簡易檢索 / 詳目顯示

研究生: 鄭安逵
An-kuei Cheng
論文名稱: 複合式穿透式電極於有機發光二極體之應用與研究
Studies and Applications for Transparent Composite Electrode Structure for Organic Light Emitting Diode
指導教授: 李志堅
Chih-Chien Lee
口試委員: 徐世祥
Shih-Hsiang Hsu
范慶麟
Ching-Lin Fan
劉舜維
Shun-Wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 76
中文關鍵詞: 透明電極氧化物電極有機發光二極體電極
外文關鍵詞: OLED electrode, Transparent electrode, DMD structure electrode
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文構想是設計出有機發光二極體元件之複合式結構電極,並以能夠取代傳統ITO為目標;元件可採取下發光或是全穿透的形式,希望能夠從實驗研究中改善電性,穿透率以及效率。有機發光二極體元件其中一項特色為元件能夠穿透,而穿透式的元件則需要特殊的透明電極才能夠達成,因此本論文將探討近年來較多被採用的複合式結構,此種結構以兩層介電材料,包住中間層金屬材料,進而產生微共振腔的效應,再微調共振腔的腔體長度以及金屬厚度,可以使其達到最高穿透並維持高效率以及電性。
    由於本實驗結構在OLED陽極的應用上的文獻並不多,也是本驗室第一次開發的複合式陽極結構,因此本文主要針對最佳化電極的電性注入、效率以及穿透率這三大重點做研究探討。
    實驗以三氧化鎢(WO3)、二氧化鉬(MoO2)以及三氧化鉬(MoO3)作為介電材料的選擇,搭配高導電性、高穿透的銀做為陽極中間層;有機傳輸/注入層使用NPB此種有機材料,螢光材料Alq3做為主體綠光的發光層,並參雜C545T作為客體發光材料,以提高效率與電性,並最佳化元件結構為: Glass substrate/ WO3(25 nm)/ Ag(14 nm)/ MoO2(5 nm)/ NPB(60 nm)/ Alq3:C545T[1%](22.5 nm)/ Alq3(22.5 nm)/ LiF(0.8 nm)/ Al(120 nm). 並且最佳化電極,使穿透度可以達到84%(max)。


    The main concept of this thesis is to design and study an ITO free organic light emitting diode with composite structure electrode. The unit can be both bottom emitted type or fully transparent OLED. One of the main traits of an OLED is that it can be transparent. In order to achieve high transparency electrode for OLEDs, it’s necessary to develop a transparent electrode. Base on the studies for composite metal-oxide material electrode, adopted by many research facilities in recent years, the anode structure which made by one thin metal layer sandwiched between two metal-oxide (dielectric) layers is greatly improved. In addition to the micro-cavity effect and SPR (Surface plasmon Resonance), the electro can achieve high transparency, efficiency and electro property.
    Since there is no established study on the composite anode, this structure is unprecedentedly constructed in the institute of NTUST. The importance of the unit optimization procedure is proved to be conspicuous. Therefore, in this thesis we focus on three main characteristics: charge injection of the anode, efficiency and transparency of the electrode.
    The materials for the metal-oxide electrode were tungsten trioxide, molybdenum dioxide and molybdenum trioxide. And the thin metal in the middle was silver (Ag). NPB layer was for the charge transportation/injection. And the fluorescence material for host emissive layer was Alq3, doped with the guest emissive layer C545T to achieve high electric property and high efficiency. The final optimized OLED unit with composite electrode was: Glass substrate/ WO3(25 nm)/ Ag(14 nm)/ MoO2(5 nm)/ NPB(60 nm)/ Alq3:C545T[1%](22.5 nm)/ Alq3(22.5 nm)/ LiF(0.8 nm)/ Al(120 nm). And the maximum transparency could come up to 84%.

    口試委員會審定書# 誌謝 I 中文摘要 II ABSTRACT III 總目錄 IV 圖目錄 VII CHAPTER 1 緒論 1 1.1 前言 1 1.2 有機發光二極體的發展與歷史沿革 4 1.3 OLED發光原理與機制 7 1.4 基本結構 9 1.5 DMD 電極結構介紹 14 1.6 有機發光二極體元件材料介紹 18 1.6.1 陽極材料 19 1.6.2 電洞注入材料 19 1.6.3 電洞傳輸材料 19 1.6.4 電子傳輸材料 21 1.6.5 電子注入材料 21 1.6.6 陰極材料 22 1.7 研究動機 22 CHAPTER 2 理論基礎 24 2.1 有機半導體傳輸機制 24 2.2 有機材料的吸收與放射 26 2.3 有機發光二極體的效率 28 2.4 微共振腔效應 32 CHAPTER 3 實驗流程與設備 33 3.1 實驗材料 33 3.1.1 基板 33 3.1.2 藥品 33 3.2 實驗設備 35 3.2.1 超音波清洗機 35 3.2.2 加熱板 35 3.2.3 紫外光曝光機 35 3.2.4 旋轉塗佈機 35 3.2.5 氧氣電漿清潔機 36 3.2.6 手套箱 37 3.2.7 熱蒸鍍機 38 3.2.8 膜厚量測系統 (α-Step ) 39 3.2.9 光電子光譜儀 (AC-2) 39 3.2.10 光電特性BJV量測系統 39 3.2.11 原子力顯微鏡(Atomic Force Microscope, AFM) 39 3.2.12 UV(Ultraviolet–visible spectroscopy)光譜儀 40 3.3 實驗步驟 41 3.3.1 ITO玻璃基板電路圖形定義 41 3.3.2 ITO玻璃基板前處理 43 3.3.3 有機材料與金屬電極蒸鍍 44 3.3.4 元件封裝 45 CHAPTER 4 結果與討論 46 4.1 DMD 結構之下發光元件最佳化 46 4.1.1 陽極金屬氧化物選擇與比較 46 4.1.2 內層氧化物比較以及最佳化 47 4.1.3 中間電極「銀」之最佳化 53 4.1.4 外層氧化物最佳化 56 4.1.5 內層氧化物混合蒸鍍與頻譜調整 58 4.1.6 大面積WAM陽極元件與壽命量測 63 4.2 AFM表面分析 64 4.3 WAM總結與應用 65 4.3.1 WAM與WAW之比較 65 4.3.2 倒置式全穿透元件 68 CHAPTER 5 結論 70 參考文獻 71

    [1] http://www.oled-info.com/lg-g-flex-photo
    [2] Roundkaboom-magazine.com
    [3] www.gamespasm.com
    [4] www.gamespasm.com
    [5] www.oled-info.com
    [6] www.fubiz.net
    [7] M. Pope, H. P. Kallmann, and P. Magnante, “Electroluminescence in Organic Crystals,” J. Chem. Phys, 38, 2042 (1963).
    [8] P. S. Vincett, et al., “Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films,” Thin Solid Films, 94, 171 (1982).
    [9] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., 51, 913 (1987).
    [10] J. H. Burroughes, et al., “Light-emitting diodes based on conjugated polymers,” Nature, 347, 539 (1990).
    [11] C. Adachi, et al., “Organic Electroluminescent Device with a Three-Layer Structure,” Jpn. J. Appl. Phys., 27, L713 (1988).
    [12] M. Era, et al., “Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter,” Chem. Phys. Lett., 178, 488 (1991).
    [13] J. Kido, et al., “Organic electroluminescent devices based on molecularly doped polymers,” Appl. Phys. Lett., 61, 761 (1992).
    [14] J. Kido, M. Kimura, and K. Nagai, “Multilayer White Light-Emitting Organic Electroluminescent Device,” Science, 267, 1332 (1995).
    [15] J. Kido, H. Shionoya, and K. Nagai, “Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole),” Appl. Phys. Lett., 67, 2281 (1995).
    [16] J. C. Chen and S. W. Huang, OLED materials and devices of dream displays 1st ed. Vol. 40. 2007: Taipei: WuNan Publisher.
    [17] D. R. Baigent, et al., “Conjugated polymer light‐emitting diodes on silicon substrates,” Appl. Phys. Lett., 65, 2636 (1994).
    [18] V. Bulović, et al., “A surface-emitting vacuum-deposited organic light emitting device,” Appl. Phys. Lett. , 70, 2954 (1997).
    [19] T. Miyashita, et al., Proceedings IDW'04. Vol. 1421. 2004.
    [20] C. W. Chen, C. L. Lin, and C. C. Wu, “An effective cathode structure for inverted top-emitting organic light-emitting devices,” Appl. Phys. Lett., 85, 2469 (2004).
    [21] T. Y. Chu, et al., “Highly efficient and stable inverted bottom-emission organic light emitting devices,” Appl. Phys. Lett. , 89, 053503 (2006).
    [22] T. Y. Chu, et al., “Ultrathin Electron Injection Layer on Indium-Tin Oxide Bottom Cathode for Highly Efficient Inverted Organic Light-Emitting Diodes,” Jpn. J. Appl. Phys. , 45, 4948 (2006).
    [23] C. M. LAMPERT, “HEAT MIRROR COATINGS FOR ENERGY CONSERVING WINDOWS,” Sol. Energy Mater. Sol. Cells, 6, 1 (1981).
    [24] J. C. C. Fan, “Transparent heat-mirror films of TiO2/Ag/TiO2 for solar energy collection and radiation insulation,” Appl. Phys. Lett., 25, 693 (1974).
    [25] G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Deposition and optical properties of optimised ZnS/Ag/ZnS thin films for energy saving applications ” Thin Solid Films, 306, 92 (1997).
    [26] B. Koo, S. Kim, and J.-L. Lee, “Indium-tin-oxide free transparent electrodes using a plasmon frequency conversion layer,” J. Phys. Chem. C, 1, 246 (2013).
    [27] J.-A. Jeong and H.-K. Kim, “Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells, 93, 1801 (2009).
    [28] M. Bender, et al., “Dependence of film composition and thicknesses on optical and electrical properties of ITO–metal–ITO multilayers,” Thin Solid Films, 326, 67 (1998).
    [29] S. Y. Ryu, et al., “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett., 92, 023306 (2008).
    [30] S. Y. Ryu, et al., “Transparent organic light-emitting diodes using resonant tunneling double barrier structures,” Appl. Phys. Lett., 91, 093515 (2007).
    [31] H. Cho, et al., “Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes,” Org.Electron., 10, 1163 (2009).
    [32] G. H. Jung, et al., “BCP/Ag/MoO3 Transparent Cathodes for Organic Photovoltaics,” Advanced Energy Materials, 1, 1023 (2011).
    [33] C. Guillen and J. Herrero, “Transparent conductive ITO/Ag/ITO multilayer electrodes deposited by sputtering at room temperature,” Optics Communications, 282, 574 (2009).
    [34] C. Guillen and J. Herrero, “ITO/metal/ITO multilayer structures based on Ag and Cu metal films for high-performance transparent electrodes,” Sol. Energy Mater. Sol. Cells, 92, 938 (2008).
    [35] H. Pang, et al., “ZnS/Ag/ZnS coating as transparent anode for organic light emitting diodes,” J. Lumin., 122-123, 587 (2007).
    [36] S. H. Mohamed, “Effects of Ag layer and ZnO top layer thicknesses on the physical properties of ZnO/Ag/ZnO multilayer system,” J. Phys. Chem. Solids, 69, 2378 (2008).
    [37] D. R. Sahu and J.-L. Huang, “High quality transparent conductive ZnO/Ag/ZnO multilayer films deposited at room temperature,” Thin Solid Films, 515, 876 (2006).
    [38] D. R. Sahu, S.-Y. Lin, and J.-L. Huang, “ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode,” Applied Surface Science, 252, 7509 (2006).
    [39] D. R. Sahu, S.-Y. Lin, and J.-L. Huang, “Deposition of Ag-based Al-doped ZnO multilayer coatings for the transparent conductive electrodes by electron beam evaporation,” Sol. Energy Mater. Sol. Cells, 91, 851 (2007).
    [40] S. Song, et al., “Effect of GZO thickness and annealing temperature on the structural, electrical and optical properties of GZO/Ag/GZO sandwich films,” Current Applied Physics, 10, 452 (2010).
    [41] K. Hong, et al., “Optical Properties of WO3/Ag/WO3Multilayer As Transparent Cathode in Top-Emitting Organic Light Emitting Diodes,” J. Phys. Chem. C, 115, 3453 (2011).
    [42] K. Jeon, et al., “Fabrication and characterization of WO3/Ag/WO3 multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes,” Nanoscale research letters, 7, 253 (2012).
    [43] M. Zadsar, et al., “The effect of Ag layer thickness on the properties of WO3/Ag/MoO3 multilayer films as anode in organic light emitting diodes,” J. Lumin., 132, 992 (2012).
    [44] L. Cattin, et al., “Investigation of low resistance transparent MoO3/Ag/MoO3 multilayer and application as anode in organic solar cells,” Thin Solid Films, 518, 4560 (2010).
    [45] B. Tian, et al., “Transparent organic light-emitting devices using a MoO3/Ag/MoO3 cathode,” J. Appl. Phys., 110, 104507 (2011).
    [46] X. Liu, “The design of ZnS/Ag/ZnS transparent conductive multilayer films,” Thin Solid Films, 441, 200 (2003).
    [47] H. Kermani, H. R. Fallah, and M. Hajimahmoodzadeh, “Design and fabrication of nanometric ZnS/Ag/MoO3 transparent conductive electrode and investigating the effect of annealing process on its characteristics,” Physica E: Low-dimensional Systems and Nanostructures, 47, 303 (2013).
    [48] K. Kim, et al., “Transparency controllable silver-based electrode for flexible optoelectronics,” Appl. Phys. Lett., 102, 081118 (2013).
    [49] T. Ishida, H. Kobayashi, and Y. Nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys, 73, 4344 (1993).
    [50] M. G. Mason, et al., “Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices,” J. Appl. Phys., 86, (1999).
    [51] C. C. Chang, et al., “High-Efficiency Organic Electroluminescent Device with Multiple Emitting Units,” Jpn. J. Appl. Phys., 43, 6418 (2004).
    [52] H. Kanno, et al., “White Stacked Electrophosphorescent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer,” Adv. Mater., 18, 339 (2006).
    [53] J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett., 73, 2866 (1998).
    [54] C. W. Chen, et al., “Effective connecting architecture for tandem organic light-emitting devices,” Appl. Phys. Lett., 87, 241121 (2005).
    [55] R. M. Glaeser and R. S. Berry, “Mobilities of Electrons and Holes in Organic Molecular Solids. Comparison of Band and Hopping Models,” J. Chem. Phys., 44, 3797 (1966).
    [56] W. D. Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Appl. Phys, 43, 5033 (1972).
    [57] J. C. Chen and S. W. Huang, OLED materials and devices of dream displays 1st ed. 2007: Taipei: WuNan Publisher.
    [58] C. Adachi, et al., “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys, 90, 5048 (2001).
    [59] F. S.R., et al., “Thin film organic light emitting devices and lasers,” Materials Letters, 34, 103 (1998).
    [60] S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys., 91, 3324 (2002).
    [61] A. L. Burin and M. A. Ratner, “Exciton Migration and Cathode Quenching in Organic Light Emitting Diodes,” J. Phys. Chem A, 104, 4704 (2000).
    [62] http://large.stanford.edu/
    [63] K. H. Choi, et al., “ITO/Ag/ITO multilayer films for the application of a very low resistance transparent electrode,” Thin Solid Films, 341, 152 (1999).
    [64] J. Lewis, et al., “Highly flexible transparent electrodes for organic light-emitting diode-based displays,” Appl. Phys. Lett., 85, 3450 (2004).

    無法下載圖示 全文公開日期 2019/10/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE