Yu L., Liu Z., Pan G., Lei Y., Bai X., Wang T., and Zheng Z., J. Lumin. 2007, 122–123,819.
    193.Demianets L., Kostomarov D., Kuz’mina I., and Pushko S., Crystallogr. Rep. 2002, 47,S86.
    194.Laudise R.A., and Ballman A.A., J. Phys.Chem. 1960, 64,688.
    195.Maret W., Biochemistry 2004, 43,3301.
    196.Shao-Sian L., Yun-Yue L., Wei-Fang S., and Chun-Wei C., IEEE J. Sel. Top. Quant.2010, 16,1635.
    197.Lin Y.-Y., Lee Y.-Y., Chang L., Wu J.-J., and Chen C.-W., Appl. Phys. Lett. 2009, 94,063308.
    198.Choi M.-Y., Choi D., Jin M.-J., Kim I., Kim S.-H., Choi J.-Y., Lee S.Y., Kim J.M., and Kim S.-W., Adv. Mater. 2009, 21,2185.
    199.Wang Z., Huang B., Qin X., Zhang X., Wang P., Wei J., Zhan J., Jing X., Liu H., and Xu Z., Mater. Lett. 2009, 63,130.
    200.Wu K.-Y., Yu S.-Y., and Tao Y.-T., Langmuir 2009, 25,6232.
    201.Bi D., Wu F., Qu Q., Yue W., Cui Q., Shen W., Chen R., Liu C., Qiu Z., and Wang M., J. Phys. Chem. C 2011, 115,3745.
    202.Takanezawa K., Tajima K., and Hashimoto K., Appl. Phys. Lett. 2008, 93,063308.
    203.Greenham N.C., Peng X., and Alivisatos A.P., Phys. Rev. B 1996, 54,17628.
    204.Yun-Yue L., Chun-Wei C., Chang J., Lin T.Y., Liu I.S., and Wei-Fang S., Nanotechnology 2006, 17,1260.
    205.Bozano L., Carter S.A., Scott J.C., Malliaras G.G., and Brock P.J., Appl. Phys.Lett. 1999, 74,1132.
    206.Blom P.W.M., de Jong M.J.M., and Vleggaar J.J.M., Appl. Phys. Lett. 1996, 68,3308.
    207.Chu T.-Y., Song O-K., Appl. Phys. Lett. 2007, 90,203512.
    208.Malliaras G.G., Salem J.R., Brock P.J., and Scott C., Phys. Rev. B 1998, 58,R13411.
    209.Ohkita H., Cook S., Astuti Y., Duffy W., Tierney S., Zhang W., Heeney M., McCulloch I., Nelson J., and Bradley D.D.C., J. Am. Chem. Soc. 2008, 130,3030.
    210.Guo J., Ohkita H., Benten H., and Ito S., J. Am. Chem. Soc. 2010, 132,6154.
    211.Lee C.H., Yu G., Moses D., Pakbaz K., Zhang C., Sariciftci N.S., and Heeger A.J., Phys. Rev. B 1993, 48,15425.
    212.Morita S., Zakhidov A.A., and Yoshino K., Solid State Commun. 1992, 82,249.
    213.Morita S., Kiyomatsu S., Yin X.H., Zakhidov A.A., Noguchi T., Ohnishi T., and Yoshino K., J. Appl. Phys. 1993, 74,2860.
    214.Sariciftci N.S., Smilowitz L., Heeger A.J., and Wudl F., Science 1992, 258,1474.
    215.Shrotriya V., Ouyang J., Tseng R.J., Li G., and Yang Y., Chem.Phys. Lett. 2005, 411,138.
    216.Campoy-Quiles M., Ferenczi T., Agostinelli T., Etchegoin P.G., Kim Y., Anthopoulos T.D., Stavrinou P.N., Bradley D.D.C., and Nelson J., Nat. Mater. 2008, 7,158.
    217.Vanlaeke P., Swinnen A., Haeldermans I., Vanhoyland G., Aernouts T., Cheyns D., Deibel C., D’Haen J., Heremans P., and Poortmans J., Sol. Energy Mater. Sol. Cells 2006, 90,2150.

    QR CODE