簡易檢索 / 詳目顯示

研究生: 柯宗佑
Tsung-yu Ke
論文名稱: 二硒化鉬鎢層狀半導體之晶體成長與光學特性研究
Crystal Growth and Optical Properties of Mo1-xWxSe2 Layered Crystals
指導教授: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
口試委員: 趙良君
Liang-Chiun Chao
程光蛟
Kwong-Kau Tiong
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 70
中文關鍵詞: 二硒化鉬二硒化鎢二硒化鉬鎢過渡性金屬雙硫屬化合物間接能隙能量散佈光譜分析儀X光繞射拉曼散射光譜調制光譜激子躍遷
外文關鍵詞: MoSe2, WSe2, Mo1-xWxSe2, Transition metal dichalcogenides, Indirect bandgap, EDS, XRD, Raman, Modulation spectroscopy, Excitonic transition
相關次數: 點閱:399下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 層狀單晶半導體Mo1-xWxSe2屬於過渡性金屬雙硫屬化合物(Transition-metal-dichalcogenides) 簡稱TMDCs,層與層之間僅有微弱的凡得瓦爾作用力 (Van der waals force) 。
    本論文利用化學氣相傳導法 (Chemical vapor transport method) 以溴或碘 (Br2 or I2) 為傳導劑成長三元化合物Mo1-xWxSe2。利用電子顯微鏡上的能量散佈分析儀 (EDS) 來確認樣品元素的比例;並藉由X光繞射量測 (XRD) 分析樣品的晶格結構,計算出晶格常數隨著成分的變化;以氬氣雷射 (Ar+) 為激發源量測拉曼散射光譜 (Raman scattering spectra) 可以得到一階拉曼模態 與 ,使用Modified random-element isodisplacement (MREI) model作理論計算且作數據擬合可得各模態的力學常數 (Force constant) 。
    在光學方面,使用壓電調制反射光譜技術量測直接能隙附近的激子A1與激子B之躍遷能量,探討隨著激子躍遷的訊號隨著成份的變化,並對溫度與激子躍遷訊號和展寬變化的關係加以討論。


    Molybdenum Tungsten diselenides (Mo1-xWxSe2) belong to the group VIA layer type transition metal dichalcogenides, grown by the chemical vapor transport method using Bromine (Br2) or Iodine (I2) as a transport agent. Energy dispersive X-ray spectroscopy (EDS) has been employed to determine the contents for Molybdenum Tungsten diselenides (Mo1-xWxSe2) . By analyzing the X-ray diffraction patterns, the structure of Mo1-xWxSe2 (0 x 1) remains the 2H symmetry. Raman scattering for first-order and modes have been observed in the range of 150-300 cm-1, Modified random-element-isodisplacement (MREI) model has been adopted to successfully predict mode behaviors of and modes in Mo1-xWxSe2 alloys. Further, composition-dependent and frequencies can be well fitted by the MREI model, giving composition-dependent force constants.
    The temperature dependence of the spectral features in vicinity of the direct band edge of mixed-crystals Mo1-xWxSe2 solid solution is measured in the temperature range of 25-295 K by using piezoreflectance (PzR) . The near band-edge excitonic transition energies of Mo1-xWxSe2 solid solutions were determined accurately from a detailed line-shape fit of PzR spectra. The near band-edge excitonic transition energies and their splittings were found to vary smoothly with the increase of W content x, indicating that the natures of the direct band edges of Mo1-xWxSe2 solid solutions are similar. In addition, the parameters that describe the temperature variation of the energies and broadening function of the excitonic transitions are evaluated and discussed.

    中文摘要I 英文摘要II 誌謝IV 目錄V 圖索引VII 表索引IX 第一章緒論1 第二章晶體成長4 2.1晶體成長方法簡介4 2.2單晶成長設備介紹5 2.2.1真空系統5 2.2.2長晶反應系統6 2.3單晶成長8 第三章量測技術11 3.1能量散佈光譜分析儀11 3.2X-ray晶格繞射分析儀原理14 3.3拉曼散射光譜17 3.4調制光譜簡介和系統概論21 3.4.1調制光譜簡介21 3.4.2壓電調制反射光譜量測(PzR)23 第四章結果與討論27 4.1EDS實驗結果27 4.2X光繞射實驗分析結果32 4.3拉曼散射結果與討論37 4.3.1拉曼散射振動模式討論37 4.3.2MREI model理論計算與實驗結果討論45 4.4調製光譜量測結果與討53 第五章結論66 參考文獻68

    [1]J. A. Wilson and A. D. Yoffe, "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties," Adv. Phys., vol. 18, pp. 193-335, 1969.
    [2]H. Tributsch, "Layer-Type Transition Metal Dichalcogenides — a New Class of Electrodes for Electrochemical Solar Cells," Berichte der Bunsengesellschaft fur physikalische Chemie, vol. 81, pp. 361-369, 1977.
    [3]R. B. Somoano and A. Rembaum, "Superconductivity in Intercalated Molybdenum Disulfide," Phys Rev. Lett., vol. 27, pp. 402-404, 1971.
    [4]J. M. Martin, C. Donnet, T. Le Mogne, and T. Epicier, "Superlubricity of molybdenum disulphide," Phys. Rev. B, vol. 48, pp. 10583-10586, 1993.
    [5]C. Pina, P. Bosch, D. Acosta, J. Barreto, A. Vazquez, and E. Camarillo, "Growth of MoS2 and MoS2: Co crystals using I2 as transport material," J. Cryst. Growth., vol. 96, pp. 685-690, 1989.
    [6]E. Fortin and F. Raga, "Excitons in molybdenum disulphide," Phys. Rev. B, vol. 11, pp. 905-912, 1975.
    [7]S. Cincotti and J. P. Rabe, "Self‐assembled alkane monolayers on MoSe2 and MoS2," Appl. Phys. Lett., vol. 62, pp. 3531-3533, 1993.
    [8]J. K. Ellis, M. J. Lucero, and G. E. Scuseria, "The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory," Appl. Phys. Lett., vol. 99, 2011.
    [9]J. B. Legma, G. Vacquier, H. Traore, and A. Casalot, "Improvement in photocurrent with n-type niobium- and rhenium-doped molybdenum and tungsten diselenide single crystals," mater. Sci. Eng., B, vol. 8, pp. 167-174, 1991.
    [10]P. Bhattacharya, Semiconductor Optoelectronic Devices: Pearson Education Taiwan Limited, 2003.
    [11]V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, "High-mobility field-effect transistors based on transition metal dichalcogenides," Appl. Phys. Lett., vol. 84, pp. 3301-3303, 2004.
    [12]M. C. Ball, "Chemical transport reactions," J. Chem. Educ., vol. 45, p. 651, 1968.
    [13]H. Schafer, Chemical transport reactions: Academic Press, 1964.
    [14]許樹恩、吳泰伯, "X光繞射原理與材料結構分," 中國材料科學學會, 1996.
    [15]A. Beiser, Concepts Of Modern Physics: McGraw-Hill Education (India) Pvt Limited, 2003.
    [16]D. Yang and R. F. Frindt, "Powder x‐ray diffraction of two‐dimensional materials," J. Appl. Phys., vol. 79, pp. 2376-2385, 1996.
    [17]梁映秋、趙文運, "分子振动和振动光谱," 北京大学出版社, 1990.
    [18]C. Kittel, Introduction to Solid state Physics: John Wiley and Sons, 1986.
    [19]B. O. Seraphin, R. B. Hess, and N. Bottka, "Field Effect of the Reflectivity in Germanium," J. Appl. Phys., vol. 36, pp. 2242-2250, 1965.
    [20]F. H. Pollak and H. Shen, "Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices," Mater. Sci. Eng., R, vol. 10, 1993.
    [21]H. Mathieu, J. Allegre, and B. Gil, "Piezomodulation spectroscopy: A powerful investigation tool of heterostructures," Phys. Rev. B, vol. 43, pp. 2218-2227, 1991.
    [22]P. Y. U. M. Cardona, Fundamentals of Semiconductors: Springer, 2010.
    [23]J. L. Verble and T. J. Wieting, "Lattice Mode Degeneracy in MoS2 and Other Layer Compounds," Phys. Rev. Lett., vol. 25, pp. 362-365, 1970.
    [24]T. J. Wieting and J. L. Verble, "Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal MoS2," Phys. Rev. B, vol. 3, pp. 4286-4292, 1971.
    [25]D. O. Dumcenco, K. Y. Chen, Y. P. Wang, Y. S. Huang, and K. K. Tiong, "Raman study of 2H-Mo1−xWxS2 layered mixed crystals," J. Alloys Comp., vol. 506, pp. 940-943, 2010.
    [26]T. Sekine, M. Izumi, T. Nakashizu, K. Uchinokura, and E. Matsuura, "Raman Scattering and Infrared Reflectance in 2H-MoSe2," J. Phys. Soc. Jpn., vol. 49, pp. 1069-1077, 1980.
    [27]D. G. Mead and J. C. Irwin, "Long wavelength optic phonons in WSe2," Can. J. Phys., vol. 55, pp. 379-382, 1977.
    [28]Y. S. Chen, W. Shockley, and G. L. Pearson, "Lattice Vibration Spectra of GaAsxP1-x Single Crystals," Phys Rev., vol. 151, pp. 648-656, 1966.
    [29]I. F. Chang and S. S. Mitra, "Application of a Modified Random-Element-Isodisplacement Model to Long-Wavelength Optic Phonons of Mixed Crystals," Phys. Rev., vol. 172, pp. 924-933, 1968.
    [30]Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," Physica, vol. 34, pp. 149-154, 1967.
    [31]P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, "Interband critical points of GaAs and their temperature dependence," Phys. Rev. B, vol. 35, pp. 9174-9189, 1987.
    [32]C. H. Ho, Y. S. Huang, P. C. Liao, and K. K. Tiong, "Piezoreflectance study of band-edge excitons of ReS2-xSex single crystals," Phys. Rev. B, vol. 58, pp. 12575-12578, 1998.
    [33]P. C. Yen, H. P. Hsu, Y. T. Liu, Y. S. Huang, and K. K. Tiong, "Temperature dependences of energies and broadening parameters of the band-edge excitons of Re-doped WS2 and 2H-WS2 single crystals," J. Phys.: Condens. Matter, vol. 16, p. 6995, 2004.
    [34]C. H. Ho, C. S. Wu, Y. S. Huang, P. C. Liao, and K. K. Tiong, "Temperature dependence of energies and broadening parameters of the band-edge excitons of Mo1-xWxS2 single crystals," J. Phys.: Condens. Matter, vol. 10, p. 9317, 1998.
    [35]L. Malikova, W. Krystek, F. H. Pollak, N. Dai, A. Cavus, and M. C. Tamargo, "Temperature dependence of the direct gaps of ZnSe and Zn0.56Cd0.44Se," Phys. Rev. B, vol. 54, pp. 1819-1824, 1996.

    QR CODE