簡易檢索 / 詳目顯示

研究生: 張美雲
Mei-Yun Zhang
論文名稱: 微型二極體陣列製作與覆晶接合至矽晶圓
Micro-LED array fabrication and flip-chip bonding on a silicon wafer
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 蘇忠傑
陳鴻興
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 128
中文關鍵詞: 覆晶封裝發光二極體微型二極體陣列氮化鎵
外文關鍵詞: flip-chip bonding, Light Emitting Diode, micro-LED array, GaN
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發光二極體LED(Light Emitting Diode)其用途及性能都極為廣泛,但可見光發光二極體主要是在藍寶石基板上磊晶,所以散熱一直是個問題。為了改善這個問題,我們利用覆晶封裝的技術,將氮化鎵覆晶接合到導熱係數較好的矽基板上。
    微型LED陣列是將LED微小化、陣列化,其特性是每一點像素都能定址控制單點驅動,且具有亮度高、色彩飽和度高及低功耗的特性。透過封裝技術,搭配CMOS驅動電路,在未來可以應用於穿戴型裝置或智慧型手錶等小尺寸顯示器。本論文使用商用氮化鎵發光二極體晶圓,成功製作出30-µm發光孔徑的微型LED陣列。實驗結果分別量測1×5 LED 陣列與2×4 LED 矩陣的光電特性與CCD影像。
    使用製作完成的發光二極體陣列進行覆晶接合,共金接合的金屬為銅錫合金。將矽基板鍍製一層二氧化矽並沉積圖案化金屬電極,然後將製作完成的發光二極體陣列的電極與矽基板的電極各鍍上一層銅錫合金,最後進行覆晶接合。將接合完成的發光二極體陣列進行量測,元件出現短路以及脫離矽電路板的情形。利用顯微鏡觀察脫落的元件,發現殘留的松香助焊劑是造成元件短路的主因,因此進行了松香助焊劑的溫度與時間關係實驗,並歸納出解決松香助焊劑殘留問題的解決方法。


    Light Emitting Diode (LEDs) has widely used and performance. Because of the visible light emitting diodes are epitaxy on the sapphire, heat dissipation has always been a problem. In order to solve this problem, this paper uses the technology of flip-chip packaging to bond the gallium nitride flip chip on a silicon substrate with good thermal conductivity.
    The micro-LED array is to miniaturize and array the LEDs. Its characteristic is that each pixel can be addressed and controlled by a single-point drive, and it has the characteristics of high brightness, high color saturation and low power consumption. Through the packaging technology and CMOS drive circuit, it can be applied to small-size displays such as wearable devices or smart watches in the future. In this paper, a commercial GaN light-emitting diode wafer was used to successfully fabricate a micro-LED array with a 30-µm luminous aperture. The experimental results measured the photoelectric characteristics and CCD images of a 1×5 LED array and a 2×4 LED matrix.
    The micro-LED array use the speculum metal to flip-chip bonding on silicon substrate with metal lines. Depositing the silicon dioxide and patterned metal electrodes on the silicon substrate. Then, the electrodes of the micro-LED array and the silicon substrate are each evaporation with a layer of the speculum metal. Finally, use the micro-LED array flip-chip bonding on the silicon substrate. Measured the micro-LED array after the bonding, the components were short-circuited and detached from the silicon substrate. Using a microscope to observe the dropped components, it was found that the residual flux was the major cause of the short circuit of the components. Therefore, we control an experiment on the relationship between temperature and time of flux, and then summarize a solution to the problem of flux residue.

    摘要 0 Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 氮化鎵材料介紹 4 1.3 文獻回顧 7 第二章 發光二極體原理 26 2.1 發光二極體原理 26 2.1.1 輻射轉換 26 2.1.2 光輸出錐角 29 2.2 發光效率 33 2.2.1 內部量子效率(Internal Quantum Efficiency, IQE) 33 2.2.2 光萃取效率(Light Extraction Efficiency, LEE) 33 2.3 改善發光效率的方式 36 2.3.1 改變晶粒外型 36 2.3.2 散熱封裝 37 2.3.3 電子阻擋層(Electron-Blocking Layer) 40 2.3.4 背面反射層(Backside Reflector) 41 2.3.5 表面粗化(Surface Texturing) 42 第三章 覆晶接合介紹 44 3.1 晶圓接合介紹 44 3.1.1 晶圓接合的方式 44 3.1.2 影響晶圓接合的因素 48 3.2 覆晶技術 51 第四章 製程與量測儀器介紹 55 4.1 製程儀器介紹 55 4.1.1 旋轉塗佈機(Spin Coater) 55 4.1.2 光罩對準機(Mask aligner) 56 4.1.3 電漿增強式化學氣相沉積 59 4.1.4 感應耦合電漿式離子蝕刻機 61 4.1.5 射頻濺鍍機(RF Sputter) 63 4.1.6 電子束蒸鍍機(E-beam Evaporator) 65 4.1.7 快速升溫退火爐(Rapid Thermal Annealing, RTA) 66 4.1.8 高溫爐(Box Furnaces) 67 4.2 量測儀器介紹 68 4.2.1 I-V與L-I量測系統 68 4.2.2 薄膜厚度輪廓測度儀(Surface profiler) 69 4.2.3 剪切力測試儀(Surface profiler) 70 第五章 元件設計與製程 72 5.1元件設計與製作 72 5.2 發光二極體元件製程 74 5.2.1 活化製程(Activation) 76 5.2.2 高台圖形製程(Mesa) 76 5.2.3 二氧化矽絕緣層沉積 78 5.2.4 ITO透明導電層沉積 79 5.2.5 P型電極沉積 80 5.2.6 N型電極沉積 81 5.2.7接合金屬沉積 83 5.3 矽電路板製程 84 5.3.1 金屬電極沉積 85 5.3.2 接合金屬沉積 85 5.4 覆晶接合製程 87 5.4.1 覆晶測試實驗 87 5.4.2 元件覆晶接合製程 95 第六章 實驗結果與討論 96 6.1 LED元件基本光電特性 97 6.2元件覆晶封裝成果 101 第七章 結論與未來展望 106 7.1結論 106 7.2未來展望 106 參考文獻 108

    [1] 郭子菱,「LED 照明市場發展近況與趨勢」,光連雙月刊,第22-28頁 (2010)
    [2] M. Osigbemeh, M. Onuu, O. Asaolu “Design and development of an improved traffic light control system using hybrid lighting system” Journal of traffic transportation Engineering, Vol. 4, No. 1, pp. 88-95 (2017)
    [3] S. Nakamura, M. Senoh, and T. Mukai “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes” Appl. Phys. Lett., Vol. 62, pp. 2390-2392 (1993)
    [4] E. Fred. Schubert “Light Emitting Diode” Cambridge University Press, New York (2006)
    [5] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto “Optical bandgap energy of wurtzite InN” Appl. Phys. Lett., Vol. 81, No. 3, pp. 1246-1248 (2002)
    [6] G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, and V. Y. Davydov “Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy” Appl. Phys. Lett., Vol. 84, p. 452 (2004)
    [7] 牛振儀,「藉著電漿處理濕式蝕刻圖案化藍寶石基板提升氮化鎵發光二極體之效能」,國立交通大學碩士論文,第8頁 (2012)
    [8] Kwang Hong Lee , Yue Wang, Bing Wang, Li Zhang, Wardhana Aji Sasangka, Shuh Chin Goh, Shuyu Bao, Kenneth E. Lee, Eugene A. Fitzgerald, and Chuan Seng Tan “Monolithic Integration of Si-CMOS and III-V-on-Si Through Direct Wafer Bonding Process”. 2017 December.IEEE.
    [9] Mei Yu Soh, Wen Xian Ng, T. Hui Teo, S. Lawrence Selvaraj, Lulu Peng, Don Disney, Qiong Zou, and Kiat Seng Yeo “Design and Characterization of Micro-LED Matrix Display With Heterogeneous Integration of GaN and BCD Technologies”. 2019 August.IEEE.
    [10] C. Kittel “Introduction to Solid State Physics” John Wiley Press, Chap.8. (1996)
    [11] S.O.Kasap “Optoelectronics and Photonics: Principles and Practices” (2nd Edition) Pearson Education, New Jersey (2001)
    [12] C. Kittel “Introduction to Solid State Physics” John Wiley Press, Chap.8. (1996)
    [13] E. Fred. Schubert “Light Emitting Diode” Cambridge University Press, U.K (2003)
    [14] Pierre Gibart, Rep. Prog. Phys. 67, 667 (2004)
    [15] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamuraa, Appl. Phys. Lett., 84, 855 (2004)
    [16] Chun-Fu Tsai, Yan-Kuin Su, Chun-Liang Lin, Jpn. J. Appl. Phys. , 51, 01AG04 (2012)
    [17] S. J. Chang, W. S. Chen, Y. C. Lin, C. S. Chang, T. K. Ko, Y. P. Hsu, C. F. Shen, J. M. Tsai, and S. C. Shei, IEEE Trans. Adv. Packaging, 29, 403 (2006)
    [18] J. H. Cheng, Y. C. Sermon Wu, W. C. Liao, and B. W. Lin, Appl. Phys. Lett., 96, 051109 (2010)
    [19] Lumileds Lighting, http://www.lumileds.com
    [20] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J-W.Huang, S.A. Stockman, F. A. Kish, and M. G. Craford “High power truncated pyramid (Al0.5Ga1-x)0.5In0.5P/GaP light emitting diodes exhibiting >50% external quantum efficiency” Appl. Phys. Lett. , 75, 2365 (1999)
    [21] LEDinside,「淺談影響LED元件熱阻的因素」 (2009),https://www.ledinside.com.tw/knowledge/20090224-9298.html
    [22] 楊士賢,「LED背光照明與散熱技術」,科技網 (2010),https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=14&id=0000178050_HRALL83V6DNTV2LILTKCI
    [23] S. Grzanka, G. Franssen, G. Targowski, K. Krowicki, T. Suski, R. Czernecki, P. Perlin, and M. Leszczyński “Role of the electron blocking layer in the low-temperature collapse of electroluminescence in nitride light-emitting diodes” Appl. Phys. Lett., Vol. 90, pp. 103507 (2007)
    [24] Strategies in light (2003)
    [25] M. Y. Hsieh, C. Y. Wang, L. Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng, Y. C. Yu, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang, and J. J. Huang “Improvement of External extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography” IEEE Electron Device Lett., Vol. 29, pp. 658-660 (2009)
    [26] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. Den Baars, and S. Nakamura “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening” Appl. Phys. Lett., Vol. 84, pp. 855-858 (2004)
    [27] 黃冠賓,藉由晶圓接合從藍寶石基板剝離氮化鎵技術,交通大學材料科學與工程學系碩士論文 (2013)
    [28] Q. Y. Tong, U. Gosele, and S. Electrochemical “Semiconductor wafer bonding: science and technology” John Wiley, p. 18 (1999)
    [29] S. Farrens “Wafer Level Packaging: Balancing Device Requirements and Materials Properties” Pan Pacific Microelectronics Symposium, 22-24 (2008)
    [30] V. Dragoi “Adhesive Wafer Bonding for MEMS Applications” Proceedings of SPIE, 5116, 160-167 (2003)
    [31] M. Wiemer “Wafer Bonding with BCB and SU-8 for MEMS Packaging” Electronics System Integration Technology Conference, 2, 1401-1405 (2006)
    [32] 張家豪,共濺鍍鋁鍺薄膜之接合特性研究,中央大學化學工程與材料工程學研究所碩士論文 (2013)
    [33] Q. T. Tong and U. Gösele“Semiconductor wafer bonding:recent developments”Mater. Chem. and phys., 37 (1994)
    [34] J. Haisma, and G. Spierings, Mater. Sci. Eng. R-Rep, 37, p.1 (2002)
    [35] 維基百科,覆晶技術,http://zh.wikipedia.org
    [36] Bo-Ying Wu “The Optical and Electrical Characteristics of GaN-Based Light-Emitting Diodes by Laser Lift Off” (2012)
    [37] 蕭宏,半導體製程技術導論-第三版,全華圖書有限公司,台北,2014.
    [38] 國立台灣大學光電所光電製程實驗室,光罩對準機MJB4,http://140.112.17.156/ntuee2008/DefaultPage2.aspx?instruid=7
    [39] SUSS_MA_BA8_Gen3_Original.pdf
    [40] 施敏,半導體元件物理與製作技術-第三版,國立交通大學出版社,新竹,2013.
    [41] 甯榮椿,「使用感應耦合電漿反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究」,國立清華大學材料科學與工程學系,2010.
    [42] 廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2011.
    [43] thermo-furnaces.pdf
    [44] DektakXT Stylus Profiling System Brochure-BRUKER.pdf
    [45] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Japanese Journal of Applied Physics, vol. 31, pp. L139-L142, 1992.
    [46] 陳彥偉,「P型氮化鋁鎵之歐姆接觸研究」,國立交通大學電子物理所碩士學位論文,新竹,2006.

    無法下載圖示 全文公開日期 2031/09/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE