簡易檢索 / 詳目顯示

研究生: 黃堂益
Tang-Yi Huang
論文名稱: 離子束濺鍍法沉積氧化銦錫透明導電膜之特性研究
Optimization of indium tin oxide thin films deposited by ion beam sputter deposition
指導教授: 趙良君
Liang -Chiun Chao
林保宏
Pao-hung Lin
口試委員: 李奎毅
Kuei-Yi Lee
李志堅
Chih-Chien Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 66
中文關鍵詞: 氧化銦錫離子束濺鍍薄膜
外文關鍵詞: ITO, sputtering, film
相關次數: 點閱:326下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
      本實驗使用反應式離子束濺鍍法來沉積氧化銦錫薄膜於玻璃基板上,在室溫狀態下,分別透過改變氧氣流量、陽極電壓以及基板與靶材距離,來觀察不同製程參數下薄膜特性的變化。隨著氧氣流量增加,氧氣的低濺鍍率導致薄膜沉積率下降,氧空缺消失導致薄膜電阻率上升,載子濃度下降並導致薄膜可見光區穿透率上升;隨著陽極電壓提高,離子束能量提高導致薄膜沉積率上升、氧空缺消失導致薄膜電阻率上升,並使表面粗糙度上升造成薄膜可見光區穿透率下降;隨著基板與靶材距離增加,到達基板的離子數減少導致薄膜沉積率下降、缺陷變多導致薄膜電阻率上升而可見光區穿透率下降。本實驗所得最佳σ/α值為13.2 Ω-1。


    Abstract
    ITO thin films have been successfully deposited at room temperature by ion beam sputter deposition. Effect of oxygen partial flow rates, ion beam energy and substrate to target distance are characterized. Experiment results reveal that as oxygen flow rate increases, the resistivity of ITO thin film increases due to reduced oxygen vacancy defects, while transmittance improved due to improved crystalline quality. As ion beam energy increases, the resistivity of ITO thin films increases as well, which is attributed to improved crystalline quality due to increased kinetic energy of sputtered particles. As substrate to target distance increases, the resistivity increases as well which is due to deteriorated film quality that results in increased defect density. ITO thin films deposited under optimized condition results in a σ/α ratio of 1.32×104 Ω-1.

    目錄 摘要 II Abstract III 致謝 IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1前言 1 1.2研究動機及目的 2 第二章 文獻回顧 3 2.1簡介 3 2.2透明導電薄膜的種類 5 2.3銦錫氧化物透明導電薄膜 6 2.4電特性 9 2.5光學特性 11 2.6電漿理論 14 2.7濺鍍理論 17 2.7.1離子束濺鍍原理 18 2.7.2離子束濺鍍之優點 18 2.7.3反應式濺鍍 19 2.8薄膜沉積理論 21 2.8.1薄膜沉積之微結構 23 第三章 實驗步驟與量測系統 25 3.1實驗設備與流程 25 3.2特性分析儀器介紹 31 3.2.1穿透率量測 (transmittance) 31 3.2.2反射光譜法(spectroscopic reflectometry) 33 3.2.3四點探針(Four point probe) 34 第四章 實驗結果與討論 38 4.1反射光譜法(spectroscopic reflectometry)分析 38 4.1.1不同氧氣流量對ITO薄膜厚度之影響 40 4.1.2不同陽極電壓對ITO薄膜厚度之影響 41 4.1.3不同基板與靶材距離對ITO薄膜厚度之影響 43 4.2四點探針量測(Four point probe)分析 44 4.2.1不同氧氣流量對ITO薄膜電阻率之影響 44 4.2.2不同陽極電壓對ITO薄膜電阻率之影響 46 4.2.3不同基板與靶材距離對ITO薄膜電阻率之影響 48 4.3穿透率量測(Transmission)分析 50 4.3.1不同氧氣流量對ITO薄膜穿透率之影響 50 4.3.2不同陽極電壓對ITO薄膜穿透率之影響 52 4.3.3不同基板與靶材距離對ITO薄膜穿透率之影響 54 4.4 ITO薄膜性能分析 56 4.4.1不同氧氣流量對ITO薄膜F.O.M.之影響 56 4.4.2不同陽極電壓對ITO薄膜F.O.M.之影響 57 4.4.3不同基板與靶材距離對ITO薄膜F.O.M.之影響 59 第五章 結論與未來展望 61 參考文獻 63 圖目錄 圖2-1氧化銦(In2O3)的單位晶體結構[11] 7 圖2-2氧化銦(In2O3)的晶體結構[15] 8 圖2-3氧化銦和氧化銦(錫)之X-ray繞射圖[15] 8 圖2-4氧化銦錫氧空缺釋出自由電子[18] 10 圖2-5典型氧化銦錫薄膜穿透率、反射率及吸收率的光譜圖[19] 11 圖2.6電子傳導示意圖(a)原本氧化銦能隙 (b)摻雜後的能隙[21] 12 圖2-7直流輝光放電示意圖[23] 15 圖2-8靶材與離子的交互作用圖[25] 17 圖2-9離子束濺鍍示意圖[26] 18 圖2-10反應式濺鍍示意圖[31] 20 圖2-12薄膜沉積過程示意圖[32] 22 圖2-13氣體壓力及基板溫度對薄膜成長之影響[33] 24 圖3.1-1 IBSD實驗設備架構圖。 26 圖3.1-2實驗步驟流程圖。 27 圖3.2-1穿透率量測系統示意圖 32 圖3.2-2反射光譜示意圖 33 圖3.2-3四點探針與多功能電源供應器 37 圖4.1-1程式模擬以及實際量測的ITO反射光譜 39 圖4.1.1-1不同氧氣流量對薄膜厚度的影響 40 圖4.1.2-1不同陽極電壓對薄膜厚度的影響 42 圖4.1.3-1不同基板與靶材距離對薄膜厚度的影響 43 圖4.3.1-1不同氧氣流量之薄膜穿透率的變化 51 圖4.3.2-1不同陽極電壓之薄膜穿透率的變化 53 圖4.3.3-1不同基板與靶材距離之薄膜穿透率的變化 55 圖4.4.2-1不同陽極電壓之ITO薄膜σ/α變化圖 58 圖4.4.3-1不同基板與靶材距離之ITO薄膜σ/α變化圖 60 表目錄 表3.1-1實驗參數設定表不同氧氣流量。 28 表3.1-2實驗參數設定表不同陽極電壓。 29 表3.1-3實驗參數設定表不同基板與靶材距離。 30 表4.2.1-1不同氧氣流量對薄膜電阻率的影響 45 表4.2.2-1不同陽極電壓對薄膜電阻率的影響 47 表4.2.3-1不同基板與靶材距離對薄膜電阻率的影響 49 表4.3.1-1不同氧氣流量之ITO薄膜在可見光區的平均穿透率 51 表4.3.2-1不同陽極電壓之ITO薄膜在可見光區的平均穿透率 53 表4.3.3-1不同基板與靶材距離之ITO薄膜在可見光區的平均穿透率 55 表4.4.1-1不同氧氣流量之ITO薄膜F.O.M. 56 表4.4.2-1不同陽極電壓之ITO薄膜F.O.M. 58 表4.4.3-1不同基板與靶材距離之ITO薄膜F.O.M. 60

    參考文獻
    [1] 楊明輝,「金屬氧化物透明導電材料的基本原理」,工業材料,第一百七十九卷,第134-144頁,2001。
    [2] K. Badeker, “The discovery of transparent conductive materials,” Annalender Physik, vol. 22, p. 749, 1907.
    [3] Y. S. Jung, D. W. Lee, and D. Y. Jeon, “Influence of dc magnetron sputtering parameters on surface morphology of indium tin oxide thin films,” Appl. Surf. Sci., vol. 221, pp. 136-142, 2004.
    [4] S. A. Knickerbocker, and A. K. Kulkarni, “Calculation of the figure of merit for Indium Tin oxide films based on basic theory,” Vac. Sci. Technol., vol. 14, pp. 757-763, 1994.
    [5] H. J. J. VanBoort, and R. Groth, “Low-pressure sodium lamps with indium oxide filter,” Philips Tech. Rev., Vol. 17, pp. 29-32, 1968.
    [6] J. L. Vossen, “Transparent conducting films,” Physics of Thin Films, vol. 9, pp. 1-64, 1977.
    [7] R. F. Bunshah, “Deposition technologies for films and coatings,” New Jersey Noyes Publications, vol. 3, pp. 5-9, 1982.
    [8] D. R. Curran, L. Seaman, and D. A. Shockey, “Linking dynamic fracture to microstructural process, Shock wave and high-strain- rate phenomena in metal,” Shock Waves and High-Strain-Rate Phenomena in Metals, pp. 129-167, 1980.
    [9] K. L. Chopra, S. Magor, and D. K. Pandya, “Transparent conductors-A status review,” Thin Solid Films, vol. 102, pp. 1-46, 1983.
    [10] W. W. Tu, and B. S. Chiou. “Effect of annealing on electrical and optical properties of RF magnetron sputtered indium tin oxide films,” Thin Solid Films, vol. 68, pp. 497-504, 1994.
    [11] M. Quaas, C. Eggsl, and H. Wulff, “Structural studies of ITO thin films the Rietveld method,” Thin Solid Films, vol. 332, pp. 277-281, 1998.
    [12] A. J. Steckl, and G. Mohammed, “The effect of ambient atmosphere in the annealing of ITO films,” J. Appl. Phys., vol. 51, pp. 3890-3895,1980.
    [13] M. Quaas, H. S. Ven, R. Hippler, and H. Wul, “The growth process of plasma -deposited ITO films investigated by grazing incidence X-ray techniques,” Surface Science, vol. 7 , pp. 454-456. 790-795, 2000.
    [14] C. C. F. John, and J. B. Frank, “Properties of Sn-Doped In2O3 films prepared by RF sputtering,” Soc. J. Electrochem, vol. 122(12), pp. 1719-1724, 1975.
    [15] P. Nath, and R. F. Bunshah, “Preparation of In2O3 and Tin-Doped In2O3 films by a novel activated reactive evaporation Technique,” Thin solid Films, vol. 69, pp. 63-68, 1980.
    [16] M. Lee, P. F. Chi, and J. K. Sheu, “Photodetectors formed by an indium tin oxide/zinc oxide/p-type gallium nitride heterojunction with high ultravioletto-visible rejection ratio,” Appl. Phys. Lett., vol. 94, pp. 130-512, 2009.
    [17] J. L. Vossen, “RF sputtered transparent conductors He Systems In2O3-SnO2,” RCA Review, vol. 32, pp. 289-296, 1971.
    [18] F. Wu, B. S. Chiou, J. W. Choi, and K. H. Yoon, “Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating,” J. Appl. Phys., vol. 86, pp. 51-64 ,1999.
    [19] Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang, and L. S. Wen, “Optical and electrical properties of direct-current magnetron sputtered ZnO:Al films,” J. Appl. Phys., vo1. 90, pp. 3432-3491, 2001.
    [20] J. F. Mahoney, J. Perel, and A. T. Forrester, “Capillaritron︰A new, versatile ion source,” Appl. Phys. Lett., vol. 38, pp. 320-322, 1981.
    [21] H. L. Hartangel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Semiconducting Transparent Thin Films,” Institute of Physics, Philiadelphia, vol. 12, pp. 219-230, 1995.
    [22] H. U. Habermeier, “Properties of Indium Tin Oxide Thin Films Prepared by
    Reactive Evaporation,” Thin Solid Films, vol. 80, pp. 157-160, 1981.
    [23] 楊錦章,「基礎濺鍍電漿」,電子發展月刊,第六十八期,第13頁,1963。
    [24] D. M. Mattox, “Particle bombardment effects on thin-film deposition review,” J. Vac. Sci. Technol., vol. A7, pp. 1105, 1989.
    [25] 施敏,「半導體元件之物理與技術」,儒林,第425頁,1990。
    [26] C. C. Lee, D. T. Wei, J. C. Hsu, and C. H. Shen, “Influence of oxygen on some
    oxide films prepared by ion beam sputter deposition,” Thin Solid Films, vol. 290-291, pp. 88-93, 1996.
    [27] M. Varasi, C. Misiano, and L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films, vol. 117, pp. 163-172, 1984.
    [28] C. C. Lee, J. C. Hsu, D. T. Wei, and J. H. Lin, “Morphology of dual beam
    ionsputtered films investigated by atomic force microscopy,” Thin Solid Films,
    vol. 308-309, pp. 74-78, 1997.
    [29] S. M. Kane, and K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,”
    J. Vac. Sci. Technol., vol. 16, no. 2, pp. 171-174, 1979.
    [30] S. B. Krupanidhi, H. Hu, and V. Kumar, “Multi-ion-beam reactive sputter
    deposition of ferroelectric Pb(Zr,Ti)O3 thin films,” J. Appl. Phys., vol. 71, no. 1,
    pp. 376-388, 1992.
    [31] C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic
    oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci., vol.
    171, no. 1-2, pp. 151-156, 2001.
    [32] K. Seshan, “Handbook of Thin Film Deposition Process and Technologies,” Noyes Publications, United States, 2th ed, pp. 315-334, 2002.
    [33] L. J. V. Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Research Reports, vol. 1, pp. 1-9, 1985.
    [34] W. Li, Y. Sun, Y. Wang, H. Cai, F. F. Liu, and Q. He, “Effects of
    substrate temperature on the properties of facing-target sputtered Al-doped ZnO
    films,” Solar Energy Materials and Solar Cells, vol. 91, pp. 659-663, 2007.
    [35] H. Lee, “ITO/Ag/ITO multilayer films for the application of a very low resistance transparent electrode,” Appl. Surf. Sci., vol. 252, pp. 3428-3596, 2006.
    [36] Y. Zhang, G. Du, D. Liu, and X. Wang, “Effects of Ag doping on the photoluminescence of ITO films grown on Si substrates,” J. Appl. Phys., vol. 243, pp. 439-462, 2002.
    [37] Y. Han, D. Kim, J. S. Chou, and Y. S. Song, “Tin-doped Indium Tin oxide (ITO) film deposition by ion beam sputtering,” Solar Energy Material and Solar Cells, vol. 65, pp. 211-218, 2001.
    [38] H. Kim, C. M. Pique, and J. S. Horwitz, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” American Institute of Physics, vol. 86, pp. 6451-6461, 1999.
    [39] H. J. Kim, “Electrical, Optical, and Structure Characteristics of ITO film by Krypton and Oxygen dual ion-beam assisted Evaporation at room Temperature,” Thin Solid Film, vol. 377, pp. 115-121, 2000.
    [40] T. Karasawa, and Y. Miyata, “Electrical and Optical properties of Indium Tin oxide thin film deposited on Unheated substrates by DC Reactive Sputtering,” Thin Solid Films, vol. 223, pp. 135-139, 1993.

    無法下載圖示 全文公開日期 2022/03/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE