簡易檢索 / 詳目顯示

研究生: 詹瑞祥
RUI-XIANG CHAN
論文名稱: 改善氮化鎵元件覆晶接合製程以及研究氮化鎵MSM結構光偵測器
Improvement on GaN flip-chip bonding process and study on GaN metal-semiconductor-metal photodetector
指導教授: 葉秉慧
Ping-hui Yeh
口試委員: 李奎毅
Kuei-Yi Lee
蘇忠傑
Jung-Chieh Su
陳致曉
Chih-Hsiao Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 178
中文關鍵詞: 覆晶氮化鎵金屬/半導體/金屬光偵測器
外文關鍵詞: metal-semiconductor-metal photodetector
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   發光二極體LED (Light Emitting Doide)其用途及性能都極為廣泛,但發光二極體主要是在藍寶石基板上磊晶,所以散熱一直是個問題,為了改善這問題,而利用覆晶封裝及雷射剝離藍寶石基板的技術,將氮化鎵薄膜轉移到導熱係數較好的矽基板上。
      本實驗的覆晶封裝是採用金屬共晶接合,共晶接合的金屬為銅錫合金。先在氮化鎵表面鍍製一層二氧化矽以減少雷射剝離藍寶石基板時的熱傳導至銅錫合金,並增加基板剝離後剩下的氮化鎵薄膜總厚度。然後將合金鍍製在氮化鎵及矽晶圓上進行晶圓共金接合;最後做非破壞性的剪切力測試,看看是否能承受設定的推力測試。通過測試後,使用商用的雷射剝離藍寶石基板技術,將氮化鎵薄膜轉移到矽基板上。雷射剝離藍寶石基板後的氮化鎵薄膜的部分表面出現了高低起伏的現象,在高低起伏的表面上偶爾會出現氮化鎵薄膜破裂的情況。這是因為雷射剝離時所產生的高溫也會影響焊錫,焊錫在高溫下會因為達到熔點而局部液化,促使應力產生,進而造成表面的起伏,較嚴重的情況,則是會使氮化鎵薄膜與矽基板在交界處脫離,甚至破裂。但由於有二氧化矽隔熱層,已比過去的結果改善許多。此外,也把雷射剝離後的氮化鎵薄膜,去做蝕刻及快速熱退火的測試,並觀察其結果。
      MSM(金屬/半導體/金屬)結構是由兩個蕭特基接面(Schottky junction) 反向串聯而形成的結構。此結構有製程簡單、短波長吸收效率高等優點。本研究製作MSM結構的光偵測器,並量測其數據,如:暗電流、照光電流、響應率、光電流、外部量子效率等。並與其他光偵測器做比較。


    Light Emitting Diode (LED) has a wide range of applications, but the common epitaxial LED is grown on sapphire substrate that remains a problem of heat dissipation. In order to address this problem, flip-chip packaging and laser lift off of the sapphire substrate technology are used to transfer the Gallium Nitride (GaN) epitaxial film to a silicon substrate that has better thermal conductivity.
    The flip chip method in this experiment uses metal eutectic bonding of Copper-Tin (Cu/Sn) alloy. First, a layer of silicon oxide deposited on the GaN surface to reduce the heat conductivity of the copper-tin alloy and to maintain the total thickness of the GaN film after the substrate is lifted off. Then, the alloy is deposited on both of GaN and silicon for wafer bonding. Finally, a non-destructive shear test is performed to see if it can withstand the bonding strength. After passing the test, commercial laser lift-off of sapphire substrate technology was used to transfer the GaN film to the silicon substrate. The thermal coeficient differences between GaN/Silicon oxide and Silicon oxide/alloy results in bad uniformity of the GaN surface after laser lift-off and occasionally cracks appeared because of the high temperature that is generated during the process. The alloy will partially melt at high temperature which will promote stress and cause the bad uniformity of the surface. In more serious cases, GaN film separates from the silicon substrate at the junction, or even breaks. However, due to the silicon oxide heat insulation layer, the results have been improved a lot. In addition, the GaN film after laser lift-off was tested for etching and rapid thermal annealing, and the results were observed.
    MSM (Metal/Semiconductor/Metal) structure is a structure formed by connecting two Schottky junctions in reverse series. This structure has the advantages of simple manufacturing process and high absorption efficiency at short-wavelength. In this research, a photodetector with MSM structure is made and its characteristics are measured, such as dark current, photocurrent, and illumninance. In addition, the responsivity and external quantum efficiency are compared with other light detectors such as phototransistor, p-i-n junction, and Schottky junction.

    摘要 i Abstract iii 致謝 iv 目錄 v 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1前言 1 1.2氮化鎵材料的介紹 4 1.3文獻回顧 7 第二章 發光二極體原理與結構介紹 23 2.1發光二極體原理 23 2.1.1輻射的轉換 23 2.1.2光輸出錐角[15] 26 2.2發光效率 31 2.2.1內部量子效率(Internal Quantum Efficiency, IQE) 31 2.2.2光取出效率(Light Extraction Efficiency, LEE) 31 2.3發光效率的改善 34 2.3.1改變晶粒接面的外型 34 2.3.2散熱封裝 35 2.3.3背面反射層(Backside Reflector) 38 2.3.4電子阻擋層(Electron-Blocking Layer) [25] 39 2.3.5表面粗化(Surface Texturing) 40 2.4發光二極體晶圓結構 42 第三章 覆晶接合製程實驗 43 3.1 晶圓接合介紹 43 3.1.1 各種晶圓接合的方式[29] 43 3.1.2 影響晶圓接合的因素 47 3.2覆晶技術 50 3.3雷射剝離(Laser Lift-Off)技術介紹[38] 54 3.4覆晶製程儀器的介紹 57 3.4.1電漿化學氣相沉積(Plasma-Enhanced CVD) 57 3.4.2電子束蒸鍍機 58 3.4.3剪切力測試儀 59 3.4.4感應耦合電漿反應式離子蝕刻機 61 3.4.5快速升溫退火爐 62 3.5實驗結果與討論 63 3.5.1覆晶實驗流程與剪切力測試結果 63 3.5.2雷射剝離藍寶石基板製程與結果 74 3.5.3 雷射剝離藍寶石基板的後續製程 92 第四章 Metal-Semiconductor-Metal光偵測器原理與製作 96 4.1 Metal-Semiconductor-Metal結構介紹 96 4.1.1 蕭特基結構(Schottky junction structure)的介紹 96 4.1.2 MSM結構的介紹 100 4.1.3 蕭特基光偵測器(Schottky photodetector) 102 4.1.4 MSM文獻回顧 105 4.2元件製程的介紹 116 4.2.1 活化製程(Activation) 117 4.2.2 絕緣製程(Isolation) 118 4.2.3 電極沉積製程 119 4.3製程儀器的介紹 121 4.3.1旋轉塗佈機(Spin coater) 121 4.3.2光罩對準機(Mask aligner) 122 4.3.3電漿增強式化學氣相沉積 124 4.3.4感應耦合電漿反應式離子蝕刻機 125 4.3.5電子束蒸鍍機 127 4.3.6快速升溫退火爐 128 第五章 Metal-Semiconductor-Metal光偵測器結果與討論 129 5.1 MSM的製作結果 129 5.2 MSM結構的I-V量測與討論 131 5.3 MSM結構的暗電流、外部量子效率量測及響應率量測 132 5.4 MSM結構與PIN結構光偵測器的比較 143 附錄  量測儀器介紹 148 I-V與L-I量測系統 148 電源供應器(Source Meter) 149 外部量子量測系統 150 七位半圖形化取樣萬用電錶(7-1/2 Digit Graphical Sampling Multimeter) 152 第六章 結論與未來展望 153 6.1結論 153 6.2未來展望 155 參考文獻 156

    [1] 郭子菱,「LED 照明市場發展近況與趨勢」,光連雙月刊,第22-28頁 (2010)
    [2] M. Osigbemeh, M. Onuu, O. Asaolu “Design and development of an improved traffic light control system using hybrid lighting system” Journal of traffic transportation Engineering, Vol. 4, No. 1, pp. 88-95 (2017)
    [3] S. Nakamura, M. Senoh, and T. Mukai “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes” Appl. Phys. Lett., Vol. 62, pp. 2390-2392 (1993)
    [4] E. Fred. Schubert “Light Emitting Diode” Cambridge University Press, New York (2006)
    [5] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto “Optical bandgap energy of wurtzite InN” Appl. Phys. Lett., Vol. 81, No. 3, pp. 1246-1248 (2002)
    [6] G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, and V. Y. Davydov “Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy” Appl. Phys. Lett., Vol. 84, p. 452 (2004)
    [7] 牛振儀,「藉著電漿處理濕式蝕刻圖案化藍寶石基板提升氮化鎵發光二極體之效能」,國立交通大學碩士論文,第8頁 (2012)
    [8] Qiang Zhao , Jiahao Miao , Shengjun Zhou , Chengqun Gui , 1 Bin Tang , Mengling Liu , Hui Wan , Jinfeng Hu.”High-Power GaN-Based Vertical Light-Emitting Diodes on 4-Inch 矽licon Substrate”. 2019 Aug; 9(8): 1178.
    [9] Shengjun Zhou , Haohao Xu , Mengling Liu , Xingtong Liu , Jie Zhao , Ning Li , Sheng Liu.”Effect of Dielectric Distributed Bragg Reflector on Electrical and Optical Properties of GaN-Based Flip-Chip Light-Emitting Diodes”. 2018 Dec; 9(12): 650.
    [10] Suleman Ayub , François David , Eric Klein , Mélodie Borel , Olliver Paul , Luc Gentet , Patrick Ruther. ”Compact optical neural probes with up to 20 integrated thin-film μLEDs applied in acute optogenetic studies”. 2020 January.IEEE.
    [11] Ya-Ju Lee , Hao-Chung Kuo , Tien-Chang Lu , Shing-Chung Wang.” High Light-Extraction GaN-Based Vertical LEDs With Double Diffuse Surfaces”. 2006 November.IEEE
    [12] C. Kittel “Introduction to Solid State Physics” John Wiley Press, Chap.8. (1996)
    [13] S.O.Kasap “Optoelectronics and Photonics: Principles and Practices” (2nd Edition) Pearson Education, New Jersey (2001)
    [14] C. Kittel “Introduction to Solid State Physics” John Wiley Press, Chap.8. (1996)
    [15] E. Fred. Schubert “Light Emitting Diode” Cambridge University Press, U.K (2003)
    [16] Pierre Gibart, Rep. Prog. Phys. 67, 667 (2004)
    [17] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamuraa, Appl. Phys. Lett., 84, 855 (2004)
    [18] Chun-Fu Tsai, Yan-Kuin Su, Chun-Liang Lin, Jpn. J. Appl. Phys. , 51, 01AG04 (2012)
    [19] S. J. Chang, W. S. Chen, Y. C. Lin, C. S. Chang, T. K. Ko, Y. P. Hsu, C. F. Shen, J. M. Tsai, and S. C. Shei, IEEE Trans. Adv. Packaging, 29, 403 (2006)
    [20] J. H. Cheng, Y. C. Sermon Wu, W. C. Liao, and B. W. Lin, Appl. Phys. Lett., 96, 051109 (2010)
    [21] Lumileds Lighting, http://www.lumileds.com
    [22] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J-W.Huang, S.A. Stockman, F. A. Kish, and M. G. Craford “High power truncated pyramid (Al0.5Ga1-x)0.5In0.5P/GaP light emitting diodes exhibiting >50% external quantum efficiency” Appl. Phys. Lett. , 75, 2365 (1999)
    [23] LEDinside,「淺談影響LED元件熱阻的因素」 (2009)
    [24] 楊士賢,「LED背光照明與散熱技術」,科技網 (2010)
    [25] S. Grzanka, G. Franssen, G. Targowski, K. Krowicki, T. Suski, R. Czernecki, P. Perlin, and M. Leszczyński “Role of the electron blocking layer in the low-temperature collapse of electroluminescence in nitride light-emitting diodes” Appl. Phys. Lett., Vol. 90, pp. 103507 (2007)
    [26] Strategies in light (2003)
    [27] M. Y. Hsieh, C. Y. Wang, L. Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng, Y. C. Yu, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang, and J. J. Huang “Improvement of External extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography” IEEE Electron Device Lett., Vol. 29, pp. 658-660 (2009)
    [28] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. Den Baars, and S. Nakamura “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening” Appl. Phys. Lett., Vol. 84, pp. 855-858 (2004)
    [29] 黃冠賓,藉由晶圓接合從藍寶石基板剝離氮化鎵技術,交通大學材料科學與工程學系碩士論文 (2013)
    [30] Q. Y. Tong, U. Gosele, and S. Electrochemical “Semiconductor wafer bonding: science and technology” John Wiley, p. 18 (1999)
    [31] S. Farrens “Wafer Level Packaging: Balancing Device Requirements and Materials Properties” Pan Pacific Microelectronics Symposium, 22-24 (2008)
    [32] V. Dragoi “Adhesive Wafer Bonding for MEMS Applications” Proceedings of SPIE, 5116, 160-167 (2003)
    [33] M. Wiemer “Wafer Bonding with BCB and SU-8 for MEMS Packaging” Electronics System Integration Technology Conference, 2, 1401-1405 (2006)
    [34] 張家豪,共濺鍍鋁鍺薄膜之接合特性研究,中央大學化學工程與材料工程學研究所碩士論文 (2013)
    [35] Q. T. Tong and U. Gösele“Semiconductor wafer bonding:recent developments”Mater. Chem. and phys., 37 (1994)
    [36] J. Haisma, and G. Spierings, Mater. Sci. Eng. R-Rep, 37, p.1 (2002)
    [37] 維基百科,覆晶技術,http://zh.wikipedia.org
    [38] Bo-Ying Wu “The Optical and Electrical Characteristics of GaN-Based Light-Emitting Diodes by Laser Lift Off” (2012)
    [39] Y.P. Chen , C.H. Zheng ,, L.Q. Hu , Y.R. Chen“Improved performance of a back-illuminated GaN-based metalsemiconductor-metal ultraviolet photodetector by in-situ modificationof one-dimensional ZnO nanorods on its screw dislocations” Journal of Alloys and Compounds 775 (2019)
    [40] M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann., Appl. Phys. Lett., 69, 1749 (1996)
    [41] W. S. Wong, T. Sands, and N. W. Cheung, Appl. Phys. Lett., 72, 599 (1998)
    [42] 施敏,半導體元件物理與製作技術-第三版,國立交通大學出版社,新竹,2013。
    [43] 張棋傑,氮化鎵垂直共振腔面射型雷射與發光二極體之製造與特性量測,國立台灣科技大學電子工程所碩士論文 (2015)
    [44] 蕭宏,半導體製程技術導論-第三版,全華圖書有限公司,台北,2014。
    [45] Practical Electron Microscopy and Database,Schottky barriers between metal and n-type and p-type semiconductors,https://www.globalsino.com/micro/1/1micro9825.html
    [46] Safa Kasap“Optoelectronics and Photonics: Principles and Practices”(2014).
    [47] 蕭宏,半導體製程技術導論-第三版,全華圖書有限公司,台北,2014。
    [48] 劉博文,光電元件導論,全威圖書有限公司,台北,2005。
    [49] 光罩對準機,https://www.suss.com/en/products-solutions/mask-aligner/ma-ba-gen4-pro-series.
    [50] 邱煜傑,積體化氮化鎵發光二極體與光偵測器模組電路設計與特性量測,國立台灣科技大學電子工程所碩士論文(2019)
    [51] Zheng-Da Huang ; Wen-Yin Weng ; Shoou-Jinn Chang ; Yuan-Fu Hua ; Chiu-Jung Chiu ; Ting-Jen Hsueh ; San-Lein Wu.” InGaN/GaN Multiquantum-Well Metal-Semiconductor-Metal Photodetectors With Beta-Ga2O3 Cap Layers”. 2013 April, IEEE SENSORS JOURNAL, VOL. 13, NO. 4.
    [52] S.J. Chang ; M.L. Lee ; J.K. Sheu , W.C. Lai , Y.K. Su ; C.S. Chang , C.J. Kao , G.C. Chi ; J.M. Tsai. ”GaN metal-semiconductor-metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts”. 2003 April, IEEE Electron Device Letters, VOL. 24, NO. 4.
    [53] 曾婷筠,氮化鎵元件之銅錫覆晶封裝與剝離藍寶石基板製程,國立台灣科技大學電子工程所碩士論文(2019)

    無法下載圖示 全文公開日期 2025/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE