簡易檢索 / 詳目顯示

研究生: 高浚桓
Chun-Huan Kao
論文名稱: 搭配有機吸光層製作具低操作電壓及可見光波段高響應度之金屬氧化物光感測薄膜電晶體之研究開發
Investigation of Photo Oxide Thin-Film-Transistors with Low Operating-Voltage and High Photo-responsivity by using High-efficiency Organic Light Absorption Layer
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 范慶麟
Ching-Lin Fan
顏文正
Wen-Zheng Yan
劉舜維
Shun-Wei Liu
李志堅
Chih-Chien Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 111
中文關鍵詞: 光電晶體低操作電壓響應度高介電系數恢復
外文關鍵詞: Phototransistor, Low operating-voltage, High-K, Responsivity, Recovery
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以金屬氧化物為通道的薄膜電晶體因其高載子遷移率、均勻性、可在較低溫下成長等特性,除了應用於軟性電子或是顯示器領域皆具有相當高的潛力外,也可以當作光電晶體,不同於光二極體,其具有高響應度與靈敏度,因此不用額外搭配CMOS放大電路。本篇論文使用高介電系數材料二氧化鉿來作為元件之閘極絕緣層以降低元件之操作電壓,以氧化銦鋅錫作為主動層,因其具有比氧化銦鎵鋅更高的載子遷移率,但少了鎵元素來抑制材料中的氧空缺且錫與氧的鍵結不像鎵與氧那麼強,這些都會導致漏電流的上升,因此本碩論第一部分將透過調變元件結構與製程環境來降低元件漏電流。
    因受限於材料特性,金屬氧化物光感測薄膜電晶體只能應用於紫外波段且具有嚴重的延遲光電流問題,本碩論第二部分將搭配SubPc作為元件之有機吸光層,使其應用波段拓展至可見光,並藉著主動層與吸光層兩者材料間的能隙差來改善延遲光電流問題,大幅地提高元件的應用性。


    Amorphous Oxide Semiconductor (AOS) materials have several advantages such as high mobility, great uniformity, low fabrication. In addition to having a high potential to be applied in flexible electronics or displays, it can also be used as a photo sensor. It is different from the photodiode, the metal oxide thin-film transistor based phototransistor (photo-TFT) has high responsivity and sensitivity, so there is no need for additional CMOS amplifier circuit. The photo-TFT was fabricatied with the high dieletric constant (high-k) gate insulator of HfO2 to reduce the operating voltage. And then in oder to pursue high mobility, InZnSnO (IZTO) was introduced as the active layer, because IZTO-TFT has higher mobility than IGZO-TFT. However, the lack of gallium element suppresses the oxygen vacancy in the material, and the bond between tin and oxygen is not as strong as gallium and oxygen. These will lead to leakage current. Therefore, we first adjusted the device structure and process environment to reduce leakage current.
    Due to material characteristics, the metal oxide photo-TFT can only be applied in the ultraviolet band and have serious Persistent photocurrent (PPC) problems. Therefore, we used SubPC as the organic light-absorbing layer to extend its application band to visible light, and use the energy gap difference between the active layer and the light-absorbing layer to improve the PPC problem, which greatly improves the applicability of the device .

    論文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 序論 1 1.1 研究背景 1 1.2 研究動機 4 1.3 論文大綱 6 第二章 材料與製程介紹及參數萃取 7 2.1 閘極絕緣層高介電材料 7 2.1.1 高介電材料的興起 7 2.1.2 高介電材料的選擇 8 2.1.3 常見的高介電材料的種類 11 2.2 光感測薄膜電晶體與金屬氧化物半導體介紹 11 2.2.1 金屬氧化物光感測半導體材料介紹 11 2.2.2 非晶氧化銦鋅錫材料特性與電性影響 14 2.2.3 光感測薄膜電晶體之種類概述與操作機制 16 2.3 金屬氧化物薄膜電晶體結構 18 2.4 金屬氧化物薄膜電晶體操作 20 2.5 光感測薄膜電晶體元件參數萃取方式 24 2.5.1 載子遷移率(Mobility, μ) 24 2.5.2 臨界電壓 (Threshold Voltage, VTH) 26 2.5.3 次臨界斜率 (Subthreshold Swing, S.S) 27 2.5.4 開關電流比(On/Off Current Ratio, IOn/IOff) 28 2.5.5 響應度 (Responsivity)、靈敏度(Sensitivity) 29 2.5.6 外部量子效率(external quantum efficiency, EQE) 29 2.5.7 照度(Illuminance) 30 2.5.8 接觸電阻(Contact Resistance, RC) 30 2.5.9 C-V電特性量測 32 2.5.10 半導體參數分析儀 (Semiconductor Parameter Analyzer) 32 2.6 薄膜材料特性分析 33 2.6.1 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM) 33 2.6.2 原子力顯微鏡 (Atomic Force Microscope , AFM) 33 2.6.3 紫外光/可見光光譜儀(Ultraviolet/Visible Spectrophotometer, UV/VIS) 34 2.6.4 光激發螢光頻譜 (photoluminescence, PL) 36 2.6.5 照度計LX-1102 37 2.7 金屬氧化物薄膜電晶體之製程介紹 38 2.7.1 濺鍍法(Sputter) 38 2.7.2 原子層沉積法(Atomic Layer Deposition, ALD) 38 2.7.3 熱蒸鍍法(Thermal Evaporation Deposition) 38 第三章 以氧化銦鋅錫作為主動層調變不同閘極之厚度與不同閘極絕緣層之原子層沉積溫度改善電特性之研究 39 3.1 簡介 39 3.2 實驗說明 39 3.3 實驗步驟 40 3.4 不同閘極厚度之元件實驗分析 49 3.4.1 不同閘極厚度之元件電特性分析 49 3.4.2 不同閘極厚度之元件遲滯特性分析 55 3.5 不同原子層沉積溫度之閘極絕緣層元件實驗分析 58 3.5.1 不同原子層沉積溫度之元件電特性分析 58 3.5.2 不同原子層沉積溫度之元件遲滯特性分析 61 3.6 相同厚度不同製程之閘極絕緣層元件實驗分析 64 3.6.1 相同厚度不同製程之閘極絕緣層元件電特性分析(先機制) 64 第四章 搭配SubPC有機吸光層於金屬氧化物光感測薄膜電晶體之可見光感測器製作與研究 69 4.1 簡介 69 4.2 實驗說明 71 4.3 實驗步驟 71 4.4 Photo-TFT之元件光電特性分析 76 4.4.1 不同吸光層之元件電特性分析 76 4.4.2 不同吸光層之元件光電特性分析 79 第五章 結論與未來展望 91 5.1 結論 91 5.2 未來展望 92 參考文獻 93

    [1] 黃耀瑋. 穿戴裝置掀動感測器新商機. 2015 [cited 2021; Available from: https://www.2cm.com.tw/2cm/zh-tw/market/179D5A4EC7B24430B447530677996721.
    [2] 丁于珊. 為何行動醫療需要32位元MCU?. 2013 [cited 2020 11/01]; Available from: https://www.ctimes.com.tw/DispNews/tw/%E6%81%A9%E6%99%BA%E6%B5%A6/%E5%8A%89%E4%BF%8A%E5%AE%8F/ARM/%E8%A1%8C%E5%8B%95%E9%86%AB%E7%99%82/MCU/13071018416A.shtml.
    [3] Ahn, S.-E., et al., "Metal Oxide Thin Film Phototransistor for Remote Touch Interactive Displays". Advanced Materials, 2012. 24(19): p. 2631-2636.
    [4] Pierre, A., A. Gaikwad, and A.C. Arias, "Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors". Nature Photonics, 2017. 11(3): p. 193-199.
    [5] Campos, F.D.S., et al., "Photodetection With Gate-Controlled Lateral BJTs From Standard CMOS Technology". IEEE Sensors Journal, 2013. 13(5): p. 1554-1563.
    [6] Heo, S., et al., "Device performance enhancement via a Si-rich silicon oxynitride buffer layer for the organic photodetecting device". Scientific Reports, 2017. 7(1).
    [7] JaeUn Ha, S.Y., Jong-Soo Leeand Dae Sung Chung, "Organic–inorganic hybrid inverted photodiode with planar heterojunction for achieving low dark current and high detectivity". Nanotechnology, 2016. 27(9): p. 095203.
    [8] Chu, X., et al., "Improved Efficiency of Organic/Inorganic Hybrid Near-Infrared Light Upconverter by Device Optimization". ACS Applied Materials & Interfaces, 2012. 4(9): p. 4976-4980.
    [9] Park, M.-S., et al., "Surface passivation and aging of InGaAs/InP heterojunction phototransistors". Journal of Applied Physics, 2017. 121(23): p. 233105.
    [10] Huang, T.-H. and M.-C. Wu, "Efficient light output power for InGaP/GaAs heterojunction bipolar transistors incorporated with InGaAs quantum wells". Solid-State Electronics, 2016. 121: p. 12-15.
    [11] Chang, G.-E., et al., "Design and Modeling of GeSn-Based Heterojunction Phototransistors for Communication Applications". IEEE Journal of Selected Topics in Quantum Electronics, 2016. 22(6): p. 425-433.
    [12] Khosropour, A. and A. Sazonov, "Microcrystalline Silicon Photodiode For Large Area NIR Light Detection Applications". IEEE Electron Device Letters, 2017. 38(2): p. 225-227.
    [13] Lee, S., et al., "Impact of transparent electrode on photoresponse of ZnO-based phototransistor". Applied Physics Letters, 2013. 103(25): p. 251111.
    [14] Jang, J.T., et al., "Study on the Photoresponse of Amorphous In–Ga–Zn–O and Zinc Oxynitride Semiconductor Devices by the Extraction of Sub-Gap-State Distribution and Device Simulation". ACS Applied Materials & Interfaces, 2015. 7(28): p. 15570-15577.
    [15] Knobelspies, S., et al., "Flexible a-IGZO Phototransistor for Instantaneous and Cumulative UV-Exposure Monitoring for Skin Health". Advanced Electronic Materials, 2016. 2(10): p. 1600273.
    [16] Zhu, H., et al., "One-step synthesis of graphene quantum dots from defective CVD graphene and their application in IGZO UV thin film phototransistor". Carbon, 2016. 100: p. 201-207.
    [17] Yun, M.G., et al., "Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process". Scientific Reports, 2016. 6(1): p. 31991.
    [18] Liu, P.T., et al., "Highly Responsive Blue Light Sensor with Amorphous Indium-Zinc-Oxide Thin-Film Transistor based Architecture". Scientific Reports, 2018. 8(1).
    [19] Fuh, C.-S., et al., "Effect of Annealing on Defect Elimination for High Mobility Amorphous Indium-Zinc-Tin-Oxide Thin-Film Transistor". IEEE Electron Device Letters, 2014. 35(11): p. 1103-1105.
    [20] Linfeng, L. and P. Junbiao, "High-Performance Indium–Gallium–Zinc Oxide Thin-Film Transistors Based on Anodic Aluminum Oxide". IEEE Transactions on Electron Devices, 2011. 58(5): p. 1452-1455.
    [21] Fan, C.-L., F.-P. Tseng, and C.-Y. Tseng, "Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO2 Gate Dielectrics by CF4 Plasma Treatment". Materials, 2018. 11(5): p. 824.
    [22] Nguyen, X.S., et al., "Correlation of a generation-recombination center with a deep level trap in GaN". Applied Physics Letters, 2015. 106(10): p. 102101.
    [23] Pazos-Outón, L.M., et al., "A Silicon–Singlet Fission Tandem Solar Cell Exceeding 100% External Quantum Efficiency with High Spectral Stability". ACS Energy Letters, 2017. 2(2): p. 476-480.
    [24] Otsuka, T., et al., "Study of carrier energetics in ITO/P(VDF-TrFE)/pentacene/Au diode by using electric-field-induced optical second harmonic generation measurement and charge modulation spectroscopy". Journal of Applied Physics, 2017. 121(6): p. 065501.
    [25] Lee, J., "Pentacene-based photodiode with Schottky junction". Thin Solid Films, 2004. 451-452: p. 12-15.
    [26] Liguori, R., et al., "Light- and bias-induced effects in pentacene-based thin film phototransistors with a photocurable polymer dielectric". Organic Electronics, 2016. 28: p. 147-154.
    [27] Yuan, S.H., et al., "Pentacene phototransistor with gate voltage independent responsivity and sensitivity by small silver nanoparticles decoration". Organic Electronics, 2015. 27: p. 7-11.
    [28] Tsui, B.-Y. and H.-W. Chang, "Formation of interfacial layer during reactive sputtering of hafnium oxide". Journal of Applied Physics, 2003. 93(12): p. 10119-10124.
    [29] Lo, S.H., et al., "Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's". IEEE Electron Device Letters, 1997. 18(5): p. 209-211.
    [30] Zurcher, P., et al., "Barium strontium titanate capacitors for embedded dram". Materials Research Society Symposium - Proceedings, 1999. 541: p. 11-22.
    [31] Cheng, B., et al., "The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs". IEEE Transactions on Electron Devices, 1999. 46(7): p. 1537-1544.
    [32] Cho, M.H., et al., "Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition". Applied Physics Letters, 2002. 81(3): p. 472-474.
    [33] Lee, B.H., et al., "Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silicon". Applied Physics Letters, 1999. 74(21): p. 3143-3145.
    [34] Robertson, J., "Band offsets of wide-band-gap oxides and implications for future electronic devices". Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2000. 18(3): p. 1785-1791.
    [35] Wilk, G.D., R.M. Wallace, and J.M. Anthony, "High-κ gate dielectrics: Current status and materials properties considerations". Journal of Applied Physics, 2001. 89(10): p. 5243-5275.
    [36] Lee, J.M., et al., "The improved performance of a transparent ZnO thin-film transistor with AlN/Al2O3 double gate dielectrics". Semiconductor Science and Technology, 2009. 24(5).
    [37] Ding, X., et al., "Growth of IZO/IGZO dual-active-layer for low-voltage-drive and high-mobility thin film transistors based on an ALD grown Al2O3 gate insulator". Superlattices and Microstructures, 2014. 76: p. 156-162.
    [38] Hsu, D.-C., et al., "The positive bias temperature instability of n-channel metal-oxide-semiconductor field-effect transistors with ZrO2 gate dielectric". Applied Physics Letters, 2008. 92(20): p. 202901.
    [39] Lee, B.H., et al. Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application. in Technical Digest - International Electron Devices Meeting. 1999.
    [40] Paine, D.C., et al., "A study of low temperature crystallization of amorphous thin film indium-tin-oxide". Journal of Applied Physics, 1999. 85(12): p. 8445-8450.
    [41] Zhou, X., et al., "Growth of n-type ZnO thin films by using mixture gas of hydrogen and argon". Chinese Physics, 2006. 15(1): p. 199-202.
    [42] Ogo, Y., et al., "P -channel thin-film transistor using p -type oxide semiconductor, SnO". Applied Physics Letters, 2008. 93(3).
    [43] Hiramatsu, H., et al., "Degenerate p-type conductivity in wide-gap LaCuOS1-xSex (x = 0-1) epitaxial films". Applied Physics Letters, 2003. 82(7): p. 1048-1050.
    [44] Bosman, A.J. and C. Crevecoeur, "Mechanism of the electrical conduction in li-doped NiO". Physical Review, 1966. 144(2): p. 763-770.
    [45] Tu, M.L., Y.K. Su, and M. Chun-Yang, "Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering". Journal of Applied Physics, 2006. 100(5).
    [46] Kamiya, T., K. Nomura, and H. Hosono. The origins of high mobility and low operation voltage of amorphous oxide channel TFTs. in Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS. 2008.
    [47] Hosono, H., M. Yasukawa, and H. Kawazoe, "Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides". Journal of Non-Crystalline Solids, 1996. 203: p. 334-344.
    [48] Ohya, Y., H. Saiki, and Y. Takahashi, "Preparation of transparent, electrically conducting ZnO film from zinc acetate and alkoxide". Journal of Materials Science, 1994. 29(15): p. 4099-4103.
    [49] Hosono, H., "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application". Journal of Non-Crystalline Solids, 2006. 352(9-20 SPEC. ISS.): p. 851-858.
    [50] Orita, M., et al., "Amorphous transparent conductive oxide InGaO3(ZnO)m (m ≤ 4): A Zn 4s conductor". Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001. 81(5): p. 501-515.
    [51] Hosono, H., et al., "Factors controlling electron transport properties in transparent amorphous oxide semiconductors". Journal of Non-Crystalline Solids, 2008. 354(19-25): p. 2796-2800.
    [52] Koppens, F.H.L., et al., "Photodetectors based on graphene, other two-dimensional materials and hybrid systems". Nature Nanotechnology, 2014. 9(10): p. 780-793.
    [53] Liu, X., et al., "The effect of oxygen content on the performance of low-voltage organic phototransistor memory". Organic Electronics, 2014. 15(7): p. 1664-1671.
    [54] Karteri, İ., Ş. Karataş, and F. Yakuphanoglu, "Photosensing properties of pentacene thin film transistor with solution-processed silicon dioxide/graphene oxide bilayer insulators". Journal of Materials Science: Materials in Electronics, 2016. 27(5): p. 5284-5293.
    [55] Yao, B., et al., "Investigation of the source-drain electrodes/the active layer contact-effect on the performance of organic phototransistor". Synthetic Metals, 2017. 233: p. 58-62.
    [56] Tao, Z., et al., "High sensitive solar blind phototransistor based on ZnO nanorods/IGZO heterostructure annealed by laser". Materials Letters, 2018. 228: p. 451-455.
    [57] Dang, V.Q., et al., "Ultrahigh Responsivity in Graphene-ZnO Nanorod Hybrid UV Photodetector". Small, 2015. 11(25): p. 3054-3065.
    [58] Li, J.Y., et al., "Photo-electrical properties of MgZnO thin-film transistors with high-k dielectrics". IEEE Photonics Technology Letters, 2018. 30(1): p. 59-62.
    [59] Takechi, K., et al., "Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors". Japanese Journal of Applied Physics, 2009. 48(1).
    [60] Park, J.S., et al., "Control of threshold voltage in ZnO-based oxide thin film transistors". Applied Physics Letters, 2008. 93(3).
    [61] Barquinha, P., et al., "The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs". Electrochemical and Solid-State Letters, 2008. 11(9): p. H248-H251.
    [62] Jeong, J.H., et al., "Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors". Electrochemical and Solid-State Letters, 2008. 11(6): p. H157-H159.
    [63] Ide, K., et al., "Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors". Applied Physics Letters, 2011. 99(9).
    [64] Barquinha, P., et al., "Gallium-indium-zinc-oxide-based thin-film transistors: Influence of the source/drain material". IEEE Transactions on Electron Devices, 2008. 55(4): p. 954-960.
    [65] Cho, E.N., J.H. Kang, and I. Yun, "Contact resistance dependent scaling-down behavior of amorphous InGaZnO thin-film transistors". Current Applied Physics, 2011. 11(4): p. 1015-1019.
    [66] Kim, H., et al., "Low resistance Ti/Au contacts to amorphous gallium indium zinc oxides". Applied Physics Letters, 2011. 98(11).
    [67] Shimura, Y., et al., "Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes". Thin Solid Films, 2008. 516(17): p. 5899-5902.
    [68] Chien, C.Y., et al., "Formation of Ge quantum dots array in layer-cake technique for advanced photovoltaics". Nanotechnology, 2010. 21(50).
    [69] Botzakaki, M.A., et al., "Influence of the atomic layer deposition temperature on the structural and electrical properties of Al/Al2O3/p-Ge MOS structures". Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018. 36(1).
    [70] Park, J.C., et al., "Comparative study of zro2 and hfo2 as a high-k dielectric for amorphous ingazno thin film transistors". Journal of Nanoelectronics and Optoelectronics, 2014. 9(1): p. 67-70.
    [71] Kim, H., H.B.R. Lee, and W.J. Maeng, "Applications of atomic layer deposition to nanofabrication and emerging nanodevices". Thin Solid Films, 2009. 517(8): p. 2563-2580.
    [72] T. Suntola, A.P., and S. Lindfors, "Method for producing compound thin films". United States Patent, 1983. 4: p. 4413022.
    [73] Song, J., C. Han, and P.T. Lai, "Comparative Study of Nb2O5, NbLaO, and La2O3as Gate Dielectric of InGaZnO Thin-Film Transistor". IEEE Transactions on Electron Devices, 2016. 63(5): p. 1928-1933.
    [74] Kondratyuk, R.I., et al., "A study of parasitic series resistance components in In-Ga-Zn-Oxide (a-IGZO) thin-film transistors". IEEE Electron Device Letters, 2011. 32(4): p. 503-505.
    [75] Hsiao-Hsuan, H., et al., "High Mobility Field-Effect Thin Film Transistor Using Room-Temperature High-<formula formulatype="inline"><tex Notation="TeX">$\kappa$</tex> </formula> Gate Dielectrics". Journal of Display Technology, 2014. 10(10): p. 875-881.
    [76] Lee, S.Y., S. Chang, and J.S. Lee, "Role of high-k gate insulators for oxide thin film transistors". Thin Solid Films, 2010. 518(11): p. 3030-3032.
    [77] Kamiya, T., K. Nomura, and H. Hosono, "Present status of amorphous In-Ga-Zn-O thin-film transistors". Science and Technology of Advanced Materials, 2010. 11(4).
    [78] Cho, K.S., et al., "Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors". Nature Communications, 2017. 8(1).
    [79] Yang, J., et al., "MoS2–InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity". ACS Applied Materials & Interfaces, 2016. 8(13): p. 8576-8582.
    [80] Wang, Y., et al., "Organic-inorganic hybrid heterostructures towards long-wavelength photodetectors based on InGaZnO-Polymer". Organic Electronics, 2020. 83: p. 105778.
    [81] Xu, X., et al., "Enhanced Detectivity and Suppressed Dark Current of Perovskite–InGaZnO Phototransistor via a PCBM Interlayer". ACS Applied Materials & Interfaces, 2018. 10(50): p. 44144-44151.
    [82] Yan, L., et al., "Narrow Bandgap Pb–Sn Perovskites/InGaZnO Hybrid Phototransistors for Near-Infrared Detection". physica status solidi (a), 2019. 216(23): p. 1900417.
    [83] Tak, Y.J., et al., "Boosting Visible Light Absorption of Metal-Oxide-Based Phototransistors via Heterogeneous In–Ga–Zn–O and CH3NH3PbI3 Films". ACS Applied Materials & Interfaces, 2018. 10(15): p. 12854-12861.
    [84] Na, H.J., et al., "A visible light detector based on a heterojunction phototransistor with a highly stable inorganic CsPbI:xBr3-x perovskite and In-Ga-Zn-O semiconductor double-layer". Journal of Materials Chemistry C, 2019. 7(45): p. 14223-14231.

    無法下載圖示 全文公開日期 2026/08/23 (校內網路)
    全文公開日期 2026/08/23 (校外網路)
    全文公開日期 2026/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE