簡易檢索 / 詳目顯示

研究生: 蔡明儒
Ming-Ju Tsai
論文名稱: 利用矽光子製程實現光被動元件
Realization of Optical Passive Devices with Silicon Photonics Process
指導教授: 李三良
San-Liang Lee
口試委員: 何文章
Wen-Jeng Ho
洪勇智
Yung-Jr Hung
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 光電積體電路矽光子光被動元件絕緣覆晶矽多晶矽波導金氧半製程高密度分波多工器梳狀濾波器麥克森干涉儀次波長光柵波導
外文關鍵詞: optcial passive element, comb filter, Michelson interferometer, subwavelength grating waveguide
相關次數: 點閱:265下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光電積體電路透過矽波導同時傳輸不同光訊號之優勢,提供了更高的傳輸量以及頻寬,克服在銅纜中傳輸速度之限制,能因應現今雲端運算及大數據應用之需求,為下一世代晶片關鍵之技術。 此論文探討利用兩種不同矽光子帄台實現光被動元件的可行性。首先透過比利時微電子研究中心所提供之矽光子製程,在絕緣層覆矽基板上製作被動元件,透過塞取環狀共振器結構建構高密度多工器以及梳狀濾波器,再使用麥克森干涉儀之結構作為光網路監測系統之干涉元件,量測結果之趨勢與模擬結果相符。 此外,也透過台積電標準九十奈米互補式金氧半製程,在不變動任何製程參數下,使用多晶矽層製作光學波導,再透過次波長光柵之結構減低其表面粗糙度及多晶矽材料所造成之損耗,讓原本112 dB/cm之多晶矽波導傳輸損耗減少至小於30 dB/cm,增加了直接利用標準互補式金氧半製程製作光被動元件之可行性。


    Silicon phonics circuit has the advantage of simultaneously transmit multiple light signals through a silicon optical waveguide, providing higher transmission speed and wider bandwidth than copper wires. It could fulfill demands of cloud computing and big data application and will become the core technique for next-generation semiconductor chip manufacturing industry.
    This thesis investigated two different silicon photonics platforms for realizing optical passive devices. The first platform is the silicon-on-insulator (SOI) process provided by IMEC for fabricating optical passive elements. Dense wavelength division multiplexing filters and comb filters are realized with add/drop ring resonator structure. The optical network monitoring devices are realized in terms of the Michelson interferometer structure.
    The second platform is the TSMC standard 90 nm CMOS process where the thin polysilicon layer is employed for fabricating optical waveguide. Without modifying any parameter in the standard process, the transmission loss of poly silicon waveguide is 112 dB/cm due to surface roughness and material absorption. To reduce such loss, the subwavelength grating waveguide structure is used and the propagation loss is reduced to be below 30 dB/cm. This makes the realization of photonic integrated circuit feasible by using the polysilicon waveguide in standard CMOS process as the building block.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 研究動機與平台介紹 1-1 前言 1-2 研究動機 1-3 絕緣層覆矽平台 1-4 標準互補式金氧半平台 第二章 波導結構介紹 2-1 環狀光濾波器 2-2 麥克森干涉儀 2-3 次波長光柵波導 第三章 元件介紹與模擬設計 3-1 模擬方法 3-1-1 有限時域差分法 3-1-1 有限特徵模態法 3-2 梳狀濾波器 3-3 高密度分波多工器 3-4 干涉式被動光網路斷線監測技術 3-5 次波長光柵波導 第四章 元件量測結果 4-1 量測系統架構 4-2 梳狀濾波器 4-3 高密度分波多工器 4-4 監測系統之干涉元件 4-5 CMOS晶片後製程 4-6 次波長光柵波導 第五章 結論與未來發展方向 5-1 成果與討論 5-2 未來發展方向 參考文獻

    [1] Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Communications Magazine, vol. 51, no. 3, pp. 72-77, 2013.
    [2] M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon Photonics: The Next Fabless Semiconductor Industry,” IEEE Solid-State Circuits Magazine, vol. 5, no. 1, pp. 48-58, 2013.
    [3] B. Jalali, and S. Fathpour, “Silicon Photonics,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4600-4615, 2006.
    [4] A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1337-1361, 2009.
    [5] M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Optics and Photonics News, vol. 24, no. 9, pp. 32-39, 2013/09/01, 2013.
    [6] H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt Express, vol. 23, no. 3, pp. 2487-510, Feb 9, 2015.
    [7] Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Communications Magazine, vol. 50, no. 2, pp. s67-s72, 2012.
    [8] M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Optics Express, vol. 19, no. 4, pp. 3592-3598, 2011/02/14, 2011.
    [9] A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” IEEE Photonics Technology Letters, vol. 18, no. 23, pp. 2520-2522, 2006.
    [10] F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Optics Express, vol. 21, no. 10, pp. 11652-11658, 2013/05/20, 2013.
    [11] J. Li, G. Li, X. Zheng, K. Raj, A. V. Krishnamoorthy, and J. F. Buckwalter, “A 25-Gb/s Monolithic Optical Transmitter With Micro-Ring Modulator in 130-nm SoI CMOS,” IEEE Photonics Technology Letters, vol. 25, no. 19, pp. 1901-1903, 2013.
    [12] Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Optics Express, vol. 21, no. 24, pp. 29374-29382, 2013/12/02, 2013.
    [13] A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Optics Express, vol. 16, no. 16, pp. 12084-12089, 2008/08/04, 2008.
    [14] J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A Monolithic 25-Gb/s Transceiver With Photonic Ring Modulators and Ge Detectors in a 130-nm CMOS SOI Process,” IEEE Journal of Solid-State Circuits, vol. 47, no. 6, pp. 1309-1322, 2012.
    [15] M. Georgas, J. Orcutt, R. J. Ram, and V. Stojanovic, “A Monolithically-Integrated Optical Receiver in Standard 45-nm SOI,” IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1693-1702, 2012.
    [16] C. Kopp, S. Bernab, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 3, pp. 498-509, 2011.
    [17] A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of Silicon Photonics Foundry Efforts,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, pp. 405-416, 2014.
    [18] J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popović, H. Li, J. Sun, T. Bonifield, R. Hollingsworth, F. X. Kärtner, H. I. Smith, V. Stojanović, and R. J. Ram, “Nanophotonic integration in state-of-the-art CMOS foundries,” Optics Express, vol. 19, no. 3, pp. 2335-2346, 2011/01/31, 2011.
    [19] J. S. Orcutt, S. D. Tang, S. Kramer, H. Li, V. Stojanovi, and R. J. Ram, "Low-loss polysilicon waveguides suitable for integration within a high-volume electronics process." pp. 1-2.
    [20] Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-µm radius,” Optics Express, vol. 16, no. 6, pp. 4309-4315, 2008/03/17, 2008.
    [21] H. Shen, M. H. Khan, L. Fan, L. Zhao, Y. Xuan, J. Ouyang, L. T. Varghese, and M. Qi, “Eight-channel reconfigurable microring filters with tunable frequency, extinction ratio and bandwidth,” Optics Express, vol. 18, no. 17, pp. 18067-18076, 2010/08/16, 2010.
    [22] R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E. J. Lim, G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal, vol. 6, no. 3, pp. 1-8, 2014.
    [23] G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Optics Express, vol. 18, no. 21, pp. 22215-22221, 2010/10/11, 2010.
    [24] I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “All-optical switching using nonlinear subwavelength Mach-Zehnder on silicon,” Optics Express, vol. 19, no. 15, pp. 14031-14039, 2011/07/18, 2011.
    [25] D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s Silicon Optical Modulator,” IEEE Photonics Technology Letters, vol. 24, no. 4, pp. 234-236, 2012.
    [26] X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Optics Express, vol. 21, no. 10, pp. 12776-12782, 2013/05/20, 2013.
    [27] X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly Efficient Silicon Michelson Interferometer Modulators,” IEEE Photonics Technology Letters, vol. 25, no. 5, pp. 407-409, 2013.
    [28] J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Optics Express, vol. 16, no. 20, pp. 15304-15311, 2008/09/29, 2008.
    [29] M. Ibrahim, J. H. Schmid, A. Aleali, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, D.-X. Xu, and W. N. Ye, “Athermal silicon waveguides with bridged subwavelength gratings for TE and TM polarizations,” Optics Express, vol. 20, no. 16, pp. 18356-18361, 2012/07/30, 2012.
    [30] K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun, vol. 2, pp. 517, 11/01/online, 2011.
    [31] P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Optics Letters, vol. 35, no. 15, pp. 2526-2528, 2010/08/01, 2010.
    [32] P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Optics Express, vol. 18, no. 19, pp. 20251-20262, 2010/09/13, 2010.
    [33] V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Optics Express, vol. 23, no. 4, pp. 4791-4803, 2015/02/23, 2015.
    [34] V. Donzella, A. Sherwali, J. Flueckiger, S. T. Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Optics Express, vol. 22, no. 17, pp. 21037-21050, 2014/08/25, 2014.
    [35] J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Optics Letters, vol. 39, no. 15, pp. 4442-4445, 2014/08/01, 2014.
    [36] Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Optics Express, vol. 22, no. 17, pp. 20652-20662, 2014/08/25, 2014.
    [37] R. Halir, A. Ortega-Mo, J. H. Schmid, C. Alonso-Ramos, J. Lapointe, D. X. Xu, J. G. Wang, x00Fc, P. emert, x00E, rez, x00Cd, F. Molina, x00E, ndez, and S. Janz, “Recent Advances in Silicon Waveguide Devices Using Sub-Wavelength Gratings,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, pp. 279-291, 2014.
    [38] J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Optics Express, vol. 22, no. 13, pp. 15335-15345, 2014/06/30, 2014.
    [39] Y. Kane, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966.
    [40] Z. Zhu, and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Optics Express, vol. 10, no. 17, pp. 853-864, 2002/08/26, 2002.
    [41] P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Optics Express, vol. 15, no. 15, pp. 9600-9605, 2007/07/23, 2007.
    [42] Z. Zou, L. Zhou, X. Li, and J. Chen, “Channel-spacing tunable silicon comb filter using two linearly chirped Bragg gratings,” Optics Express, vol. 22, no. 16, pp. 19513-19522, 2014/08/11, 2014.
    [43] Z.-C. Luo, W.-J. Cao, A.-P. Luo, and W.-C. Xu, “Polarization-Independent, Multifunctional All-Fiber Comb Filter Using Variable Ratio Coupler-Based Mach–Zehnder Interferometer,” Journal of Lightwave Technology, vol. 30, no. 12, pp. 1857-1862, 2012/06/15, 2012.
    [44] L. Yi, Z. Li, M. Bi, W. Wei, and W. Hu, “Symmetric 40-Gb/s TWDM-PON With 39-dB Power Budget,” IEEE Photonics Technology Letters, vol. 25, no. 7, pp. 644-647, 2013.
    [45] Y. Yokoyama, T. Hatanaka, N. Oku, H. Tanaka, I. Kobayashi, H. Yamazaki, and A. Suzuki, "10.709-Gb/s-300-km transmission of PLC-based chirp-managed laser packaged in pluggable transceiver without any optical or electrical dispersion compensation." pp. 1-2.
    [46] Z. Zhou, M. Bi, S. Xiao, Y. Zhang, and W. Hu, “Experimental Demonstration of Symmetric 100-Gb/s DML-Based TWDM-PON System,” IEEE Photonics Technology Letters, vol. 27, no. 5, pp. 470-473, 2015.
    [47] L. San-Liang, J. Shuen-Te, and C. Chun-Hung, "Novel fault monitoring scheme for PON systems using wavelength sweeper and interferometric devices." pp. 1-2.
    [48] S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Optics Express, vol. 15, no. 17, pp. 10553-10561, 2007/08/20, 2007.
    [49] G. W. Cong, K. Suzuki, S. H. Kim, K. Tanizawa, S. Namiki, and H. Kawashima, “Demonstration of a 3-dB directional coupler with enhanced robustness to gap variations for silicon wire waveguides,” Optics Express, vol. 22, no. 2, pp. 2051-2059, 2014/01/27, 2014.
    [50] 宋媛媛, “利用頻譜整形之特性完成高速25G-bit/s x 4 分時分波多工被動光網路系統,” 國立臺灣科技大學碩士論文, 2015.
    [51] G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Optics Express, vol. 19, no. 21, pp. 20435-20443, 2011/10/10, 2011.
    [52] D. Kwong, J. Covey, A. Hosseini, Y. Zhang, X. Xu, and R. T. Chen, “Ultralow-loss polycrystalline silicon waveguides and high uniformity 1x12 MMI fanout for 3D photonic integration,” Optics Express, vol. 20, no. 19, pp. 21722-21728, 2012/09/10, 2012.
    [53] T. M. B. Masaud, A. Tarazona, E. Jaberansary, X. Chen, G. T. Reed, G. Z. Mashanovich, and H. M. H. Chong, “Hot-wire polysilicon waveguides with low deposition temperature,” Optics Letters, vol. 38, no. 20, pp. 4030-4032, 2013/10/15, 2013.
    [54] H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 × 2 adiabatic 3  dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Optics Letters, vol. 41, no. 13, pp. 3041-3044, 2016/07/01, 2016.

    QR CODE