簡易檢索 / 詳目顯示

研究生: Habtamu Fekadu Etefa
Habtamu Fekadu Etefa
論文名稱: Photovoltaic Performance of p-type Dye-Sensitised Solar Cells Based on Solid and Flexible Electrode Systems
Photovoltaic Performance of p-type Dye-Sensitised Solar Cells Based on Solid and Flexible Electrode Systems
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 今榮東洋子
王丞浩
Wei-Fang Su
陳志明
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 149
中文關鍵詞: 氧化鎳氧化鎳@碳點複合材料碳點PV測量聚吡咯功率轉換效率染料敏化太陽能電池入射光子轉換效率比表面積柔性電極帶隙氧化銦錫
外文關鍵詞: Nickel oxide, PV measurement, carbon dot, nickel oxide@carbon dots composite, power conversion efficiency, dye-sensitized solar cell, Bandgap, Incident photon to current conversion efficiency, specific surface area, flexible electrode, polypyrrole, Indium tin oxide
相關次數: 點閱:433下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    如今,由於世界各地具有不同的發展潛力,因此需要不同種類的可再生能源,例如地熱能、風能、波浪能、水力發電和光伏。太陽能是大自然的免費禮物,絕對是最容易獲得和最受歡迎的能源之一,其可以解決目前所面臨有限的化石燃料及其帶來公共衛生,環境污染等問題。光伏利用太陽的能量並將其轉化為電能。 因此,染料敏化太陽能電池(DSSCs)的構造使從太陽中捕獲這種自由能成為可能。因此,我們選擇研究基於納米複合材料的光收集系統的改良和電荷分離,以將太陽能有效轉化為可再生能源的研究領域。進一步在這項研究中,研究了碳點(C-dot)對基於氧化鎳納米顆粒(NiO NPs)的DSSCs性能的影響及與N719染料共吸附在p型半導體上的碳點可協同提高太陽能電池的功率轉換效率。
    碳點是主要的敏化劑, N719緊密吸附在碳點上,NiO充當正電子轉移的促進劑和電子-空穴複合的抑制劑。將方形(平均大小:11.4 x 16.5 nm)的NiO NP與由檸檬酸(CA)和乙二胺(EDA)合成的碳點混合。然後,使用由碳點與NiO NP的複合物(NiO @ 碳點)組成的光電陰極來測量DSSC的光伏性能。以1.5:1的EDA:CA摩爾比共吸附碳點含量為12.5 wt%的N719敏化劑進行吸附而製成的DSSC達到9.85%(在50m W / cm2的光下為430 nm的光源)功率轉換效率(PCE)。該PCE值遠大於對於分別不含碳點或N719而製備的NiO DSSC獲得的PCE值(2.44或0.152%),結果顯示通過碳點和N719的共同吸附的協同作用。基於NiO@碳點的DSSC的協同增效PCE是由於大量吸附在復合材料上的敏化劑具有較大的比表面積,以及NiO@碳點的工作電極中電荷轉移更快。另外,由於能量轉移,結合在NiO NP上的碳點縮短NiO NP的帶隙,並導致電極中更快的電荷分離。最重要的事實是碳點是主要的敏化劑,N719緊密吸附在碳點上,NiO充當正電子轉移的促進劑和電子-空穴複合的抑制劑。這些結果表明,碳點是DSSC中NiO NP的顯著增強劑,而NiO @碳點是DSSC中有希望的光伏電極材料。
    在研究第二部分中,在(2,2,6,6-四甲基哌啶-1-基)氧基或(2,2,6,6-四甲基哌啶-1-基)氧羰基(TEMPO)-氧化的存在下纖維素納米纖維(TOCNF),氫氧化鎳(Ni(OH)2)是透過水熱合成法得到之。其成功地合成具有Ni(OH)2(CNF/Ni(OH)2)的纖維素納米纖維(CNF)和具有氧化銦錫(CNFmod/ITO NP)(光電陰極)的改良CNF作為工作電極(WE)基板。帶有吡咯(CNF @ PPY)的CNF(光陽極)由CNF和吡咯(Py)複合材料製成導電聚合物作為對電極(CE)。這兩種電極都是用於DSSC的新型柔性電極。用於WE的製造基板已用於裝載NiO NP和NiO@C-dots,它們有望取代DSSC系統中的ITO/PET或Pt/電極玻璃。我們優化了裝載在CNF/Ni(OH)2基底上的NiO NP的量(150 mg)。CNF/Ni(OH)2和CNFmod/ITO NP導電聚合物對DSSC顯示出了令人鼓舞的結果。與ITO/PET和ITO/玻璃基基材相比,CNF/Ni(OH)2和CNFmod/ITO NP的結果分別為1.25%和1.45%。因此,在進行其他修飾後,結果已顯示在DSSC系統中成功取代ITO/PET或Pt/玻璃電極。


    Nowadays, since different parts of the world have different potentials, there is a need for different kinds of renewable energy sources such as geothermal, wind power, wave power, hydropower energy and photovoltaics (solar cells). Solar energy is a free gift of nature and is definitely one of the most accessible sources of energy that can be addressed a potential solution to the environmental issues resulting from the unsustainable use of fossil fuels. So that it is the most popular energy resource for that, it can be used in any of our everyday life. Photovoltaics use the energy of the sun and converts it into electricity. Therefore, the construction of dye-sensitized solar cells (DSSCs) made it possible to capture this free energy from the sun. In this thesis, the DSSC PCE and its materials applicability have studied. The improvement of light-harvesting systems and charge separation based on nanocomposites for efficient conversion of solar energy to renewable energy is an evolving area of study. Particularly, the effect of carbon dots (C-dots) on the performance of nickel oxide nanoparticles (NiO NPs) based DSSCs was explored in this work. Carbon dots co-adsorbing with N719 dye on p-type semiconductor synergetically enhance the power conversion efficiency of solar cells. Carbon dots are the main sensitizer, and N719 tightly adsorbed on carbon dots and NiO behaves as an accelerator of a positive electron transfer and a restrainer of the electron-hole recombination. The NiO NPs with a rectangular shape (average size: 11.4 x 16.5 nm) were mixed with C-dots, which were synthesized from citric acid (CA) and ethylenediamine (EDA). A photocathode consisting of a composite of C-dots with NiO NPs (NiO@C-dots) was then used to measure the photovoltaic performance of a DSSC. A DSSC fabricated via the adsorption of N719 sensitizer co-adsorbing with a C-dot content of 12.5 wt % at a 1.5:1 EDA: CA molar ratio was achieved a 9.85 % (430 nm of a light source at 50m W/cm2 light of intensity) of power conversion efficiency (PCE). This PCE value was far larger than the PCE value (2.44 or 0.152 %) obtained for a NiO DSSC prepared without the addition of C-dots or N719, respectively, indicating the synergetic effect by the co-adsorption of C-dots and N719. This synergetically higher PCE of the NiO@C-dots-based DSSC was due to the larger amount of sensitizer adsorbed onto the composites with a larger specific surface area and the faster charge transfer in the NiO@C-dots working electrode. In addition, the C-dots bound onto the NiO NPs shorten the bandgap of the NiO NPs due to energy transfer and give rise to faster charge separation in the electrode. The most important fact is that C-dots are the main sensitizer and that N719 tightly adsorbed on C-dots, and NiO behaves as an accelerator of a positive electron transfer and a restrainer of the electron-hole recombination. These results reveal that C-dots are a remarkable enhancer for NiO NPs in DSSCs, and that NiO@C-dots are the promising photovoltaic-electrode materials for DSSCs.
    In the second part of this thesis, in the presence of (2,2,6,6-Tetramethylpiperidin-1-yl) oxyl or (2,2,6,6-tetramethylpiperidin-1-yl) oxidanyl (TEMPO)-oxidized cellulose nanofibers (TOCNF), nickel hydroxide (Ni(OH)2 has prepared hydrothermally. The cellulose nanofiber (CNF) with Ni(OH)2 (CNF/Ni(OH)2) & modified CNF with Indium Tin Oxide (CNFmod/ITO NP) (photocathode) were successfully synthesized as the working electrode (WE) substrates. CNF with polpyrrole (CNF@PPY) (photo-anode) Conductive polymer has prepared as the counter electrode (CE) from the CNF and pyrrole(Py) composite. Both of these electrodes introduced as the new type of flexible electrode for the dye-sensitized solar cells (DSSC). The fabricated substrate for WE has used for loading NiO NP and NiO@C-dots, which has expected to replace ITO/PET or Pt/glass of electrode in the DSSC system. The amount of NiO NP loaded on the CNF/Ni(OH)2 substrate was optimized (150 mg). The CNF/Ni(OH)2 and CNFmod/ITO NP conductive polymer has shown a promising results for DSSC. The obtained results 1.25 % and 1.45 % for the CNF/Ni(OH)2 and CNFmod/ITO NP respectively, were remarkable/competitive when compared with ITO/PET and ITO/glass based substrate. Thus, a promising results have been shown to replace instead of ITO/PET or Pt/glass electrode in the DSSC system, after additional modifications.

    Table of contents 摘 要 i Abstract v Acknowledgment viii Dedication ix Table of contents x List of figures xiv List of Acronym xx Chapter 1: Introduction 1 1.1. Background 1 1.2. Nano-materials in different field of studies. 2 1.3. Photovoltaic cells 3 1.4. Dye-Sensitized Solar Cells 4 1.4.1. Components and materials applied to DSSC 5 1.4.1.1. Sensitizer (N719 or cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II) bis(tetrabutylammonium)) 5 1.4.1.2. Redox couples Electrolyte 7 1.4.1.3. Counter electrode: Platinum 8 1.4.1.4. Working electrode 8 Chapter 2: Review of Literature 11 2.1. Types of photovoltaic cells 11 2.1.1. Crystalline solar cells 11 2.1.2. Thin-film solar cells 11 2.1.3. Quantum dot solar cells 12 2.1.4. Perovskite solar cells 12 2.1.5. Hybrid Solar Cell 13 2.1.6. General overview of dye-sensitized solar cells 14 2.1.6.1. Current-voltage Characteristics 15 2.1.6.2. Nickel oxide semiconductor characteristics 16 2.1.7. Nanostructured metal oxide of DSSC 17 2.1.8. History of Carbon Nanomaterials 19 2.1.9. Polyethylene terephthalate (PET) Flexible electrode 21 2.1.10. Cellulose and its composites 21 2.1.11. Research Motivation 22 Chapter 3: Enhanced Photosensitization by Carbon Dots Co-Adsorbing with Dye on p-Type Semiconductor (Nickel Oxide) Solar Cells. 25 3.1. Introduction 25 3.2. Experimental 27 3.2.1. Reagents 27 3.2.2. Synthesis of composites of C-dots with NiO NPs (NiO@C-dots) 27 3.2.3. Characterization 29 3.2.4. Measurements of photocurrent (I-V) and electrochemical impedance spectra and incident monochromatic photon-to-current conversion efficiency. 30 3.2.5. Measurements of adsorption amount of dyes 32 3.3. Results and discussion 32 3.3.1. Characterization of materials 32 3.4. DSSC performance 38 3.5. Effect of carbon dots 42 3.6. Conclusions 58 Chapter 4: A New Design of the Flexible Substrate as a Cathode electrode Semiconductor for Dye-Sensitized Solar Cells Based on Cellulose Nano-fiber Composites. 60 4.1. Introduction 60 4.1.1. Motivation 61 4.2. Experimental 62 4.2.1. Reagent 62 4.2.2. Synthesis of TEMPO-Oxidized Cellulose Nanofiber (TOCNF) 63 4.2.3. Synthesis of nickel oxide nanowires (NiONW) 64 4.2.4. Synthesis of Composite composed of TOCNF and Polypyrrole (PPy) (TOCNF@PPy film) 65 4.2.5. Synthesis of Indium tin oxide nanoparticles (ITO NPs) 65 3.2.6. Cellulose nanofiber film surface treated using Octadecylamine (ODA) 66 4.2.7. Characterization measurements 67 4.2.8. Eelectrochemical measurement 68 4.2.8.1. Preparation of TOCNF/Ni(OH)2, TOCNF/Ni(OH) 2@NiONP, TOCNF/Ni(OH) 2/NiO@C-dots) and TOCNF/Ni(OH) 2/NiO@C-dots/NiONW composite film. 68 4.2.8.2. Measurements of electrochemical impedance spectra of TOCNF and TOCNF@PPY 69 4.2.8.3. Assembling the electrode for Dye-sensitized Solar Cells (DSSCs) and its measurement 70 4.3. Result and discussion 70 4.3.1. Characterization of materials 70 4.3.2. Photo-electrochemical performance measurement 75 4.3.3. Current-Voltage measurement performance of DSSC. 79 4.3.4. Impact of NiONP@Cdots deposition on TOCNF/Ni(OH)2 substrate electrode for photo-electrochemical properties. 81 4.3.5. The performance of NiONP@Cdots based on ITO/PET substrate for photo-electrochemical properties. 90 Chapter 5: General Conclusions and future prospective 99 REFERENCE 102 Appendix 125 List of figures Figure 1: Application of nanostructured and composite materials in energy 3 Figure 2. Photovoltaic effect. 4 Figure 3.The different binding modes for the anchoring group on the NiO surface. 7 Figure 4.Schematic working Principle of DSSC(P-type) 9 Figure 5. Thin-film solar cells Structure 12 Figure 6. Donor and acceptor energy diagram. 14 Figure 7. I-V characteristics of a DSC device 16 Figure 8. Carbon dots potential applications and their properties in different areas. 20 Figure 9. Eenergy level diagram showing the favorable influence of Green-C-dots as a sensitizer in the photo-anode. Error! Bookmark not defined. Figure 10. Preparation of nickel oxide nanoparticles (NiO NPs) 28 Figure 11. Preparation of carbon dots (C-dots) Error! Bookmark not defined. Figure 12. Preparation of composites of C-dots with NiO NPs (NiO@C-dots) 29 Figure 13. (Top) TEM images and (bottom) size distribution histograms of NiO NPs and NiO@C-dots. 33 Figure 14. EDS spectra of C-dots@NiO at different (1:1, 1.5:1 and 2:1 of EDA/CA mole ratio). Error! Bookmark not defined. Figure 15. FT-IR absorption spectra of NiO NPs, C-dots and NiO@C-dots and (B) XRD spectra of NiO NPs and NiO@C-dots. 35 Figure 16. XPS survey spectra and XPS fine and deconvoluted spectra of C1s, N1s, O1s, Ni2p3/2 and Ni2p1/2 of NiO NPs and NiO@C-dots. 37 Figure 17. I-V curves and calculated electrochemical parameters of NiO@C-dots DSSCs at 1:1 EDA:CA mole ratio at different C-dot contents and sensitizers. Numerals in I-V curves indicate C-dot contents in wt% unit. Error! Bookmark not defined. Figure 18. I-V curves and calculated electrochemical parameters of NiO@C-dots DSSCs at different EDA/CA mole ratios at 12.5 wt% C-dot content. Numerals in I-V curves indicate the EDA/CA mole ratio. 41 Figure 19 (A) Nyquist Plots and (B) Bode phase plots of EIS of NiO@C-dots (a) at different C-dots contents at 1:1 EDA: CA mole ratio and (b) at different EDA/CA mole ratios at 12.5 wt% C-dots content. Numerals indicate (a) C-dots content in wt% and (b) EDA/CA mole ratio. (C) Plots of ohmic series resistance, charge transfer resistance and electron lifetime as a function of EDA/CA mole ratio. 42 Figure 20. (A) Tauc’s plots of UV-visible absorption spectra of NiO@C-dots and (B) plots of bandgap (a) at different C-dot contents (at 1:1 EDA: CA mole ratio) and (b) at different EDA/CA mole ratios (at 12.5 wt% C-dot content). Numerals in Tauc’s plots indicate (a) C-dot content in wt% and (b) EDA/CA mole ratio. 45 Figure 21. UV-Vis absorption and PL spectra of aqueous dispersions of NiO, NiO@C-dots and C-dots at concentrations of 0.2 mM. (Red) excitation spectrum and (black) emission spectrum. 48 Figure 22. (A) N2 adsorption-desorption isotherms of NiO@C-dots and (B) plots of parameters from isotherms (a) at different C-dots contents (at 1:1 EDA/CA mole ratio) and (b) at different EDA/CA mole ratios (at 12.5 wt% C-dots content). Numerals in isotherms indicate (a) C-dots content and (b) EDA/CA mole ratio. 49 Figure 23. Adsorption amounts of N719 on NiO@C-dots (a) at different C-dots contents (at 1:1 EDA:CA mole ratio) and (b) at different EDA/CA mole ratios (at 12.5 wt% C-dots content). 50 Figure 24. (A) IPCE plots, (B) UV-visible absorption spectra of ethanol solutions and (C) Infrared absorption spectra of (a) NiO@C-dots/N719 (at 12.5 wt% C-dots content and 1.5:1 EDA:CA molar ratio) and (b) NiO/N719 DSSCs and (c) N719. 53 Figure 25. A schematic illustration of a NiO/C-dots/N719 solar cell. 56 Figure 26. Preparation of TOCNF film 64 Figure 27. Preparation of nickel Oxide nanowire (NiONW) 64 Figure 28. Preparation of TOCNF@PPy film for counter electrode. 65 Figure 29.Contact angle of modified CNF at d/t weight of Octadecylamine (ODA) (A) 2.2 mg (B)3.3 mg and (C) 4.4 mg. 67 Figure 30.NiONP, NiONP@C-dots and NiONP@C-dots/NiONW deposited on the CNF/Ni(OH)2 substrate 69 Figure 31. A) The TEM image of NiO NW at different concentrations of Na2CO3. B) FE-SEM morphology of NiO NW (at 2.94 M Na2CO3).Where L- length and D-diameter 71 Figure 32. FT-IR of TOCNF, Ni(OH)2, TOCNF/Ni(OH)2 @NiONP, and TOCNF/Ni(OH)2 /NiONP@C-dots (B) Indium tin oxide nanoparticles (ITO NPs). 72 Figure 33. XRD of a) NiO NW b) CNF-NiONW/NiONP@C-dots c) CNF-NiONW@NiONP and d) TOCNF 75 Figure 34.The transient photocurrent responses of (A) CNF@Ni(OH)2 film at the different mass of nickel chloride (NiCl2, a s the precursor) (B). CNFmod/ITO NP at different weight of ODA a) 2.2 mg b) 3.3 mg c) 4.4 mg. (C) The comparison different electrodes a) NiO@C-dots/ ITO glass b) NiONP/ITO glass c) ITO/glass d) CNF/Ni(OH)2. (D) photo-current response of (a) NiO@C-dots/ITO/PET (b) NiO/ITO/PET (c) ITO/PET. 78 Figure 35. (A) Nyquist Plots of EIS of Ni(OH)2 (green on ITO glass), NiONW (red on ITO glass), CNF@Ni(OH)2 film (blue) CNF@Ni(OH)2/NiO NP@C-dots film (black). (B) CV measurement of TOCNF/PPY at different micro litter (μL) of pyrrole (PY). 79 Figure 36. The I-V performance of DSSC NiO NP based on the TOCNF/Ni(OH)2 substrate at the different mass of NiO NP deposited on the substrate as a photocathode. 81 Figure 37. I-V performance of NiO NP@C-dots in DSSC based on the TOCNF/Ni(OH)2 substrate at 150 mg NiO NP mass and at various weights of C-dots as a working electrode deposited on the substrate. 83 Figure 38. I-V measurement of substrate, at different wt% of ITO deposited on CNF/Ni(OH)2 substrate. 85 Figure 39.(A) Transmission of dried CNF film, untreated and treated (B) Tauc’s plots of UV-visible absorption spectra of ITO NP. 87 Figure 40. I-V curve DSSC performance of NiO NP@C-dots/NiO NW based on the TOCNF/Ni(OH)2 substrate as the photocathode at different Wt% of NiO NW added to NiONP@C-dots. 88 Figure 41. I-V curve DSSC performance of (a) CNFmod/ITO NP substrate (b) CNFmod/ITO NP/NiO NP and (c) CNFmod/ITO NP/NiO NP@C-dots. 90 Figure 42.The I-V curves of NiO DSSC and its electrochemical parameters at different content of C-dot and at 1:1 EDA / CA molar ratios. 91 Figure 43.The I-V curves of NiO@C-dots DSSC and its electrochemical parameters at different content of C-dot and at 1:1 EDA / CA molar ratios. 93 Figure 44.The I-V curves of NiO@C-dots DSSC and its electrochemical parameters at 12.5 wt% C-dot content in various EDA / CA molar ratios. 95 List of Tables Table 1. Binding energies (BE), their area intensities and their assignments from XPS of NiO NPs and NiO@C-dots. 38 Table 2. Electrochemical parameters calculated from I-V curves of NiO@C-dots DSSCs in Figure 17 (A) at different C-dot contents at 1:1 EDA:CA mole ratio and (B) at different EDA:CA mole ratios at 12.5 wt% C-dot content. Experiments were performed under 430 nm blue LED light excitation with 50 mWcm-2. 40 Table 3. Parameters obtained from EIS, Tauc’s plots, N2 adsorption-desorption isotherms and N719 adsorption of NiO@C-dots (A) at different C-dot contents (at 1:1 EDA:CA mole ratio) and (B) at different EDA:CA mole ratios (at 12.5 wt% C-dot content). 43 Table 4. PL bands of NiO, C-dots@NiO and C-dots 46 Table 5. Comparison of semiconductor solar cells PCE co-adsorbed by quantum dots and N719. 57 Table 6. FT-IR absorption bands of TOCNF, Ni(OH)2, TOCNF/Ni(OH)2 @NiONP, and TOCNF Ni(OH)2 /NiONP@C-dots. 73 Table 7.The DSSC performance of NiO NP based on the TOCNF/Ni(OH)2 substrate as the photocathode 81 Table 8. The DSSC performance of NiO NP@C-dots based on the TOCNF/Ni(OH)2 substrate as the photocathode. 83 Table 9. DSSC parameters values of CNF/Ni(OH)2/ITO substrates at different wt% of ITO Np deposited. 86 Table 10.The DSSC performance of NiO NP@C-dots/NiO NW based on the TOCNF/Ni(OH)2 substrate as the photocathode at different Wt% of NiO NW added to NiONP@C-dots. 89 Table 11.The calculated DSSC performance of different parameters based on the CNF mod/ ITO NP substrate as the photocathode 89 Table 12.NiO NPs Photovoltaic Performance in DSSCs Parameters based on the ITO/PET Substrates treated at different temperature. 92 Table 13.NiO@C-dots Electrochemical Photovoltaic Performance in DSSCs Parameters based on the ITO/PET Substrates determined from I-V curves in Figure 43 (A) for different C-dot content at 1:1 EDA: CA molar ratio and Figure 44 (B) for different EDA: CA molar ratios at 12.5 wt% C-dot content. 94 Table 14. Comparison of PCE performance DSSC Flexible electrode in different materials based on the non-commercialized CNF/ Ni(OH)2 substrate and commercialized substrate. 97

    (1) Perera, F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. International journal of environmental research and public health 2018, 15 (1), 16.
    (2) Shaikh, M. R. S.; Waghmare, S. B.; Labade, S. S.; Fuke, P. V.; Tekale, A. A Review Paper on Electricity Generation from Solar Energy. Int. J. Res. Appl. Sci. Eng. Technol 2017, 1884, 9.
    (3) Qin, Y.; Peng, Q. Ruthenium sensitizers and their applications in dye-sensitized solar cells. International Journal of Photoenergy 2012, 21, 291579
    (4) Burke, M. J.; Stephens, J. C. Political power and renewable energy futures: A critical review. Energy Research & Social Science 2018, 35, 78-93.
    (5) Balasingam, S. K.; Lee, M.; Kang, M. G.; Jun, Y. Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum. Chemical Communications 2013, 49 (15), 1471-1487.
    (6) Criqui, P.; Kouvaritakis, N. World energy projections to 2030. International journal of global energy issues 2000, 14 (1-4), 116-136.
    (7) Szuromi, P.; Jasny, B.; Clery, D.; Austin, J.; Hanson, B., Energy for the long haul. American Association for the Advancement of Science, 2007, 781,5813
    (8) Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31-49.
    (9) Goswami, D. Y.; Kreith, F.; Kreider, J. F. Principles of solar engineering, CRC Press: 2000, ISBN 1-56032-714-6
    (10) Zhang, Q.; Zhou, Z.; Dylla, M.; Agne, M. T.; Pei, Y.; Wang, L.; Tang, Y.; Liao, J.; Li, J.; Bai, S. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano energy 2017, 41, 501-510.
    (11) Li, J. Application of solar energy. 2010, 28(6), 824-842
    (12) Olawoyin, R. Nanotechnology: The future of fire safety. Safety science 2018, 110, 214-221.
    (13) Ibrahim, I. D.; Sadiku, E. R.; Jamiru, T.; Hamam, Y.; Alayli, Y.; Eze, A. A. Prospects of Nanostructured Composite Materials for Energy Harvesting and Storage. Journal of King Saud University-Science 2019, 32(1), 758-764
    (14) Wang, Z.; Pan, X.; He, Y.; Hu, Y.; Gu, H.; Wang, Y. Piezoelectric nanowires in energy harvesting applications. Advances in Materials Science and Engineering 2015, 2015.
    (15) Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R. P.; ALOthman, Z. A.; Mola, G. T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. Journal of King Saud University-Science 2017, 32(2), 257-269
    (16) Ibrahim, I. D.; Sadiku, E. R.; Jamiru, T.; Hamam, Y.; Alayli, Y.; Eze, A. A. Prospects of nanostructured composite materials for energy harvesting and storage. Journal of King Saud University-Science 2020, 32 (1), 758-764.
    (17) Sagadevan, S. Recent trends on nanostructures based solar energy applications: a review. Rev. Adv. Mater. Sci 2013, 34, 44-61.
    (18) Roy, S.; Sharmin, R. S.; Ferdous, T. Performance analysis of mono-crystalline and poly-crystalline silicon solar cells under different climatic conditions: a comparative study. BRAC University, 2014.
    (19) Boyle, G. Renewable energy: power for a sustainable future (Vol. 2). New York: Oxford 1996, 119-126.
    (20) Jiao, Y.; Zhang, F.; Meng, S.; Kosyachenko, L. Dye sensitized solar cells Principles and new design. Solar Cells-Dye-Sensitized Devices 2011, 1 (1).
    (21) Iwata, S.; Shibakawa, S.-i.; Imawaka, N.; Yoshino, K. Stability of the current characteristics of dye-sensitized solar cells in the second quadrant of the current–voltage characteristics. Energy Reports 2018, 4, 8-12.
    (22) Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today 2015, 18 (3), 155-162.
    (23) Gong, J.; Liang, J.; Sumathy, K. Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews 2012, 16 (8), 5848-5860.
    (24) Gupta, M.; Makda, S.; Senthil, R. In The latest trends in synthesis of dye-sensitized solar cells, IOP Conference Series: Materials Science and Engineering, IOP Publishing: 2018; p 012176.
    (25) Phattalung, S. N.; Limpijumnong, S.; Yu, J. Passivated co-doping approach to bandgap narrowing of titanium dioxide with enhanced photocatalytic activity. Applied Catalysis B: Environmental 2017, 200, 1-9.
    (26) Momeni, M.; Ghayeb, Y.; Gheibee, S. Silver nanoparticles decorated titanium dioxide-tungsten trioxide nanotube films with enhanced visible light photo catalytic activity. Ceramics International 2017, 43 (1), 564-570.
    (27) Lei, C.; Pi, M.; Jiang, C.; Cheng, B.; Yu, J. Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. Journal of colloid and interface science 2017, 490, 242-251.
    (28) Bush, K. A.; Palmstrom, A. F.; Zhengshan, J. Y.; Boccard, M.; Cheacharoen, R.; Mailoa, J. P.; McMeekin, D. P.; Hoye, R. L.; Bailie, C. D.; Leijtens, T. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy 2017, 2 (4), 17009.
    (29) Abulikemu, M.; Neophytou, M.; Barbé, J. M.; Tietze, M. L.; El Labban, A.; Anjum, D. H.; Amassian, A.; McCulloch, I.; Del Gobbo, S. Microwave-synthesized tin oxide nanocrystals for low-temperature solution-processed planar junction organo-halide perovskite solar cells. Journal of Materials Chemistry A 2017, 5 (17), 7759-7763.
    (30) Kang, J. S.; Kim, J.; Kim, J. S.; Nam, K.; Jo, H.; Son, Y. J.; Kang, J.; Jeong, J.; Choe, H.; Kwon, T.-H. Electrochemically Synthesized Mesoscopic Nickel Oxide Films as Photocathodes for Dye-Sensitized Solar Cells. ACS Applied Energy Materials 2018, 1 (8), 4178-4185.
    (31) Bao, Y.; Lim, T.-T.; Goei, R.; Zhong, Z.; Wang, R.; Hu, X. One-step construction of heterostructured metal-organics@ Bi2O3 with improved photoinduced charge transfer and enhanced activity in photocatalytic degradation of sulfamethoxazole under solar light irradiation. Chemosphere 2018, 205, 396-403.
    (32) Das, T. K.; Ilaiyaraja, P.; Sudakar, C. Template assisted nanoporous TiO 2 nanoparticles: The effect of oxygen vacancy defects on photovoltaic performance of DSSC and QDSSC. Solar Energy 2018, 159, 920-929.
    (33) Shetti, N. P.; Malode, S. J.; Malladi, R. S.; Nargund, S. L.; Shukla, S. S.; Aminabhavi, T. M. Electrochemical detection and degradation of textile dye Congo red at graphene oxide modified electrode. Microchemical Journal 2019, 146, 387-392.
    (34) Galoppini, E. Linkers for anchoring sensitizers to semiconductor nanoparticles. Coordination Chemistry Reviews 2004, 248 (13-14), 1283-1297.
    (35) Aghazada, S.; Nazeeruddin, M. Ruthenium complexes as sensitizers in dye-sensitized solar cells. Inorganics 2018, 6 (2), 52.
    (36) Jo, Y.; Jung, C.-l.; Lim, J.; Kim, B. H.; Han, C.-H.; Kim, J.; Kim, S.; Kim, D.; Jun, Y. A novel dye coating method for N719 dye-sensitized solar cells. Electrochimica Acta 2012, 66, 121-125.
    (37) WUJ, L. Electrolytesindye 一 sensitizedsolarcels. Chemical Review 2015, 115 (5), 2136-2173.
    (38) Ruess, R.; Nguyen, T. H. Q.; Schlettwein, D. Metal Complexes as Redox Shuttles in Dye-Sensitized Solar Cells Based on Electrodeposited ZnO: Tuning Recombination Kinetics and Conduction Band Energy. Journal of The Electrochemical Society 2018, 165 (4), H3115-H3121.
    (39) Saygili, Y.; Söderberg, M.; Pellet, N.; Giordano, F.; Cao, Y.; Muñoz-García, A. B.; Zakeeruddin, S. M.; Vlachopoulos, N.; Pavone, M.; Boschloo, G. Copper bipyridyl redox mediators for dye-sensitized solar cells with high photovoltage. Journal of the American Chemical Society 2016, 138 (45), 15087-15096.
    (40) Tankoplastne, E. I. O. N. Z.; Son, U.; Celice, N. A Carbon-nanotubes counter electrode for flexible dye-sensitized solar cells. Materiali in tehnologije 2017, 51 (4), 623-629.
    (41) Dini, D.; Halpin, Y.; Vos, J. G.; Gibson, E. A. The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitized solar cells. Coordination Chemistry Reviews 2015, 304, 179-201.
    (42) Patel, D.; Deshmukh, S. P. Polymer in sustainable energy. Journal of Minerals and Materials Characterization and Engineering 2012, 11 (07), 661.
    (43) Kamat, P. V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. The Journal of Physical Chemistry C 2008, 112 (48), 18737-18753.
    (44) von Roedern, B.; Ullal, H. S.; Zweibel, K. Polycrystalline Thin Film Photovoltaics: From the Laboratory to Solar Fields; National Renewable Energy Lab.(NREL), Golden, CO (United States), 2006. VA 22161
    (45) Sopian, K.; Cheow, S.; Zaidi, S. H. In An overview of crystalline silicon solar cell technology: Past, present, and future, AIP Conference Proceedings, AIP Publishing: 2017; 020004.
    (46) Ribeyron, P.-J. Crystalline silicon solar cells: Better than ever. Nature Energy 2017, 2 (5), 17067.
    (47) Vaisman, M. A. Wide-Bandgap III-V Materials for Multijunction Solar Cell Integration onto Silicon. Yale University, 2018, 10957343.
    (48) Schmidtke, J. Commercial status of thin-film photovoltaic devices and materials. Optics express 2010, 18 (103), A477-A486.
    (49) Sharma, D.; Jha, R.; Kumar, S. Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Solar Energy Materials and Solar Cells 2016, 155, 294-322.
    (50) Sogabe, T.; Shen, Q.; Yamaguchi, K. Recent progress on quantum dot solar cells: a review. Journal of Photonics for Energy 2016, 6 (4), 040901.
    (51) Marinova, N.; Valero, S.; Delgado, J. L. Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of colloid and interface science 2017, 488, 373-389.
    (52) Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nature photonics 2014, 8 (7), 506.
    (53) Matteocci, F.; Cinà, L.; Lamanna, E.; Cacovich, S.; Divitini, G.; Midgley, P. A.; Ducati, C.; Di Carlo, A. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy 2016, 30, 162-172.
    (54) Ke, J. C.-R.; Walton, A. S.; Lewis, D. J.; Tedstone, A.; O'Brien, P.; Thomas, A. G.; Flavell, W. R. In situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure. Chemical Communications 2017, 53 (37), 5231-5234.
    (55) Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy & Environmental Science 2016, 9 (5), 1655-1660.
    (56) Huynh, W.; Dittmer, J.; Alivisatos, A. P. elective Inhibition of a Regulatory Subunit of Protein Phosphatase 1 Restores Proteostasis, 2002,332(6025), 91-94
    (57) Ginger, D.; Greenham, N. Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals. Physical Review B 1999, 59 (16), 10622.
    (58) O'regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature 1991, 353 (6346), 737.
    (59) Parkinson, B. On the efficiency and stability of photoelectrochemical devices. Accounts of Chemical Research 1984, 17 (12), 431-437.
    (60) Inderwildi, O.; King, D. Energy, transport, & the environment: addressing the sustainable mobility paradigm, Springer, 2012, ISBN 978-1-4471-2716-1
    (61) Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature chemistry 2014, 6 (3), 242.
    (62) McEvoy, A.; Markvart, T. Solar cells: materials, manufacture and operation, Academic Press, 2012. ISBN 978-0-12-386964-7
    (63) Lin, Z.; Yang, Y.; Zhang, A. Polymer-engineered nanostructures for advanced energy applications, Springer, 2017. doi:10.1007/978-3-319-57003-7
    (64) Etefa, H. F.; Imae, T.; Yanagida, M. Enhanced Photosensitization by Carbon Dots Co-adsorbing with Dye on p-Type Semiconductor (Nickel Oxide) Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (16), 18596-18608.
    (65) Yu, Z. Liquid Redox Electrolytes for Dye-Sensitized Solar Cells. KTH Royal Institute of Technology, 2012, ISSN 1654-1081 ; 2012:2
    (66) Wang, H.-T.; Mishra, D.; Chen, P.; Ting, J.-M. p-Type dye-sensitized solar cell based on nickel oxide photocathode with or without Li doping. Journal of Alloys and Compounds 2014, 584, 142-147.
    (67) Hashem, M.; Saion, E.; Al-Hada, N. M.; Kamari, H. M.; Shaari, A. H.; Talib, Z. A.; Paiman, S. B.; Kamarudeen, M. A. Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment. Results in Physics 2016, 6, 1024-1030.
    (68) Khalaji, A. D. Preparation and characterization of NiO nanoparticles via solid-state thermal decomposition of nickel (II) Schiff base complexes [Ni (salophen)] and [Ni (Me-salophen)]. Journal of Cluster Science 2013, 24 (1), 209-215.
    (69) Odobel, F.; Le Pleux, L.; Pellegrin, Y.; Blart, E. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Accounts of chemical research 2010, 43 (8), 1063-1071.
    (70) Park, N.-G. Dye-sensitized metal oxide nanostructures and their photoelectrochemical properties. Journal of the Korean Electrochemical Society 2010, 13 (1), 10-18.
    (71) Shaikh, J. S.; Shaikh, N. S.; Mali, S. S.; Patil, J. V.; Pawar, K. K.; Kanjanaboos, P.; Hong, C. K.; Kim, J.; Patil, P. S. Nanoarchitectures in dye-sensitized solar cells: metal oxides, oxide perovskites and carbon-based materials. Nanoscale 2018, 10 (11), 4987-5034.
    (72) Cavallo, C.; Di Pascasio, F.; Latini, A.; Bonomo, M.; Dini, D. Nanostructured semiconductor materials for dye-sensitized solar cells. Journal of Nanomaterials 2017, 2017(31),5323164
    (73) Keis, K.; Magnusson, E.; Lindström, H.; Lindquist, S.-E.; Hagfeldt, A. A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Solar energy materials and solar cells 2002, 73 (1), 51-58.
    (74) Green, A. N.; Palomares, E.; Haque, S. A.; Kroon, J. M.; Durrant, J. R. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. The Journal of Physical Chemistry B 2005, 109 (25), 12525-12533.
    (75) Qin, P.; Zhu, H.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. Design of an organic chromophore for p-type dye-sensitized solar cells. Journal of the American Chemical Society 2008, 130 (27), 8570-8571.
    (76) Ji, Y. Synthesis and Applications of Carbon Dots. 2018, Ph.D.Thesis
    (77) Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano research 2015, 8 (2), 355-381.
    (78) Wang, Y.; Hu, A. Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C 2014, 2 (34), 6921-6939.
    (79) Yang, Y.; Ji, X.; Jing, M.; Hou, H.; Zhu, Y.; Fang, L.; Yang, X.; Chen, Q.; Banks, C. E. Carbon dots supported upon N-doped TiO 2 nanorods applied into sodium and lithium ion batteries. Journal of Materials Chemistry A 2015, 3 (10), 5648-5655.
    (80) Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angewandte Chemie International Edition 2013, 52 (14), 3953-3957.
    (81) Meiling, T. T. Development of a reliable and environmentally friendly synthesis for fluorescence carbon nanodots. University of Potsdam, 2017, URN urn:nbn:de:kobv:517-opus4-410160.
    (82) Gao, J.; Zhu, M.; Huang, H.; Liu, Y.; Kang, Z. Advances, challenges and promises of carbon dots. Inorganic Chemistry Frontiers 2017, 4 (12), 1963-1986.
    (83) Gao, N.; Huang, L.; Li, T.; Song, J.; Hu, H.; Liu, Y.; Ramakrishna, S. Application of carbon dots in dye‐sensitized solar cells: A review. Journal of Applied Polymer Science 2020, 137 (10), 48443.
    (84) Qin, Q.; Zhang, R. A novel conical structure of polyaniline nanotubes synthesized on ITO-PET conducting substrate by electrochemical method. Electrochimica Acta 2013, 89, 726-731.
    (85) Agarkar, S. A.; Dhas, V. V.; Muduli, S.; Ogale, S. B. Dye sensitized solar cell (DSSC) by a novel fully room temperature process: a solar paint for smart windows and flexible substrates. RSC advances 2012, 2 (31), 11645-11649.
    (86) Zardetto, V.; Di Giacomo, F.; Garcia‐Alonso, D.; Keuning, W.; Creatore, M.; Mazzuca, C.; Reale, A.; Di Carlo, A.; Brown, T. M. Fully Plastic Dye Solar Cell Devices by Low‐Temperature UV‐Irradiation of both the Mesoporous TiO2 Photo‐and Platinized Counter‐Electrodes. Advanced Energy Materials 2013, 3 (10), 1292-1298.
    (87) De Paoli, M.-A.; Nogueira, A.; Machado, D.; Longo, C. All-polymeric electrochromic and photoelectrochemical devices: new advances. Electrochimica acta 2001, 46 (26-27), 4243-4249.
    (88) Pichot, F.; Ferrere, S.; Pitts, R. J.; Gregg, B. A. Flexible solid‐state photoelectrochromic windows. Journal of the Electrochemical Society 1999, 146 (11), 4324.
    (89) Amin, M.; Abbas, N. S.; Hussain, M. A.; Edgar, K. J.; Tahir, M. N.; Tremel, W.; Sher, M. Cellulose ether derivatives: a new platform for prodrug formation of fluoroquinolone antibiotics. Cellulose 2015, 22 (3), 2011-2022.
    (90) Tian, H.; He, J. Cellulose as a scaffold for self-assembly: from basic research to real applications. Langmuir 2016, 32 (47), 12269-12282.
    (91) Khondoker, M. A. H.; Yang, S. Y.; Mun, S. C.; Kim, J. Flexible and conductive ITO electrode made on cellulose film by spin-coating. Synthetic Metals 2012, 162 (21-22), 1972-1976
    (92) Tobjork, D.; Osterbacka, R. Paper electronics. Adv Mater 2011, 23 (17), 1935-61
    (93) Lin, L.-Y.; Yeh, M.-H.; Lee, C.-P.; Chou, C.-Y.; Vittal, R.; Ho, K.-C. Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles. Electrochimica Acta 2012, 62, 341-347.
    (94) Zhang, L.; Konno, A. Development of flexible dye-sensitized solar cell based on predyed zinc oxide nanoparticle. Int J Electrochem Sci 2018, 13, 344-352.
    (95) Ranganathan, P.; Sasikumar, R.; Chen, S.-M.; Rwei, S.-P.; Sireesha, P. Enhanced photovoltaic performance of dye-sensitized solar cells based on nickel oxide supported on nitrogen-doped graphene nanocomposite as a photoanode. Journal of colloid and interface science 2017, 504, 570-578.
    (96) Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y. Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews 2017, 46 (19), 5975-6023.
    (97) Kashif, M. K.; Axelson, J. C.; Duffy, N. W.; Forsyth, C. M.; Chang, C. J.; Long, J. R.; Spiccia, L.; Bach, U. A new direction in dye-sensitized solar cells redox mediator development: in situ fine-tuning of the cobalt (ii)/(iii) redox potential through lewis base interactions. Journal of the American Chemical Society 2012, 134 (40), 16646-16653.
    (98) Yang, J.; Bark, C.; Kim, K.; Choi, H. Characteristics of the dye-sensitized solar cells using TiO2 nanotubes treated with TiCl4. Materials 2014, 7 (5), 3522-3532.
    (99) Ahmad, W.; Chu, L.; Al-Bahrani, M. R.; Ren, X.; Su, J.; Gao, Y. P-type NiO nanoparticles enhanced acetylene black as efficient counter electrode for dye-sensitized solar cells. Materials Research Bulletin 2015, 67, 185-190.
    (100) Hsu, C.-Y.; Chen, W.-T.; Chen, Y.-C.; Wei, H.-Y.; Yen, Y.-S.; Huang, K.-C.; Ho, K.-C.; Chu, C.-W.; Lin, J. T. Charge transporting enhancement of NiO photocathodes for p-type dye-sensitized solar cells. Electrochimica Acta 2012, 66, 210-215.
    (101) Chou, C.-S.; Lin, Y.-J.; Yang, R.-Y.; Liu, K.-H. Preparation of TiO2/NiO composite particles and their applications in dye-sensitized solar cells. Advanced Powder Technology 2011, 22 (1), 31-42.
    (102) Nada, A. A.; Selim, H.; Bechelany, M.; El-Sayed, M.; Hegazey, R.; Souaya, E. R.; Kotkata, M. A novel photoelectrode of NiO@ ZnO nanocomposite prepared by Pechini method coupled with PLD for efficiency enhancement in DSSCs. Materials Science-Poland 2018.36(2), 327-336
    (103) Wei, L.; Jiang, L.; Yuan, S.; Ren, X.; Zhao, Y.; Wang, Z.; Zhang, M.; Shi, L.; Li, D. Valence band edge shifts and charge-transfer dynamics in Li-doped NiO based p-type DSSCs. Electrochimica Acta 2016, 188, 309-316.
    (104) Zhang, J.; Yu, S.-H. Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today 2016, 19 (7), 382-393.
    (105) Song-Ling, Y.; HUANG, J.-J.; Lin, L.; Hui-Jun, F.; Yuan-Ming, S.; Yu-Dong, S.; Hong-Tao, L.; Zhen-Lin, X. Preparation of carbon dots and their application in food analysis as signal probe. Chinese Journal of Analytical Chemistry 2017, 45 (10), 1571-1581.
    (106) Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W. Carbon dots: surface engineering and applications. Journal of Materials Chemistry B 2016, 4 (35), 5772-5788.
    (107) Hsu, Y.-H.; Hsieh, H.-L.; Viswanathan, G.; Voon, S. H.; Kue, C. S.; Saw, W. S.; Yeong, C. H.; Azlan, C. A.; Imae, T.; Kiew, L. V. Multifunctional carbon-coated magnetic sensing graphene oxide-cyclodextrin nanohybrid for potential cancer theranosis. Journal of Nanoparticle Research 2017, 19 (11), 359.
    (108) Devadas, B.; Imae, T. Effect of carbon dots on conducting polymers for energy storage applications. ACS Sustainable Chemistry & Engineering 2017, 6 (1), 127-134.
    (109) Hu, Y.; Wang, P.; Bunker, C. E.; Teisl, L. R.; Reibold, M.; Yan, S.; Qian, H.; He, D.; Sun, Y.-P. Preparation and optical properties of magnetic carbon/iron oxide hybrid dots. RSC Advances 2017, 7 (65), 41304-41310.
    (110) Zhang, Q.; Zhang, G.; Sun, X.; Yin, K.; Li, H. Improving the power conversion efficiency of carbon quantum dot-sensitized solar cells by growing the dots on a TiO2 photoanode in situ. Nanomaterials 2017, 7 (6), 130.
    (111) Liu, N.; Qin, Y.; Han, M.; Li, H.; Sun, Y.; Zhao, S.; Huang, H.; Liu, Y.; Kang, Z. Investigation of Regeneration Kinetics of a Carbon-Dot-Sensitized Metal Oxide Semiconductor with Scanning Electrochemical Microscopy. ACS Applied Energy Materials 2018, 1 (4), 1483-1488.
    (112) Efa, M. T.; Imae, T. Effects of carbon dots on ZnO nanoparticle-based dye-sensitized solar cells. Electrochimica Acta 2019, 303, 204-210.
    (113) Semeniuk, M.; Yi, Z.; Poursorkhabi, V.; Tjong, J.; Jaffer, S.; Lu, Z.-H.; Sain, M. Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS nano 2019, 13, 6, 6224–6255
    (114) Varunkumar, K.; Hussain, R.; Hegde, G.; Ethiraj, A. S. Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: Structural, optical and morphological studies. Materials Science in Semiconductor Processing 2017, 66, 149-156.
    (115) Prasannan, A.; Imae, T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Industrial & Engineering Chemistry Research 2013, 52 (44), 15673-15678.
    (116) Shanaj, B.; John, X. Effect of calcination time on structural, optical and antimicrobial properties of nickel oxide nanoparticles. J. Theor. Comput. Sci 2016, 3 (2).
    (117) Mishra, S.; Yogi, P.; Saxena, S. K.; Jayabalan, J.; Behera, P.; Sagdeo, P.; Kumar, R. Significant field emission enhancement in ultrathin nano-thorn covered NiO nano-petals. Journal of Materials Chemistry C 2017, 5 (37), 9611-9618.
    (118) El-Kemary, M.; Nagy, N.; El-Mehasseb, I. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Materials Science in Semiconductor Processing 2013, 16 (6), 1747-1752.
    (119) Rakshit, S.; Ghosh, S.; Chall, S.; Mati, S. S.; Moulik, S.; Bhattacharya, S. C. Controlled synthesis of spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: A cost effective and eco friendly approach. RSC Advances 2013, 3 (42), 19348-19356.
    (120) Efa, M. T.; Imae, T. Hybridization of carbon-dots with ZnO nanoparticles of different sizes. Journal of the Taiwan Institute of Chemical Engineers 2018, 92, 112-117.
    (121) Liu, W.; Lu, C.; Wang, X.; Liang, K.; Tay, B. K. In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage. Journal of Materials Chemistry A 2015, 3 (2), 624-633.
    (122) Workie, Y. A.; Sabrina; Imae, T.; Krafft, M. P. Nitric Oxide Gas Delivery by Fluorinated Poly (Ethylene Glycol)@ Graphene Oxide Carrier toward Pharmacotherapeutics. ACS Biomaterials Science & Engineering 2019, 5 (6), 2926-2934.
    (123) Mishra, S.; Yogi, P.; Sagdeo, P.; Kumar, R. Mesoporous nickel oxide (NiO) nanopetals for ultrasensitive glucose sensing. Nanoscale research letters 2018, 13 (1), 16.
    (124) Kim, J.-H.; Kim, T. Y.; Park, K. H.; Lee, J.-W. Electron lifetimes in hierarchically structured photoelectrodes biotemplated from butterfly wings for dye-sensitized solar cells. Int. J. Electrochem. Sci 2015, 10, 5513-5520.
    (125) Ghobadi, N. Band gap determination using absorption spectrum fitting procedure. International Nano Letters 2013, 3 (1), 2.
    (126) Yu, J.; Liu, C.; Yuan, K.; Lu, Z.; Cheng, Y.; Li, L.; Zhang, X.; Jin, P.; Meng, F.; Liu, H. Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe3+ Ions. Nanomaterials 2018, 8 (4), 233.
    (127) Carolan, D.; Rocks, C.; Padmanaban, D. B.; Maguire, P.; Svrcek, V.; Mariotti, D. Environmentally friendly nitrogen-doped carbon quantum dots for next generation solar cells. Sustainable Energy & Fuels 2017, 1 (7), 1611-1619.
    (128) Liu, L.; Mi, Z.; Hu, Q.; Li, C.; Li, X.; Feng, F. Green synthesis of fluorescent carbon dots as an effective fluorescence probe for morin detection. Analytical methods 2019, 11 (3), 353-358.
    (129) De, B.; Karak, N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. Rsc Advances 2013, 3 (22), 8286-8290.
    (130) Dhenadhayalan, N.; Lin, K.-C.; Suresh, R.; Ramamurthy, P. Unravelling the multiple emissive states in citric-acid-derived carbon dots. The Journal of Physical Chemistry C 2016, 120 (2), 1252-1261.
    (131) Sokolov, V.; Druzhinin, A.; Kim, G.; Gruzdev, N.; Yermakov, A. Y.; Uimin, M.; Byzov, I.; Shchegoleva, N.; Vykhodets, V.; Kurennykh, T. Fundamental absorption edge of NiO nanocrystals. Physica B: Condensed Matter 2013, 430, 1-5.
    (132) Adhikary, J.; Chakraborty, P.; Das, B.; Datta, A.; Dash, S. K.; Roy, S.; Chen, J.-W.; Chattopadhyay, T. Preparation and characterization of ferromagnetic nickel oxide nanoparticles from three different precursors: application in drug delivery. RSC Advances 2015, 5 (45), 35917-35928.
    (133) Zhang, Y.-Q.; Ma, D.-K.; Zhang, Y.-G.; Chen, W.; Huang, S.-M. N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells. Nano Energy 2013, 2 (5), 545-552.
    (134) Zhu, W.; Zhao, Y.; Duan, J.; Duan, Y.; Tang, Q.; He, B. Carbon quantum dot tailored counter electrode for 7.01%-rear efficiency in a bifacial dye-sensitized solar cell. Chemical Communications 2017, 53 (71), 9894-9897.
    (135) Choi, Y.; Choi, Y.; Kwon, O. H.; Kim, B. S. Carbon Dots: Bottom‐Up Syntheses, Properties, and Light‐Harvesting Applications. Chemistry–An Asian Journal 2018, 13 (6), 586-598.
    (136) Alemu, G.; Li, J.; Cui, J.; Xu, X.; Zhang, B.; Cao, K.; Shen, Y.; Cheng, Y.; Wang, M. Investigation on regeneration kinetics at perovskite/oxide interface with scanning electrochemical microscopy. Journal of Materials Chemistry A 2015, 3 (17), 9216-9222.
    (137) Barman, M. K.; Mitra, P.; Bera, R.; Das, S.; Pramanik, A.; Parta, A. An efficient charge separation and photocurrent generation in the carbon dot–zinc oxide nanoparticle composite. Nanoscale 2017, 9 (20), 6791-6799.
    (138) Nikolaou, V.; Charisiadis, A.; Charalambidis, G.; Coutsolelos, A. G.; Odobel, F. Recent advances and insights in dye-sensitized NiO photocathodes for photovoltaic devices. Journal of Materials Chemistry A 2017, 5 (40), 21077-21113.
    (139) Yang, X.; Yanagida, M.; Han, L. Reliable evaluation of dye-sensitized solar cells. Energy & Environmental Science 2013, 6 (1), 54-66.
    (140) Liu, Y.; Wang, J. Co-sensitization of TiO2 by PbS quantum dots and dye N719 in dye-sensitized solar cells. Thin Solid Films 2010, 518 (24), e54-e56.
    (141) Hirose, F.; Shikaku, M.; Kimura, Y.; Niwano, M. IR study on N719 dye adsorption with high temperature dye solution for highly efficient dye-sensitized solar cells. Journal of The Electrochemical Society 2010, 157 (11), B1578-B1581.
    (142) Cai, C.-Y.; Tseng, S.-K.; Kuo, M.; Lin, K.-Y. A.; Yang, H.; Lee, R.-H. Photovoltaic performance of a N719 dye based dye-sensitized solar cell with transparent macroporous anti-ultraviolet photonic crystal coatings. RSC Advances 2015, 5 (124), 102803-102810.
    (143) Honda, M.; Yanagida, M.; Han, L.; Miyano, K. X-ray Characterization of Dye Adsorption in Coadsorbed Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117 (33), 17033-17038.
    (144) Wen, P.; Han, Y.; Zhao, W. Influence of TiO2 nanocrystals fabricating dye-sensitized solar cell on the absorption spectra of N719 sensitizer. International Journal of Photoenergy 2012, https://doi.org/10.1155/2012/906198
    (145) Dutta, M.; Sarkar, S.; Ghosh, T.; Basak, D. ZnO/graphene quantum dot solid-state solar cell. The Journal of Physical Chemistry C 2012, 116 (38), 20127-20131.
    (146) Sun, M.; Qu, S.; Ji, W.; Jing, P.; Li, D.; Qin, L.; Cao, J.; Zhang, H.; Zhao, J.; Shen, D. Towards efficient photoinduced charge separation in carbon nanodots and TiO 2 composites in the visible region. Physical Chemistry Chemical Physics 2015, 17 (12), 7966-7971.
    (147) Pan, J.; Sheng, Y.; Zhang, J.; Huang, P.; Zhang, X.; Feng, B. Photovoltaic conversion enhancement of a carbon quantum dots/p-type CuAlO2/n-type ZnO photoelectric device. ACS applied materials & interfaces 2015, 7 (15), 7878-7883.
    (148) Kokal, R. K.; Kumar, P. N.; Deepa, M.; Srivastava, A. K. Lead selenide quantum dots and carbon dots amplify solar conversion capability of a TiO 2/CdS photoanode. Journal of Materials Chemistry A 2015, 3 (41), 20715-20726.
    (149) Zhao, Y.; Duan, J.; He, B.; Jiao, Z.; Tang, Q. Improved charge extraction with N-doped carbon quantum dots in dye-sensitized solar cells. Electrochimica Acta 2018, 282, 255-262.
    (150) Bora, A.; Mohan, K.; Dolui, S. K. Carbon Dots as Co-sensitizers in Dye Sensitized Solar Cell and Fluorescence Chemosensor for 2, 4, 6-Trinitrophenol Detection. Industrial & Engineering Chemistry Research 2019, 58(51), 22771–22778
    (151) Liu, L.; Yu, X.; Yi, Z.; Chi, F.; Wang, H.; Yuan, Y.; Li, D.; Xu, K.; Zhang, X. High efficiency solar cells tailored using biomass-converted graded carbon quantum dots. Nanoscale 2019, 11 (32), 15083-15090.
    (152) Shafie, S. M.; Mahlia, T. M. I.; Masjuki, H. H.; Andriyana, A. Current energy usage and sustainable energy in Malaysia: a review. Renewable and Sustainable Energy Reviews 2011, 15 (9), 4370-4377.
    (153) Evans, A.; Strezov, V.; Evans, T. J. Assessment of sustainability indicators for renewable energy technologies. Renewable and sustainable energy reviews 2009, 13 (5), 1082-1088.
    (154) Dessì, A.; Calamante, M.; Sinicropi, A.; Parisi, M. L.; Vesce, L.; Mariani, P.; Taheri, B.; Ciocca, M.; Di Carlo, A.; Zani, L. Thiazolo [5, 4-d] thiazole-based organic sensitizers with improved spectral properties for application in greenhouse-integrated dye-sensitized solar cells. Sustainable Energy & Fuels 2020, 4, 2309-2321
    (155) Sugathan, V.; John, E.; Sudhakar, K. Recent improvements in dye sensitized solar cells: A review. Renewable and Sustainable Energy Reviews 2015, 52, 54-64.
    (156) Li, N.; Stubhan, T.; Luechinger, N. A.; Halim, S. C.; Matt, G. J.; Ameri, T.; Brabec, C. J. Inverted structure organic photovoltaic devices employing a low temperature solution processed WO3 anode buffer layer. Organic Electronics 2012, 13 (11), 2479-2484.
    (157) Liu, S.; Li, H.; Mo, R.; Chen, Q.; Yang, S.; Zhong, J. ZnSe Sensitized and Co-Pi Catalyzed TiO2 Nanowire Array Photoanode for Solar-Driven Water Splitting. Journal of The Electrochemical Society 2016, 163 (9), H744-H749.
    (158) Xue, Z.; Liu, X.; Zhang, N.; Chen, H.; Zheng, X.; Wang, H.; Guo, X. High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells. ACS applied materials & interfaces 2014, 6 (18), 16403-16408.
    (159) Fan, K.; Li, R.; Chen, J.; Shi, W.; Peng, T. Recent development of dye-sensitized solar cells based on flexible substrates. Science of Advanced Materials 2013, 5 (11), 1596-1626.
    (160) Gupta, P. K.; Raghunath, S. S.; Prasanna, D. V.; Venkat, P.; Shree, V.; Chithananthan, C.; Choudhary, S.; Surender, K.; Geetha, K. An Update on Overview of Cellulose, Its Structure and Applications. In Cellulose; IntechOpen 2019. DOI: 10.5772/intechopen.84727
    (161) Wan, C.; Jiao, Y.; Li, J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 2017, 5 (8), 3819-3831.
    (162) Shokri, J.; Adibkia, K. Application of cellulose and cellulose derivatives in pharmaceutical industries. In Cellulose-medical, pharmaceutical and electronic applications; IntechOpen: 2013.
    (163) Mun, S.; Chen, Y.; Kim, J. Cellulose–titanium dioxide–multiwalled carbon nanotube hybrid nanocomposite and its ammonia gas sensing properties at room temperature. Sensors and Actuators B: Chemical 2012, 171, 1186-1191.
    (164) Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society 2007, 129 (37), 11318-11319.
    (165) Yue, G.; Ma, X.; Zhang, W.; Li, F.; Wu, J.; Li, G. A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode. Nanoscale research letters 2015, 10 (1), 1.
    (166) Nguyen, K.; Hoa, N. D.; Hung, C. M.; Le, D. T. T.; Van Duy, N.; Van Hieu, N. A comparative study on the electrochemical properties of nanoporous nickel oxide nanowires and nanosheets prepared by a hydrothermal method. RSC advances 2018, 8 (35), 19449-19455.
    (167) Su, D.; Kim, H. S.; Kim, W. S.; Wang, G. Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium‐ion batteries and supercapacitors with superior performance. Chemistry–A European Journal 2012, 18 (26), 8224-8229.
    (168) Song, J. E.; Kim, Y. H.; Kang, Y. S. Preparation of indium tin oxide nanoparticles and their application to near IR-reflective film. Current Applied Physics 2006, 6 (4), 791-795.
    (169) Ba, J.; Fattakhova Rohlfing, D.; Feldhoff, A.; Brezesinski, T.; Djerdj, I.; Wark, M.; Niederberger, M. Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration. Chemistry of materials 2006, 18 (12), 2848-2854.
    (170) Etefa, H. F.; Imae, T.; Yanagida, M. Enhanced Photosensitization by Carbon Dots Co-adsorbing with Dye on p-Type Semiconductor (Nickel Oxide) Solar Cells. ACS Applied Materials & Interfaces 2020, DOI: 10.1021/acsami.0c02413.
    (171) Debelo, T. T.; Ujihara, M. Effect of simultaneous electrochemical deposition of manganese hydroxide and polypyrrole on structure and capacitive behavior. Journal of Electroanalytical Chemistry 2020, 113825.
    (172) Gao, M.; Miao, P.; Han, X.; Sun, C.; Ma, Y.; Gao, Y.; Xu, P. Hollow transition metal hydroxide octahedral microcages for single particle surface-enhanced Raman spectroscopy. Inorganic Chemistry Frontiers 2019, 6 (9), 2318-2324.
    (173) Liu, C.-F.; Ren, J.-L.; Xu, F.; Liu, J.-J.; Sun, J.-X.; Sun, R.-C. Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. Journal of agricultural and food chemistry 2006, 54 (16), 5742-5748.
    (174) Manafi, S.; Tazikeh, S.; Joughehdoust, S. Synthesis and characterization of indium tin oxide nanoparticles via reflux method. Materials Science-Poland 2017, 35 (4), 799-805.
    (175) Azhagu Raj, R.; AlSalhi, M.; Devanesan, S. Microwave-assisted synthesis of nickel oxide nanoparticles using coriandrum sativum leaf extract and their structural-magnetic catalytic properties. Materials 2017, 10 (5), 460.
    (176) Senthil, R.; Priya, A.; Theerthagiri, J.; Selvi, A.; Nithyadharseni, P.; Madhavan, J. Facile synthesis of α-Fe2 O3/WO3 composite with an enhanced photocatalytic and photo-electrochemical performance. Ionics 2018, 24 (11), 3673-3684.
    (177) Zhang, C.; Chen, Q.; Zhan, H. Supercapacitors based on reduced graphene oxide nanofibers supported Ni (OH) 2 nanoplates with enhanced electrochemical performance. ACS applied materials & interfaces 2016, 8 (35), 22977-22987.
    (178) Shi, J.; Shen, L.; Meng, F.; Liu, Z. Structural, electrical and optical properties of highly crystalline indium tin oxide films fabricated by RPD at room temperature. Materials Letters 2016, 182, 32-35.
    (179) Song, S.; Yang, T.; Liu, J.; Xin, Y.; Li, Y.; Han, S. Rapid thermal annealing of ITO films. Applied Surface Science 2011, 257 (16), 7061-7064.
    (180) Zhang, D.; Tavakoliyaraki, A.; Wu, Y.; Van Swaaij, R.; Zeman, M. Influence of ITO deposition and post annealing on HIT solar cell structures. Energy Procedia 2011, 8, 207-213.
    (181) Todorov, T. K.; Singh, S.; Bishop, D. M.; Gunawan, O.; Lee, Y. S.; Gershon, T. S.; Brew, K. W.; Antunez, P. D.; Haight, R. Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material. Nature communications 2017, 8 (1), 1-8.
    (182) Simaschevici, A.; Serban, D.; Bruc, L. Solar cells on the base of semiconductor-insulator-semiconductor structures. In Solar Cells-Silicon Wafer-Based Technologies; IntechOpen, 2011, DOI: 10.5772/22755
    (183) Socol, M.; Preda, N.; Rasoga, O.; Costas, A.; Stanculescu, A.; Breazu, C.; Gherendi, F.; Socol, G. Pulsed Laser Deposition of Indium Tin Oxide Thin Films on Nanopatterned Glass Substrates. Coatings 2019, 9 (1), 19.
    (184) Dobrokhotov, V.; McIlroy, D.; Norton, M. G.; Abdelrahaman, R.; Safir, A.; Berven, C. Interaction of hybrid nanowire–nanoparticle structures with carbon monoxide. Nanotechnology 2009, 20 (13), 135504.
    (185) Geleta, T. A.; Imae, T. Influence of Additives on Zinc Oxide-based Dye Sensitized Solar Cells. Bulletin of the Chemical Society of Japan 2020, 93(4), 611-620.
    (186) Baiju, K. G.; Murali, B.; Rao, R. S.; Jayanarayanan, K.; Kumaresan, D. Heat sink assisted elevated temperature sintering process of TiO2 on polymer substrates for producing high performance flexible dye-sensitized solar cells. Chemical Engineering and Processing-Process Intensification 2020, 149, 107817.
    (187) Chang, H.; Yang, Y.-J.; Li, H.-C.; Hsu, C.-C.; Cheng, I.-C.; Chen, J.-Z. Preparation of nanoporous TiO2 films for DSSC application by a rapid atmospheric pressure plasma jet sintering process. Journal of Power Sources 2013, 234, 16-22.
    (188) Luo, Q.-P.; Wang, B.; Cao, Y. Single-crystalline porous ZnO nanosheet frameworks for efficient fully flexible dye-sensitized solar cells. Journal of Alloys and Compounds 2017, 695, 3324-3330.

    QR CODE