簡易檢索 / 詳目顯示

研究生: 黃祈升
Chi-Sheng Huang
論文名稱: 用藍寶石基板的氮化鎵元件之封裝與高反射鍍膜
Packaging and high-reflectivity coating of GaN devices on sapphire substrate
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 李志堅
Chih-Chien Lee
蘇忠傑
Jung-Chieh Su
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 113
中文關鍵詞: 覆晶銀膠固晶布拉格反射鏡
外文關鍵詞: Flip chip, Ag-epoxy, Distributed Bragg Reflector
相關次數: 點閱:189下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在發光二極體(Light emitting diode, LED)中,散熱一直是影響發光效率的問題中必須解決的問題,而氮化鎵材料必須生長在藍寶石基板上使得成本降低。為了解決藍寶石基板散熱不佳以及改善發光效率的問題,本論文使用了(1)銀膠固晶方法並先磨薄藍寶石基板,比較固晶前後發光效率的差異,(2)覆晶封裝,將氮化鎵晶片覆晶移轉至矽基板,比較製鍍不同比例的Ti/Cu/Sn金屬接合層,在厚度分別為500 Å /15000 Å/10000 Å的條件下,剪切力測試能有效的承受26公斤力以上的強度。
    對於氮化鎵垂直共振腔面射型雷射(VCSEL)而言,能夠有效覆晶且製鍍垂直共振腔上下端面的介電質布拉格反射鏡是製作氮化鎵VSCEL關鍵技術之一,本論文成功使用TiO_2/SiO_2設計8對膜層並鍍製出高反射率布拉格反射鏡,達到低於1%穿透率的禁止帶範圍在401nm到468nm之間。


    In light emitting diodes (LEDs), heat dissipation has always been a problem that must be solved in the problem of luminous efficiency, and gallium nitride materials must be grown on sapphire substrates to reduce cost. In order to solve the problem of poor heat dissipation of sapphire substrate and improve luminous efficiency, this paper uses (1) silver glue solid crystal method and firstly grinds the sapphire substrate to compare the difference in luminous efficiency before and after solid crystal, (2) flip chip packaging, The GaN wafer is transferred to the ruthenium substrate, and the Ti/Cu/Sn metal bond layers are plated at different ratios. The shear force test can be effective under the conditions of 500 Å /15000 Å/10000 Å. Withstands strength above 26 kg.
    For the gallium nitride vertical cavity surface-emitting laser (VCSEL), the dielectric Distributed Bragg Reflector capable of effectively flipping and plating the upper and lower end faces of the vertical cavity is one of the key technologies for fabricating GaN VSCEL. Successfully designing 8 pairs of layers using TiO_2/SiO_2and plating high reflectivity Bragg mirrors, the stop band range of less than 1% transmittance is between 401 nm and 468 nm.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 Ⅶ 表目錄 ⅩⅠ 第一章 緒論 1 1.1前言 1 1.2氮化鎵材料簡介 3 1.3文獻回顧與研究動機 8 第二章 發光二極體原理與封裝特性參數介紹 11 2.1發光二極體原理簡述 11 2.1.1輻射的轉換 11 2.1.2發光效率 14 2.1.3光輸出錐角 15 2.2 發光效率的改善 19 2.2.1改變晶粒外型 20 2.2.2光子晶體(Photonic Crystals) 21 2.2.3背面反射層(Backside reflector) 22 2.2.4電子阻擋層(Electron-blocking layer) 22 2.2.5表面粗化(Surface Texturing) 23 2.3發光二極體封裝特性參數 25 2.3.1工作溫度與熱阻的關係 25 2.3.2熱阻量測條件及方法 28 2.3.3發光二極體接面溫度特性與量測 31 第三章 銀膠封裝與實驗結果 35 3.1銀膠封裝流程介紹 35 3.2藍寶石基板研磨技術 37 3.3藍寶石基板切割方法比較 40 3.3.1鑽石輪刀切割技術 40 3.3.2雷射切割技術: 42 3.4銀膠固晶技術 43 3.5打線(wire-bonding) 44 3.6 I-V與L-I量測系統 45 3.7實驗結果與討論 47 第四章 覆晶封裝與實驗結果 61 4.1 覆晶技術 62 4.2 元件製程結果與討論 65 4.3 雷射剝離(Laser lift-off) 藍寶石基板技術介紹 72 第五章 垂直共振腔面射型雷射與布拉格反射鏡設計 76 5.1垂直共振腔面射型雷射原理 76 5.2布拉格反射鏡結構介紹 79 5.3電子槍蒸鍍系統 83 5.3.1電子槍蒸鍍系統基本原理 83 5.3.2電子槍蒸鍍系統監控原理 86 5.4布拉格反射鏡設計實驗結果與討論 89 第六章 結論與未來展望 93 6.1結論 93 6.2未來展望 94

    [1] E. Fred Schubert, “Light-emitting diode,” Cambridge University Press, New York.(2006)
    [2] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett., Vol. 81, No. 3, pp. 1246-1248. (2002)
    [3] G.Bhuiyan, K.Kasashima, A.Hashimoto, A.Yamamoto, and V.Y. Davydov, “Single-crystalline InN films with an absorption edge between 0.7 and 2eV grown using different techniques and evidence of the actual band gap energy,” Applied Physics Letters,vol.84,pp.45.(2004)
    [4] Johnson, W. C., Parsons, J. B., Crew, J. Phys. Chem., Vol. 36, p.
    2561. (1932)
    [5] Maruska, H. P. and Tietjen, The preparation and properties of vapor-deposited single-crystalline GaN. Appl. Phys. Lett., Vol. 15, p. 327. (1969)
    [6] Pankove, J. I., Miller E. A. and Berkeyheiser, GaN Electroluminescence Diodes. RCA Review, Vol. 32, p. 383. (1971)
    [7] H. P. Maruska, W. C. Rhines, and D. A. Stevenson, “ Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence, ” Mat. Res. Bull., Vol. 7, pp. 777-781. (1972)
    [8]H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “ P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron-Beam Irradiation,” Japanese Journal of Applied Physics Part 2-Letters, vol. 28, pp. L2112-L2114. (1989)
    [9] S.Yoshida, S. Misawa, S. Gonda, “Epitaxial growth of GaN/AlN heterostructures,” J. Vac. Sci. Technol. B 1, 250. (1983)
    [10] H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., Vol. 48, pp. 353-355. (1986)
    [11] I. Akasaki, H. Amano, K. Hiramatsu, and N. Sawaki, “High efficiency blue LED utilizing GaN film with AlN buffer layer grown by MOVPE,” Inst. Phys. Conf. Ser., No. 91, pp.633-636 .(1988)
    [12] I. Akasaki, H. Amano, Y. Koide, K. Kiramatsu, and N. Sawaki,
    “Effects of an AlN buffer layer on crystallographic structure and on electrical and optical properites of GaN and Ga1-xAlxN (0<x0.4) films grown on sapphire substrates by MOVPE,” J. Crystal Growth, Vol. 98, pp.209-219. (1989)
    [13] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112. (1989).
    [14] S. Nakamura and G. Fasol, “The Blue Laser Diode,” Berlin, Springer. (1997)
    [15] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Jpn. J. Appl. Phys., Vol. 31, pp. L139-L142. (1992)
    [16] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama
    “High-brightness InGaN blue, green, and yellow lightemitting diodes with quantum well structures,” Jpn. J. Appl. Phys., Vol. 34, pp. L797-L799. (1995)
    [17] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett., Vol. 69, No. 26, pp.4056-5408. (1996)
    [18] R. D. Dupuis, and M. R. Krames, “History, Development, and Applications of High-Brightness Visible Light-Emitting Diodes,” Journal of Lightwave Technology, Vol. 26, No. 9, pp.1154-1171. (2008)
    [19] K. C. Chen, Y. K. Su , Chun-Liang Lin, and H. C. Hsu, “Laser Scribing of Sapphire Substrate to Increase Side Light Extraction of GaN-Based Light Emitting Diodes,” IEEE, VOL. 29, NO. 13, JULY 1. (2011)
    [20]黃振東,”淺談發光二極體散熱材料與元件”,工業材料雜誌,Vol.281,第73-83頁。(2010)
    [21]石政欣,固晶膠中摻雜氧化鋁粉體改善高功率LED之散熱特性,崑山科技大學光電工程研究所碩士論文。(2011)
    [22] Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, IEEE Photon. Tech. Lett., 14 1400. (2002)
    [23] B. S. Tan, S. Yuan, and X. J. Kang, , Appl. Phys. Lett., 84 2757.(2004)
    [24] M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer,and M. Stutzmann.,Appl. Phys. Lett. 69 1749. (1996)
    [25] W. S. Wong, T. Sands, and N. W. Cheung, Appl. Phys. Lett., 72, 599. (1998).
    [26] Y. S. Wu, J. H. Cheng, W. C. Peng, Hao Ouyang, Appl. Phys. Lett. 90, 251110. (2007).
    [27] C. Kittel, Introduction to Solid State Physics , (John Wiley Press), Chap.8. (1996)
    [28] E. Fred Schubert, “Light-emitting diode,” Cambridge University Press. (2003)
    [29]E. F. Schubert, light-Emitting Diodes, Cambridge University Press, Cambridge, U.K. (2003)
    [30] Lumileds Lighting, http://www.lumileds.com.
    [31] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman,
    E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J-W.Huang, S.A. Stockman, F. A. Kish, and M. G. Craford, “High power truncated pyramid (Al0.5Ga1-x)0.5In0.5P/GaP light emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365. (1999)
    [32] K. Orita, S. Tamura, T. Takizawa, T. Ueda, M. Yuri, S. Takigawa and D. Ueda, “High-extraction-efficiency blue light-emitting diode using extended-pitch photonic crystal,” Jpn J. Appl. Phys, Vol. 43, pp. 5809-5813. (2004)
    [33] S. Grzanka, G. Franssen, G. Targowski, K. Krowicki, T. Suski, R. Czernecki, P. Perlin, and M. Leszczyński, “Role of the electron blocking layer in the low-temperature collapse of electroluminescence in nitride light-emitting diodes,” Appl. Phys. Lett., Vol. 90, pp. 103507. (2007)
    [34] Strategies in light. ( 2003)
    [35] M. Y. Hsieh, C. Y. Wang, L. Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng, Y. C. Yu, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang, and J. J. Huang,”Improvement of External extractionefficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett., Vol. 29, pp. 658-660. (2009)
    [36] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura,”Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., Vol. 84, pp. 855-858. (2004)
    [37] LEDinside,”淺談影響LED元件熱阻的因素”。(2009)
    [38]劉君愷 ,工研院電光所,”LED照明產品之散熱技術介紹”,材料世界網。(2008)
    [39]台灣光電半導體產業協會,發光二極體模組之熱阻量測方法標準草案。
    [40]戴明吉,工業材料雜誌281、282期”LED熱阻量測技術” (2010)
    [41] T3 Ster LED 熱阻量測系統簡介,國立中興大學。
    [42] S. W. Ricky LEE, Rong ZHANG, K. CHEN, Jeffery C. C. LO “Emerging trend for LED wafer level packaging,” Higher Education Press and Springer, Verlag Berlin Heidelberg .2012
    [43]宇波美侖光電科技有限公司,芯片封裝。
    [44]中國光學,LED 簡介與 LED 散熱結構設計開發。(2010)
    [45] Daniel D. Evans, Jr. Palomar Technologies, Inc. “High Brightness Matrix LED Assembly Challenges and Solutions,” 2008 Electronic Components and Technology Conference
    [46]壹讀,” LED覆晶技術PK免封裝” 。(2015)
    [47]維基百科,覆晶技術。
    [48]蘇宜清,高效率覆晶式發光二極體基板鍍銅厚度對於輸出功率與可靠度影響之研究。(2014)
    [49] Bo-Ying Wu, “The Optical and Electrical Characteristics of GaN-Based Light-Emitting Diodes by Laser Lift Off. (2012)
    [50] M.Ogura, W.Hsin, M.C.Wu, S.Wang, J.R.Whinnery, S.C.Wang, et al., “Surface-emitting laser diode with vertical GaAs/GaAlAs quarter-wavelength multilayers and lateral buried heterostructure,”Applied Physics Letters,vol.51,pp
    [51] J.M.Redwing, D.A.S.Loeber, N.G.Anderson, M.A.Tishler, and J.S.Flynn, “An optically pumped GaN-AlGaN vertical cavity surface emitting laser,”Applied Physics Letters, vol.69, pp.1-3.(1996)
    [52] Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, et al., “A vertical cavity light emitting InGaN quantum well heterostructure,” Applied Physics Letters, vol. 74, pp. 3441-3443.(1999)
    [53] J. T. Chu, T. C. Lu, M. You, B.-J. Su, C. C. Kao, H. C. Kuo, and S. C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 89, pp.121112-121112-3. (2006)
    [54] Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Applied Physics Express, vol. 1, p. 121102. (2008)
    [55] T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room Temperature Lasing at Blue Wavelengths in Gallium Nitride Microcavities,” Science, vol. 285, pp. 1905-19060. (1999)
    [56] T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Applied Physics Letters, vol. 92, pp. 141102-141102-3. (2008)
    [57] T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, et al., “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Applied Physics Letters, vol. 97, pp. 071114-071114-3.(2010)
    [58]李正中,“薄膜光學與鍍膜技術”,第七版,藝軒出版社。(2012)
    [59]林晏聖,“以側鍍方法提升四價摻鉻晶體光纖螢光強度之研究”,
    國立中山大學光電工程研究所碩士論文。(2004)
    [60] Y. S. Lin, “Ce3+- Doped YAG Functional Crystal Fibers ,” Doctoral Dissertation, National Taiwan University. (2011)

    QR CODE