簡易檢索 / 詳目顯示

研究生: 周伯鴻
Bo-Hong Zhou
論文名稱: 奈米銀/高分子複合彈性體製備高拉伸性及高穩定導電之印刷線路
Preparation of Silver Nanoparticles/Polymer Hybrid Elastomers with Highly Stretchable Conductors for Printed Circuit Boards
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 總頁數 : 124頁
中文關鍵詞: 奈米銀粉苯乙烯類熱塑性彈性體心電圖可拉伸電極可撓性電極阻值滯回
外文關鍵詞: Silver nanoparticles, Thermoplastic Elastomers-SEBS, Electrocardiogram, ECG, Stretchable electrode, Flexible electrode, Resistance hysteresis
相關次數: 點閱:312下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用不同維度的奈米銀(Silver nanoparticles)材料混成苯乙烯類熱塑性彈性體(Styrene thermoplastic elastomer, TPE-SEBS)製成可拉伸導電銀漿,並利用直接塗佈/網版印刷製作導電線路,最後成功製備出高導電率(表面電阻約〖10〗^(-2) Ω/sq)、高可拉伸性並兼具拉伸後阻值滯回的現象(導電線路在拉伸長度100%、持續500次反覆拉伸條件後表面電阻維持在約〖10〗^(-1) Ω/sq)之材料特性。利用印刷製程將可拉伸導電線路運用在智慧衣感測元件電極上用於量測人體的訊號。
    TPE-SEBS具備輕質量、高彈性、拉伸性、環保且安全(通過FDA的批准),但TPE-SEBS本身屬於絕緣性的高分子材料,因此我們利用不同維度的奈米銀導電材料做混摻添加至彈性高分子形成穩定的三維網路導電結構,當導電填充物添加量達到複合導電材料的滲透閾值時,導電率會急劇提升並達到電性穩定,混摻不同維度導電材料的主要原因是要讓複合導電材料形成立體的導電結構,提升整體連續向的導電接點,防止複合導電材料在拉伸狀態時,因為導電接點的斷裂使複合材料導電率驟降或失去導電性。並且藉由彈性高分子的材料結構恢復性,使導電複合材料在拉伸後能讓結構回復到未拉伸的狀態,達到拉伸後電性的穩定,導電網路結構在彈性高分子的包覆下不會因為拉伸後產生導電接點的斷裂,整體具備拉伸後導電線路結構的恢復性,使複合導電材料具有良好的導電穩定性。
    最後成功的製備出感測人體訊號的電極元件,複合導電材料本身具備低電阻故更能有效且穩定的使用在心電圖(Electrocardiogram, ECG)的訊號感測上。未來應用更能延伸至軟性電路板、智慧手套、電子皮膚以及各種需要高拉伸彈性電路的裝置。


    The main purpose of this study was to use nano-silver of different dimensions mixed styrene thermoplastic elastomer(TPE-SEBS) to make stretchable conductive silver paste. Silver paste uses direct coating / screen printing method to make stretchable conductive circuit. Finally, material properties of high conductivity (〖10〗^(-2)Ω/sq) , high stretchability, and hysteresis resistance were successfully prepared. And the stretchable conductive circuit was applied to the electrodes of the smart clothing sensing component for measuring the signal of the human body.
    TPE-SEBS is light weight, high elasticity, environmental protection and safety (Approved by FDA), but TPE-SEBS is an insulating polymer material. Therefore, we use silver powder of different dimensions for blending and adding to the elastic polymer to form a stable three-dimensional network conductive structure. When the amount of conductive filler added reaches the penetration threshold of the composite conductive material, the conductivity will increase sharply and reach electrical stability.The main reason for mixing conductive materials of different dimensions is to make the composite conductive material form a three-dimensional conductive structure and enhance the overall continuous conductive contact. This method can prevent the breakage of the conductive connection point of the composite conductive material in the stretched state, causing the electrical conductivity of the composite material to drop or lose conductivity.
    Due to the resilience of the structure of the elastic polymer material, the conductive composite material can be allowed to return to the unstretched state after being stretched to achieve electrical stability after stretching. The conductive network structure doesn’t cause the breakage of the conductive contacts after stretching under the coating of the elastic polymer, and the overall recovery of the conductive circuit structure after stretching provides the composite conductive material with good electrical conductivity stability.
    In the end, electrode elements for sensing body signals were successfully prepared. The composite conductive materials themselves have low resistance and therefore can be more effectively and stably used in electrocardiogram (ECG) signal sensing. Future applications can be extended to flexible circuit boards, smart gloves, electronic skin, and devices that require high tensile flex circuits.

    誌謝 I 摘要 II Abstract IV 第一章:緒論 1 1.1前言 2 1.2研究目的 3 第二章:文獻回顧 4 2.1奈米銀材料的介紹 4 2.1.1奈米尺寸的性質 4 2.1.2銀粒子的結構與特性 7 2.1.3奈米銀粒子製備方法 8 2.1.4銀鹽還原成奈米粒子的合成 8 2.1.5導電複合材料之滲透理論 10 2.2熱塑性彈性體介紹 12 2.2.1熱塑性彈性體簡介 12 2.2.2苯乙烯類熱塑性彈性體介紹 13 2.2.3苯乙烯類熱塑性彈性體化學與性質 14 2.3碳材料介紹 17 2.3.1碳黑的介紹 17 2.3.2碳黑的結構及特性 17 2.3.3碳黑的製造方法 19 2.3.4石墨烯的介紹 20 2.4可拉伸導電性質技術發展 24 2.4.1拉伸式導電材料的技術發展 24 2.4.2導電/彈性體複合材料 25 2.4.3拉伸式導電材料的應用領域 26 2.5穿戴式智慧裝置的介紹 28 2.5.1智慧衣的介紹 28 2.5.2穿戴式智慧型紡織品的市場預測 33 2.5.3智慧服飾現有發展問題以及未來發展 34 2.6拉伸電路近期概況 36 2.6.1奈米銀線/導電高分子的混合電極使用刷塗法製成可拉伸的電路 36 2.6.2探討使用網版印刷製成的可伸縮電子的製程以及特徵 37 2.6.3可拉伸穿戴電子設備的奈米銀線/聚(二甲基矽氧烷)複合材料 39 2.6.3石墨烯分散狀態對導電納米複合材料滲透閾值影響的實驗和理論研究 40 第三章:實驗方法 42 3.1實驗藥品與設備儀器 42 3.1.1藥品與耗材 42 3.1.2實驗設備 44 3.2實驗流程圖 45 3.3可拉伸銀導電漿料 46 3.3.1銀漿溶液的製備 46 3.3.2導電填充物的配置 47 3.3.3銀漿穩定性以及黏度/觸變指數 48 3.4可拉伸銀漿的穩定性 51 3.4.1 分散劑馬來酸酐-酰胺的合成(SMA-amide) 51 3.4.2 流變助劑BYK-410 53 3.4.3流變助劑碳黑/碳管/石墨稀 55 3.5製備可拉伸導電薄膜與線路 56 3.6分析儀器 57 第四章:TPE-SEBS/Ag複合可拉伸導電銀漿 61 4.1銀漿的穩定性及其導電薄膜 61 4.1.1製備TPE-SEBS/Ag複合導電薄膜 61 4.1.2不同種類的銀粉在固定重量濃度百分比下的電性探討 61 4.1.3不同重量濃度百分比之導電薄膜電性探討 63 4.1.4不同厚度的導電薄膜對表面電阻的影響 64 4.1.5以SEM 探討導電薄膜 66 4.1.6銀漿的黏度/觸變指數以及穩定性 67 4.2分散劑SMA-D2000對銀漿的影響 69 4.2.1銀漿添加分散劑SMA-D2000後對導電薄膜的影響 69 4.2.2以SEM 探討導電薄膜的影響 69 4.2.3銀漿添加分散劑SMA-D2000對黏度/觸變指數以及穩定性的影響 70 4.3流變助劑BYK-410對銀漿的影響 72 4.3.1銀漿添加流變助劑BYK-410後對導電薄膜的影響 72 4.3.2銀漿添加流變助劑BYK-410對黏度/觸變指數以及穩定性的影響 73 4.4碳黑/碳管/石墨稀對銀漿的影響 75 4.4.1銀漿添加碳黑/碳管/石墨稀後對導電薄膜的影響 75 4.4.2以SEM 探討導電薄膜的影響 77 4.4.3銀漿添加碳黑/碳管/石墨稀對黏度/觸變指數以及穩定性的影響 79 4.5導電線路之拉伸性質對電性影響之探討 81 4.5.1製備不同拉伸導電線路的機械性質探討 81 4.5.2製備不同拉伸導電線路的參數 83 4.5.3不同含量/厚度的導電線路對拉伸後電阻值變化之影響 84 4.5.4不同的導電填充物材料下對導電線路的拉伸影響 86 4.5.5添加分散劑(SMA-D2000)與CB對導電線路的拉伸影響 88 4.5.6可拉伸導電線路的截構疲乏現象 89 4.6製備具有彈性基材之導電線路 91 4.6.1製備具有彈性基材之導電線路 91 4.6.2以伸長率50%/500次測試拉伸電性的變異 92 4.6.3以伸長率100%/500次測試拉伸電性的變異 94 4.6.4測試LED拉伸導電電路 96 4.7導電線路水洗性能之探討 97 4.8人體訊號量測效果 99 第五章:結論 104 第六章:參考文獻 106

    [1]張佐光,"功能複合材料",新材料與應用技術叢書,2006.
    [2] J. C. Huang, "Carbon black filled conducting polymers and polymer blends, " Advances in Polymer Technology, vol. 21, no. 4, pp. 299-313, 2002.
    [3] D. Chung, "Electrical applications of carbon materials," Journal of Materials Science, vol. 39, no. 8, pp. 2645-2661, 2004.
    [4] Untereker, D.; Lyu, S.; Schley, J.; Martinez, G.; Lohstreter, L. Maximum Conductivity of Packed Nanoparticles and Their Polymer Composites, ACS Appl. Mater. Interfaces. 1, 97–101. 2009.
    [5] S. G. Chen, J. W. Hu, M. Q. Zhang, M. Z. Rong, and Q. Zheng, "Improvement of gas sensing performance of carbon black/waterborne polyurethane composites: effect of crosslinking treatment," Sensors and Actuators B: Chemical, vol. 113, no. 1, pp. 361-369, 2006.
    [6] R. Richner, S. Müller, and A. Wokaun, "Grafted and crosslinked carbon black as an electrode material for double layer capacitors," Carbon, vol. 40, no. 3, pp. 307-314, 2002.
    [7] D. Bigg and D. Stutz, "Plastic composites for electromagnetic interference shielding applications," Polymer Composites, vol. 4, no. 1, pp. 40-46, 1983.
    [8] N. L. Silva, L. Goncalves, and H. Carvalho, "Deposition of conductive materials on textile and polymeric flexible substrates," Journal of Materials Science: Materials in Electronics, vol. 24, no. 2, pp. 635-643, 2013.
    [9] G. Cho, K. Jeong, M. J. Paik, Y. Kwun, and M. Sung, 97 "Performance evaluation of textile-based electrodes and motion sensors for smart clothing," IEEE Sensors Journal, vol. 11, no. 12, pp. 3183-3193, 2011.
    [10] R. Kessick and G. Tepper, "Electrospun polymer composite fiber arrays for the detection and identification of volatile organic compounds," Sensors and Actuators B: Chemical, vol. 117, no. 1, pp. 205-210, 2006.
    [11] J. H. Hong, E. H. Jeong, H. S. Lee, D. H. Baik, S. W. Seo, and J. H. Youk, "Electrospinning of polyurethane/organically modified montmorillonite nanocomposites," Journal of Polymer Science Part B: Polymer Physics, vol. 43, no. 22, pp. 3171-3177, 2005.
    [12] M. Stoppa and A. Chiolerio, "Wearable electronics and smart textiles: a critical review," Sensors, vol. 14, no. 7, pp. 11957-11992, 2014.
    [13] V. Marozas, A. Petrenas, S. Daukantas, and A. Lukosevicius, "A comparison of conductive textile-based and silver/silver chloride gel electrodes in exercise electrocardiogram recordings," Journal of Electrocardiology, vol. 44, no. 2, pp. 189-194, 2011.
    [14] G. Paul, R. Torah, S. Beeby, and J. Tudor, "Novel active electrodes for ECG monitoring on woven textiles fabricated by screen and stencil printing," Sensors and Actuators A: Physical, vol. 221, pp. 60-66, 2015.
    [15] G. Paul, R. Torah, S. Beeby, and J. Tudor, "The development of screen printed conductive networks on textiles for biopotential monitoring applications," Sensors and Actuators A: Physical, vol. 206, pp. 35-41, 2014.
    [16] Tomalia, D. A. et al. "Step & flash imprint lithography," Materials Today, 8, 34, 2005
    [17] Untereker, D.; Lyu, S.; Schley, J.; Martinez, G.; Lohstreter, L, "Maximum Conductivity of Packed Nanoparticles and Their Polymer Composites, "ACS Appl. Mater. Interfaces, 1, 97–101, 2009.
    [18] Ozin,G.A.; "Nanochemistry: Synthesis in diminishing dimensions, " Adv.Mater, 4,612-649, 1992.
    [19] Wegner, K.; Walker, B.; Tsantilis, S.; Pratsinis, S. E. "Design of Metal Nanoparticle Synthesis by Vapor Flow Condensation, " Chemical Engineering Science, 57, 1753–1762, 2002.
    [20] Chen, C. C.; Yeh, C. C. "Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires, " Advanced Materials, 12, 738–741, 2000.
    [21] Ma, H.; Yin, B.; Wang, S.; Jiao, Y.; Pan, W.; Huang, S.; Chen, S.; Meng, F. "Synthesis of Silver and Gold Nanoparticles by a Novel Electrochemical Method, " ChemPhysChem, 24, 68–75, 2004.
    [22] Socol, Y.; Abramson, O.; Gedanken, A.; Meshorer, Y.; Berenstein, L.; Zaban, A. "Suspensive Electrode Formation in Pulsed Sonoelectrochemical Synthesis of Silver Nanoparticles, " Langmuir, 18, 4736–4740, 2002.
    [23] Jin, R.; Cao, Y. C.; Hao, E.; Metraux, G. S.; Schatz, G. C. & Mirkin, C. A.,"Controlling Anisotropic Nanoparticle Growth Through Plasmon Excitation, " Nature, 425,487–490, 2003.
    [24] Yin, H.; Yamamoto, T.; Wada, Y.; Yanagida, S. "Large-Scale and Size-Controlled Synthesis of Silver Nanoparticles under Microwave Irradiation, " Materials Chemistry and Physics, 83, 66–70, 2004.
    [25] Tsuji, T.; Kakita, T. ; Tsuji, M., "Preparation of Nano-Size Particle of Silver with Femtosecond Laser Ablation in Water, " Applied Surface Science, 206, 314–320, 2003.
    [26] Chou, K. S.; Ren, C. Y., "Synthesis of Nanosized Silver Particles by Chemical Reduction Method, " Materials Chemistry and Physics, 64,241–246, 2002.
    [27] Caswell, K. K.; Bender, C. M.; Murphy, C. J. Seedless, "Surfactantless Wet Chemical Synthesis of Silver Nanowires, "Nano Letters, 3, 667–669, 2003.
    [28] Pillai, Z. S. ; Kamat, P. V. "What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method, " The Journal of Physical Chemistry B, 108, 945–95, 2004.
    [29] Pastoriza-Santos, I. ; Liz-Marzan, L. M., "Synthesis of Silver Nanoprisms in DMF, "Nano Letters, 2, 903–905, 2000.
    [30] Kurihara, L.K.; Chow, G. M.; Schoen, P. E., "Nanocrystalline Metallic Powders and Films Produced by the Polyol Method, " NanaShuchued Materials, 5, 607–613, 1995.
    [31] Sondi, I.; Goia, D. V.; Matijevic, E., "Preparation of Highly Concentrated Stable Dispersions of Uniform Silver Nanoparticles, " Journal of Colloid and Interface Science, 260, 75–81, 2003.
    [32] Sun, Y.; Xia, Y., "Shape-Controlled Synthesis of Gold and Silver Nanoparticles, " Science, 298, 2176–2179, 2002.
    [33] Komarneni, S.; Li, D.; Newalkar, B.; Katsuki, H.; Bhalla, A. S., "Microwave-Polyol Process for Pt and Ag Nanoparticles, " Langmuir, 18, 5959–5962, 2002.
    [34] Pastoriza-santos I.; Liz-marzan m, "Formatiom and stabilization of Silver Nanoparticles through Reduction by N,N-Dimethylformamide, " Langmuir, 15, 948-951, 1999
    [35] Atieh Motaghi, Andrew Hrymak, Ghodratollah Hashemi MotlaghElectrical, “Conductivity and percolation threshold of hybrid carbon/polymer composites, ” Applied polymer scince, Vol. 132, Issue13, 2015.
    [36] Haichao Li, Xueren Qian, Tianlu Li, Yonghao Ni., “Percolation for Coated Conductive Paper: Electrical Conductivity as a Function of Volume Fraction of Graphite and Carbon Black, ” BioResources. Vol. 10, No 3, 2015.
    [37] M. Q. Zhang, G. Yu, H. M. Zeng, H. B. Zhang, and Y. H. Hen, "Two-step percolation in polymer blends filled with carbon black," (in English), Macromolecules, Article vol. 31, no. 19, pp. 6724-6726, Sep 1998.
    [38] Kresge EN. In: Holden G, Kricheldorf HR, Quirk RP, editors, "Thermoplastic elastomer. 3rded, "Munich: Hanser Publishers; P. 113, 2004.
    [39] Henschke O. “Olefin block copolymer-a sustainable solution for TPE compounds”. "Paper 13 at Thermoplastic elastomer 2013 Conference, "2013.
    [40] 謝立生, "碳黑物性與應用入門," 高分子期刊, pp. P.51-P.58.
    [41]陳俊勳,"生物可分解高分子正溫度係數效應之研究,"碩士論,國立臺北科技大學有機高分子研究所,台北,2006.
    [42] 謝立生,高分子工業,第77期,P51-56,1998.
    [43] 陳佳莉,全球碳黑產業現況,台灣工業銀行,2007.
    [44] A. Medalia and F. Heckman, "Morphology of aggregates—II. Size and shape factors of carbon black aggregates from electron microscopy," Carbon, vol. 7, no. 5, pp. 567IN3569IN7577-568576582, 1969.
    [45] J.-B. Donnet, "Fifty years of research and progress on carbon black," Carbon, vol. 32, no. 7, pp. 1305-1310, 1994.
    [46] J. Accorsi and E. Romero, "Additives: special carbon blacks for plastics," Plastics engineering, vol. 51, no. 4, pp. 29-32, 1995.
    [47] J.-B. Donnet, Carbon black: science and technology. CRC Press, 1993.
    [48] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," (in English), Science, Article vol. 306, no. 5696, pp. 666-669, Oct 2004.
    [49] A. Ambrosi, C. K. Chua, A. Bonanni, and M. Pumera, "Electrochemistry of graphene and related materials," Chemical reviews, vol. 114, no. 14, pp. 7150-7188, 2014.
    [50] W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," Journal of the American Chemical Society, vol. 80, no. 6,pp. 1339-1339, 1958.
    [51] X. Gao, J. Jang, and S. Nagase, "Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design," The Journal of Physical Chemistry C, vol. 114, no. 2, pp. 832-842, 2009.
    [52] J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, and J. X. Huang, "Graphene Oxide Sheets at Interfaces," (in English), Journal of the American Chemical Society, Article vol. 132, no. 23, pp. 8180-8186, Jun 2010.
    [53] Renxiao Xu, Kyung-In Jang, Yinji Ma, Han Na Jung , Yiyuan Yang, Moongee Cho, Yihui Zhang, Yonggang Huang, John A. Rogers. "Fabric-based stretchable electronics with mechanically optimized designs and prestrained composite substrates" Extreme Mechanics Letters vol. 1, pp. 120-126, 2014.
    [54] S. Park and S. Jayaraman, "Enhancing the quality of life through wearable technology," IEEE Engineering in medicine and biology magazine, vol. 22, no. 3, pp. 41-48, 2003.
    [55] S. Park and S. Jayaraman, "Smart textiles: Wearable electronic systems," MRS bulletin, vol. 28, no. 08, pp. 585-591, 2003.
    [56] A. D. Waller, "A demonstration on man of electromotive changes accompanying the heart's beat," The Journal of physiology, vol. 8, no. 5, p. 229, 1887.
    [57] M. K. Yapici, A. A. Tamador, Y. A. Samad, and K. Liao, "Graphene-clad textile electrodes for electrocardiogram monitoring," Sensors and Actuators B-Chemical, vol. 221, pp. 1469-1474, Dec 2015.
    [58] Ji-Eun Lim, Sang-Mok Lee, Seok-Soon Kim, Tae-Woong Kim, Hyun-Woo Koo & Han-Ki Kim, "Brush-paintable and highly stretchable Ag nanowire and PEDOT:PSS hybrid electrodes, ” Scientific Reportsvolume 7, Article number: 14685, 2017.
    [59] Jari Suikkola, Toni Björninen, Mahmoud Mosallaei, Timo Kankkunen, Pekka Iso-Ketola, Leena Ukkonen, Jukka Vanhala & Matti Mäntysalo, “Screen-Printing Fabrication and Characterization of Stretchable Electronics, ” Scientific Reports volume 6, Article number: 25784, 2016.
    [60] Gui-Wen Huang, Hong-Mei Xiao & Shao-Yun Fu, “Wearable Electronics of Silver-Nanowire/Poly(dimethylsiloxane) Nanocomposite for Smart Clothing, ” Scientific Reports volume 5, Article number: 13971, 2015.
    [61] Tkalya E1, Ghislandi M, Otten R, Lotya M, Alekseev A, van der Schoot P, Coleman J, de With G, Koning C., “Experimental and theoretical study of the influence of the state of dispersion of graphene on the percolation threshold of conductive graphene/polystyrene nanocomposites, ” Sep 10;6(17):15113-21, 2014.
    [62] 胡聖飛,李慧,胡偉,陳祥星.觸變性研究進展及應用綜述[J].湖北工業大學學報,2012,(02):57-60.
    [63] 劉科.觸變性研究新進展[J].膠體與聚合物, (03):31-33+38, 2003.

    無法下載圖示 全文公開日期 2023/08/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE